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Abstract. Let f be a transcendental meromorphic function. We propose a number of
results concerning zeros and fixed points of the difference g(z) = f(z + c) − f(z) and the
divided difference g(z)/f(z).
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1. Introduction and results

Bergweiler and Langley [2] investigated the existence of zeros of the difference

f(z + c) − f(z) and the divided difference (f(z + c) − f(z))/f(z). They obtained

many profound and significant results. The results may be viewed as difference

analogues of the following existing theorem on the zeros of f ′.

Theorem A ([3], [8], [15]). Let f be transcendental and meromorphic in the

plane with

(1.1) lim
r→∞

T (r, f)

r
= 0.

Then f ′ has infinitely many zeros.

Theorem A is sharp, as shown by ez, tan z and examples of arbitrary order greater

than 1 constructed in [6].
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In this paper we assume the reader is familiar with the basic notions of Nevan-

linna’s value distribution theory (see e.g. [12], [17], [18]). In addition, we use the

notations σ(f) to denote the order of growth of the meromorphic function f(z); λ(f)

and λ(1/f) denote, respectively, the exponents of convergence of zeros and poles of

f(z). We also use the notation τ(f) to denote the exponent of convergence of fixed

points of f that is defined as

τ(f) = lim
r→∞

log N(r, 1/(f − z))

log r
.

For f as in the hypotheses of Theorem A it follows from Hurwitz’s theorem that

if z1 is a zero of f
′ then f(z + c) − f(z) has a zero near z1 for all sufficiently small

c ∈ C \ {0}. This makes it natural to ask whether f(z + c)− f(z), for such functions

f , must always have infinitely many zeros or not. Bergeiler and Langley [2] answered

this question, and obtained the following Theorems B–D.

Theorem B. Let f be a function transcendental and meromorphic of lower order

µ(f) < 1 in the plane. Let c ∈ C\{0} be such that at most finitely many poles zj , zk

of f satisfy zj − zk = c.

Then g(z) = f(z + c) − f(z) has infinitely many zeros.

Theorem C. Let ϕ(r) be a positive non-decreasing function on [1,∞) which sat-

isfies lim
r→∞

ϕ(r) = ∞. Then there exists a function f transcendental and meromorphic

in the plane with

lim
r→∞

T (r, f)

r
< ∞ and lim

r→∞

T (r, f)

ϕ(r) log r
< ∞

such that g(z) = f(z +1)−f(z) has only one zero. Moreover, the function g satisfies

lim
r→∞

T (r, g)

ϕ(r) log r
< ∞.

Theorem D. Let f be a function transcendental and meromorphic in the plane

with

T (r, f) = O(log r)2 as r → ∞,

and set

g(z) = f(z + 1) − f(z) and G1(z) =
g(z)

f(z)
=

f(z + 1) − f(z)

f(z)
.

Then at least one of g(z) and G1(z) has infinitely many zeros.
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Chen and Shon [4] considered zeros and fixed points of the difference and the

divided difference of entire functions with order of growth σ(f) = 1 and obtained

the following theorem.

Theorem E. Let c ∈ C \ {0} and let f be a transcendental entire function of

order of growth σ(f) = σ = 1, that has infinitely many zeros with the exponent

of convergence of zeros λ(f) = λ < 1. Then g(z) = ∆f(z) = f(z + c) − f(z) has

infinitely many zeros and infinitely many fixed points.

In particular, if a set H = {zj} consists of all different zeros of f(z) satisfying any

one of the following two conditions:

(i) at most finitely many zeros zj, zk satisfy zj − zk = c;

(ii) limj→∞
|zj+1/zj| = l > 1, then

G(z) =
∆f(z)

f(z)
=

f(z + c) − f(z)

f(z)

has infinitely many zeros and infinitely many fixed points.

From Theorem B we see that the condition “at most finitely many poles zj , zk of

f satisfy zj − zk = c” guarantees that g(z) has infinitely many zeros.

From Theorem C we see that Theorem B fails without the hypothesis on the value

c, even for lower order 0.

Theorem C shows that for any given σ (0 6 σ 6 1), there exists a transcendental

meromorphic function of order of growth σ(f) = σ, such that g(z) has only one zero.

Theorem D shows that even under the condition “T (r, f) = O(log r)2 as r → ∞”,

we cannot prove that g(z) has infinitely many zeros.

Theorem E shows that the fixed points of the difference and the divided difference

have the same properties as their zeros.

In this paper, we consider the following three problems:

(i) What conditions will guarantee that the difference f(z +c)−f(z) has infinitely

many zeros without the hypothesis on c for a meromorphic function f?

(ii) What is the exponent of convergence of zeros of the difference f(z + c)− f(z)

if it has infinitely many zeros?

(iii) What can we say about the zeros of

f(z + c) − f(z) − p(z) and
f(z + c) − f(z)

f(z)
− p(z),

where p(z) is a polynomial?

We prove the following three theorems concerning the above three problems.
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Theorem 1. Let c ∈ C \ {0} be a constant and f a meromorphic function of

order of growth σ(f) = σ 6 1. Suppose that f satisfies λ(1/f) < λ(f) < 1 or has

infinitely many zeros (with λ(f) = 0) and finitely many poles. Then

(1.2) g(z) = f(z + c) − f(z)

has infinitely many zeros and satisfies λ(g) = λ(f).

Theorem 2. Let c and f(z) satisfy the conditions of Theorem 1. Suppose that

p(z) is a polynomial. Then g∗(z) = g(z)−p(z) has infinitely many zeros and satisfies

λ(g∗) = σ(f).

Theorem 3. Let c ∈ C \ {0} be a constant and f a transcendental meromorphic

function of order of growth σ(f) = σ < 1 or of the form f(z) = h(z)eaz where a 6= 0

is a constant, h(z) is a transcendental meromorphic function with σ(h) < 1. Suppose

that p(z) is a nonconstant polynomial. Then

(1.3) G(z) =
f(z + c) − f(z)

f(z)
− p(z)

has infinitely many zeros.

From Theorems 2 and 3 we easily obtain the following corollaries on fixed points

of differences and divided differences.

Corollary 1. Let c and f(z) satisfy the conditions of Theorem 2. Then g(z) has

infinitely many fixed points and satisfies the exponent of convergence of fixed points

τ(g) = σ(f).

Corollary 2. Let c and f(z) satisfy the conditions of Theorem 3. Then G1(z) =

(f(z + c) − f(z))/f(z) has infinitely many fixed points.

Remark 1.1. The following examples show that the condition λ(f) < 1 of The-

orem 1 and Corollary 1 cannot be replaced by λ(f) 6 1.

For example, the function f(z) = ez + 1 satisfies λ(f) = 1, but

g(z) = f(z + 1) − f(z) = (e − 1)ez

has no zero. And for example, the function f = ez + 1
2z2 − 1

2z + 1 satisfies λ(f) = 1

by Milloux’s theorem (see [12], [18]), and g(z) = f(z + 1)− f(z) = (e − 1)ez + z has

no fixed point, but it has infinitely many zeros.
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2. Proof of theorem 1

We need the following lemmas and notion to prove Theorem 1.

ε-set. Following Hayman [13, p. 75–76], we define an ε-set to be a countable union

of open discs not containing the origin and subtending angles at the origin whose

sum is finite. If E is an ε-set then the set of r > 1 for which the circle S(0, r) meets

E has finite logarithmic measure, and for almost all real θ the intersection of E with

the ray arg z = θ is bounded.

Lemma 2.1 ([2]). Let f be a function transcendental and meromorphic in the

plane of order < 1. Let h > 0. Then there exists an ε-set E such that

f(z + c) − f(z) = cf ′(z)(1 + o(1)) as z → ∞ in C \ E,

uniformly in c for |c| 6 h.

Lemma 2.2 ([2]). Let g be a function transcendental and meromorphic in the

plane of order < 1. Let h > 0. Then there exists an ε-set E such that

g′(z + c)

g(z + c)
→ 0,

g(z + c)

g(z)
→ 1 as z → ∞ in C \ E,

uniformly in c for |c| 6 h. Further, E may be chosen such that for large z not in E

the function g has no zeros or poles in |ζ − z| 6 h.

Lemma 2.3 (Rouché’s theorem ([7, p. 125]). Suppose f and g are meromorphic

in a neighborhood of {z : |z − a| 6 R} with no zeros or poles on the circle γ =

{z : |z − a| = R}. If

|f(z) + g(z)| < |f(z)| + |g(z)|

on γ, then

n
(

R,
1

f

)

− n(R, f) = n
(

R,
1

g

)

− n(R, g).

Proof of Theorem 1. We divide this proof into two cases σ(f) = σ < 1 and

σ(f) = σ = 1.

Case I. σ(f) = σ < 1. First, we suppose that f satisfies λ(1/f) < λ(f). Suppose

that f(z) = u(z)/v(z), where u(z) and v(z) are canonical products (v(z) may be a

polynomial) formed by zeros and poles of f(z), respectively, and

σ(u) = λ(u) = λ(f) > σ(v) = λ(v) = λ
( 1

f

)

.
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By Lemma 2.1, there exists an ε-set E such that

(2.1) f(z + c) − f(z) = cf ′(z)(1 + o(1)) as z → ∞ in C \ E.

Set

H = {|z| = r ∈ (1,∞) : z ∈ E or g(z) = 0, or f ′(z) = 0}.

By σ(f) < 1 and the property of the ε-set, we see that H has finite logarithmic

measure. Thus, for large |z| = r 6∈ [0, 1] ∪ H , g(z) and f ′(z) have no zero on the

circle |z| = r, and by (2.1),

(2.2) |g(z) − cf ′(z)| = |cf ′(z)o(1)| < |cf ′(z)| + |g(z)|.

Applying Lemma 2.3 (Rouché’s theorem) to g(z) and cf ′(z), by (2.2) we obtain that

(2.3) n
(

r,
1

g

)

− n(r, g) = n
(

r,
1

f ′

)

− n(r, f ′) r 6∈ [0, 1] ∪ H.

Since f ′(z) = (u′(z)v(z) − u(z)v′(z))/v2(z), σ(f) = σ(f ′) and λ(1/f) < λ(f) =

σ(f) < 1, we see that

(2.4) λ
( 1

f ′

)

= λ
( 1

f

)

< λ(f) = σ(f) = σ(f ′) = λ(f ′).

By (1.2) and λ
(

1
f

)

< λ(f) = σ(f), we see that

(2.5) λ
(1

g

)

6 λ
( 1

f

)

< λ(f) = λ(f ′).

Thus, (2.3)–(2.5) give

λ(g) = λ(f ′) = λ(f).

Secondly, we suppose that f(z) has infinitely many zeros (with λ(f) = 0) and only

finitely many poles. Using a method similar to the above, we can complete the proof

of Case I.

Case II. σ(f) = σ = 1. First, we suppose that f satisfies σ(f) = 1 and λ(1/f) <

λ(f) < 1. Then f can be rewritten as

(2.6) f(z) = h(z)eaz =
u(z)

v(z)
eaz,
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where a 6= 0 is a constant, h(z) is a meromorphic function such that h(z) = u(z)/v(z),

u(z) and v(z) are canonical products (v(z) may be polynomial) formed by zeros and

poles of f(z) respectively. Also,

1 > σ(h) = λ(h) = σ(u) = λ(u) = λ(f)

> λ
( 1

h

)

= σ(v) = λ(v) = λ
( 1

f

)

.(2.7)

Thus,

g(z) = [h(z + c)eac − h(z)] eaz = g1(z)eaz,

where

g1(z) = h(z + c)eac − h(z).

Thus,

σ(g) = 1, σ(g1) < 1, λ(g) = λ(g1) and λ
(1

g

)

= λ
( 1

g1

)

.

If eac = 1, then by Case I and (2.7), we see that the assertion holds in Case II.

Next, we suppose that eac 6= 1. By Lemma 2.3, there exists an ε-set E such that

(2.8) h(z + c) = h(z)(1 + o(1)) as z → ∞ in C \ E.

Thus (2.8) yields

(2.9) g1(z) = each(z)(1 + o(1)) − h(z) = (eac − 1)h(z)(1 + o(1)).

So, since h is transcendental, we see that g1 is transcendental. Set

H = {|z| = r ∈ (1,∞) : z ∈ E or g1(z) = 0, or h(z) = 0}.

By σ(g1) < 1 and the property of the ε-set, we see that H has finite logarithmic

measure. Thus, for large |z| = r 6∈ [0, 1] ∪ H , g1(z) and (eac − 1)h(z) have no zero

on the circle |z| = r, and by (2.9),

(2.10) |g1(z) − (eac − 1)h(z)| = |(eac − 1)h(z)o(1)| < |(eac − 1)h(z)|+ |g1(z)|.

Using a method similar to the proof of Case I, by (2.10) we get

λ(g1) = λ(h) = λ(u) = λ(f).

Secondly, we suppose that f(z) has infinitely many zeros (with λ(f) = 0) and only

finitely many poles. Using a method similar to the above, we can complete the proof

of Case II.
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3. Proof of theorem 2

We need the following lemma to prove Theorem 2.

Lemma 3.1 ([19]). Let fj(z) (j = 1, . . . , n) (n > 2) be meromorphic functions,

gj(z) (j = 1, . . . , n) entire functions, and let them satisfy

(i)
n
∑

j=1

fj(z)egj(z) ≡ 0;

(ii) when 1 6 j < k 6 n, then gj(z) − gk(z) is not a constant;

(iii) when 1 6 j 6 n, 1 6 h < k 6 n, then

T (r, fj) = o{T (r, egh−gk)} (r → ∞, r 6∈ E),

where E ⊂ (1,∞) is of finite linear measure or finite logarithmic measure.

Then fj(z) ≡ 0 (j = 1, . . . , n).

Proof of Theorem 2. We divide this proof into two cases σ(f) = σ < 1 and

σ(f) = σ = 1.

Case I. σ(f) = σ < 1. We suppose that f satisfies λ(f) > λ(1/f). From

Theorem 1 and its proof of Case I, we see that

σ(g) = λ(g) = σ(f) = λ(f), λ
(1

g

)

6 λ
( 1

f

)

< σ(g).

Since g∗(z) = g(z) − p(z) where p(z) is a polynomial, we have

1 > σ(g∗) = σ(g) = λ(g) > λ
(1

g

)

= λ
( 1

g∗

)

.

So, λ(g∗) = σ(g∗) = σ(g) = λ(f) = σ(f).

For the case that f has infinitely many zeros (with λ(f) = 0) and only finitely

many poles, using a method similar to the above, we can complete the proof of Case I.

Case II. σ = 1. We suppose that f satisfies λ(1/f) < λ(f) < 1. From Theorem

1 and its proof of Case II, we see that

f(z) = h(z)eaz and g(z) = [h(z + c)eac − h(z)] eaz

where a 6= 0 is a constant, h(z) is a meromorphic function such that σ(g) = 1 and

(3.1) 1 > λ(h) = λ(f) > λ
( 1

f

)

= λ
( 1

h

)

, λ(g) = λ(f) > λ
( 1

f

)

> λ
(1

g

)

.
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Suppose that λ(g∗) < 1. Then by σ(g∗) = σ(g − p) = 1, g∗(z) can be rewritten

as

(3.2) g∗(z) = g(z) − p(z) = h∗(z)edz

where h∗(z) is a meromorphic function such that

λ(h∗) = λ(g∗), λ
( 1

h∗

)

= λ
( 1

g∗

)

, σ(h∗) = max
{

λ(h∗), λ
( 1

h∗

)}

< 1.

By (3.1), we see that h∗(z) 6≡ 0 and

(3.3) λ
( 1

g∗

)

= λ
(1

g

)

= λ
( 1

h∗

)

6 λ
( 1

f

)

.

Thus (3.2) gives

(3.4) [h(z + c)eac − h(z)] eaz − h∗(z)edz − p(z)e0z = 0.

If a 6= d, then by Lemma 3.1 we see that

h(z + c)eac − h(z) ≡ h∗(z) ≡ p(z) ≡ 0.

This is a contradiction. So, a = d. By (3.4), we see that

(3.5) [h(z + c)eac − h(z) − h∗(z)] eaz − p(z)e0z = 0.

Again applying Lemma 3.1, we obtain that

p(z) ≡ 0, h(z + c)eac − h(z) − h∗(z) ≡ 0.

This is also a contradiction. Hence λ(g−p) = 1. Case II of Theorem 2 is thus proved.

4. Proof of theorem 3

We need the following lemmas to prove Theorem 3.

Lemma 4.1 ([2]). Let c ∈ C \ {0} be a constant and f a function transcendental

and meromorphic in the plane which satisfies (1.1). Then both f(z + c) − f(z) and

(f(z + c) − f(z))/f(z) are transcendental.
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Lemma 4.2 ([9]). Let f be a transcendental meromorphic function with σ(f) =

σ < ∞, let H = {(k1, j1), (k2, j2), . . . , (kq, jq)} be a finite set of distinct pairs of

integers that satisfy ki > ji > 0 for i = 1, . . . , q. Let ε > 0 be a given constant.

Then there exists a set E ⊂ (1,∞) with finite logarithmic measure such that for all

z satisfying |z| /∈ E ∪ [0, 1] and for all (k, j) ∈ H , we have

∣

∣

∣

f (k)(z)

f (j)(z)

∣

∣

∣
6 |z|(k−j)(σ−1+ε).

The following Lemma 4.3 can be got by using a method similar to the proof of

Lemma 4.1 (see [2]).

Lemma 4.3. Let a and c ∈ C \ {0} be constants and h a function transcendental

and meromorphic in the plane which satisfies (1.1). Then (h(z + c)eac − h(z))/h(z)

is transcendental.

Proof of Theorem 3. We divide this proof into two cases σ(f) = σ < 1,

and f(z) is of the form f(z) = h(z)eaz where a 6= 0 is a constant and h(z) is

a transcendental meromorphic function with σ(h) < 1.

Case I. σ(f) = σ < 1. By σ(f) < 1, we see that f satisfies (1.1). By Lemma 4.1,

we see that (f(z + c) − f(z))/f(z) is transcendental, and so is G(z).

By Lemma 2.1, there is an ε-set E, such that

(4.1) f(z + c) − f(z) = cf ′(z)(1 + o(1)) as z → ∞ in C \ E.

By Lemma 4.2, for a given ε > 0 there exists a setH1 ⊂ (1,∞) with finite logarithmic

measure such that for all z satisfying |z| /∈ [0, 1] ∪ H1 we have

(4.2)
∣

∣

∣

f ′(z)

f(z)

∣

∣

∣
6 |z|σ−1+ε

where σ(f) = σ < 1. Set

H2 = {|z| = r ∈ (1,∞) : z ∈ E, or G(z) = 0, or p(z) = 0}.

Using the inequality σ(f) < 1 and the property of an ε-set, we see that H2 has finite

logarithmic measure. Thus for large |z| = r 6∈ [0, 1] ∪ H1 ∪ H2, G(z) and p(z) have

no zero on the circle |z| = r. By (4.1) and (4.2), we obtain that

|G(z) + p(z)| =
∣

∣

∣

cf ′(z)

f(z)
(1 + o(1))

∣

∣

∣
(4.3)

6 |c(1 + o(1))||z|σ−1+ε < |G(z)| + |p(z)|.
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Applying Lemma 2.3 (Rouché’s theorem) to G(z) and p(z), by (4.3) we obtain that

(4.4) n
(

r,
1

G

)

− n(r, G) = n
(

r,
1

p

)

− n(r, p) = deg p, r 6∈ [0, 1] ∪ H1 ∪ H2.

Since G is transcendental and σ(G) < 1, we see that at least one of n (r, 1/G) → ∞

and n(r, G) → ∞ (r → ∞) is true. So, by (4.4), we see that both n (r, 1/G) → ∞

and n(r, G) → ∞ (r → ∞) hold. Hence G(z) must have infinitely many zeros. Thus,

Case I of Theorem 3 is proved.

Case II. f(z) is of the form f(z) = h(z)eaz where a 6= 0 is a constant and h(z) is

a transcendental meromorphic function with σ(h) < 1. Substituting f(z) = h(z)eaz

into G(z), we get that

(4.5) G(z) =
h(z + c)eac − h(z)

h(z)
− p(z),

where h(z) is transcendental and σ(h) < 1.

If eac = 1, then by Case I and (4.5) we see that G(z) has infinitely many zeros.

Assume henceforth that eac 6= 1.We use a method similar to the proof of Case I. By

Lemmas 2.1 and 4.2, for a given ε > 0 there exist an ε-set E and a set H1 ⊂ (1,∞)

having finite logarithmic measure, such that for all z satisfying z ∈ C \ E and

|z| /∈ [0, 1] ∪ H1 we have

∣

∣

∣

h(z + c)eac − h(z)

h(z)

∣

∣

∣
=

∣

∣

∣

ch′(z)

h(z)
eac + (eac − 1)

∣

∣

∣
(4.6)

6 |ceac||z|σ−1+ε + |eac − 1|,

where σ(h) = σ < 1. Set

H2 = {|z| = r ∈ (1,∞) : z ∈ E, or G(z) = 0, or p(z) = 0}.

So, H2 has finite logarithmic measure. Thus for large |z| = r 6∈ [0, 1] ∪ H1 ∪ H2,

G(z) and p(z) have no zero on the circle |z| = r. By (4.5) and (4.6), we obtain that

(4.7) |G(z) + p(z)| 6 |ceac||z|σ−1+ε + |eac − 1| < |G(z)| + |p(z)|.

By Lemma 2.3 (Rouché’s theorem) and (4.7), we obtain (4.4). By the same argument

as in the proof of Case I and noting that G(z) is transcendental, by Lemma 4.3 we

obtain n (r, 1/G) → ∞ (r → ∞). Case II of Theorem 3 is thus proved.
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