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LINEAR MAPS THAT STRONGLY PRESERVE REGULAR

MATRICES OVER THE BOOLEAN ALGEBRA

Kyung-Tae Kang and Seok-Zun Song, Jeju

(Received September 22, 2009)

Abstract. The set of all m × n Boolean matrices is denoted by M m,n . We call a matrix
A ∈ M m,n regular if there is a matrix G ∈ M n,m such that AGA = A. In this paper,
we study the problem of characterizing linear operators on M m,n that strongly preserve
regular matrices. Consequently, we obtain that if min{m, n} 6 2, then all operators onM m,n strongly preserve regular matrices, and if min{m, n} > 3, then an operator T onM m,n strongly preserves regular matrices if and only if there are invertible matrices U and

V such that T (X) = UXV for all X ∈ M m,n , or m = n and T (X) = UXT V for all
X ∈ M n .
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1. Introduction

The Boolean algebra consists of the set B = {0, 1} equipped with two binary

operations, addition and multiplication. The operations are defined as usual except

that 1+1 = 1. Let Mm,n denote the set of all m×n matrices with entries in B. The

usual definitions for addition and multiplication of matrices over fields are applied

to Mm,n as well. If m = n, we use the notation Mn instead of Mn,n.

A matrix X ∈ Mn is said to be invertible if there is a matrix Y ∈ Mn such that

XY = Y X = In,

where In is the n × n identity matrix.

This research was supported by Basic Science Research Program through the National
Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and
Technology (No. 2010-0003011).
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The notion of the generalized inverse of an arbitrary matrix apparently originated

in the work of Moore [5], and the generalized inverses have applications in network

and switching theory and information theory ([2]).

Let A be a matrix in Mm,n. Consider a matrix X ∈ Mn,m in the equation

(1.1) AXA = A.

Then X is called a generalized inverse of A if X is a solution of (1.1). Furthermore,

A is called regular if there is a solution of (1.1).

The equation (1.1) has been studied by several authors ([3], [5], [6], [7]). Rao

and Rao [7] characterized all regular matrices in Mn. Also Plemmons [6] published

algorithms for computing generalized inverses of regular matrices inMn under certain

conditions.

In this paper, we study some properties of regular matrices over B. We also

determine the linear operators on Mm,n that strongly preserve regular matrices over

the Boolean algebra.

2. Preliminaries and some results

The matrix In is the n × n identity matrix, Om,n is the m × n zero matrix, and

Jm,n is the m × n matrix all of whose entries are 1. We will suppress the subscripts

on these matrices when the orders are evident from the context and we write I, O

and J , respectively. For any matrix X , XT denotes the transpose of X . A matrix

in Mm,n with only one nonzero entry equal to 1 is called a cell. If the nonzero entry

occurs in the ith row and the jth column, we denote the cell by Ei,j .

Matrices J and O in Mm,n are regular because JGJ = J and OGO = O for all

cells G in Mn,m. Therefore in general, a solution of (1.1), although it exists, is not

necessarily unique. Furthermore, each cell E ∈ Mm,n is regular because EET E = E.

Proposition 2.1. The regularity of a matrix A ∈ Mm,n is preserved under pre-

or post-multiplication by an invertible matrix. Furthermore, the regularity of A is

preserved by its transposition.

P r o o f. This is an easy exercise. �

Also we can easily show that for a matrix A ∈ Mm,n,

(2.1) A is regular if and only if

[

A O

O B

]

is regular

for all regular matrices B ∈ Mn,q. In particular, all idempotent matrices in Mn are

regular.

114



For matrices A = [ai,j ] and B = [bi,j] in Mm,n, we say that A dominates B

(written A ⊒ B or B ⊑ A) if ai,j = 0 implies bi,j = 0 for all i and j. This provides

a reflexive and transitive relation on Mm,n. If A, B ∈ Mm,n with A ⊒ B, we define

A \ B to be the matrix C = [ci,j ] ∈ Mm,n such that ci,j = 1 if and only if ai,j = 1

and bi,j = 0.

Define an upper triangular matrix Λn in Mn by

Λn = [λi,j ] ≡

( n
∑

i6j

Ei,j

)

\ E1,n =















1 1 . . . 1 0

1 . . . 1 1
. . .

...
...

1 1

1















.

Then the following lemma shows that Λn is not regular for n > 3.

Lemma 2.2. Λn is regular in Mn if and only if n 6 2.

P r o o f. For n 6 2, clearly Λn is regular because ΛnInΛn = Λn.

Conversely, assume that Λn is regular for some n > 3. Then there is a nonzero

B = [bi,j ] ∈ Mn such that Λn = ΛnBΛn. From

0 = λ1,n =

n−1
∑

i=1

n
∑

j=2

bi,j

we obtain that all entries of the second column of B are zero except for the entry

bn,2. From

0 = λ2,1 =
n

∑

i=2

bi,1

we have that all entries of the first column of B are zero except for b1,1. Also, from

0 = λ3,2 =

n
∑

i=3

2
∑

j=1

bi,j

we obtain bn,2 = 0. If we combine these three results, we conclude that all entries of

the first two columns are zero except for b1,1. But we have

1 = λ2,2 =

n
∑

i=2

2
∑

j=1

bi,j = 0,

a contradiction. Hence Λn is not regular for all n > 3. �
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In particular, Λ3 =





1 1 0

0 1 1

0 0 1



 is not regular in M3. Let

(2.2) Φm,n =

[

Λ3 O

O O

]

for all min{m, n} > 3. Then Φm,n is not regular in Mm,n by virtue of (2.1).

The factor rank ([1]), b(A), of a nonzero A ∈ Mm,n is defined as the least integer

k for which there are matrices B and C of orders m× k and k×n, respectively, such

that A = BC. The rank of a zero matrix is zero. Also we can easily obtain that

(2.3) 0 6 b(A) 6 min{m, n} and b(AB) 6 min{b(A), b(B)}

for all A ∈ Mm,n and for all B ∈ Mn,q.

Let A = [a1 a2 . . . an] be a matrix in Mm,n, where aj denotes the jth column of

A for all j. Then the column space of A is the set
{ n

∑

j=1

αjaj | αj ∈ B

}

, denoted by

〈A〉; the row space of A is 〈AT 〉.

For a matrix A ∈ Mm,n with b(A) = k, A is said to be space decomposable if there

are matrices B and C of orders m × k and k × n, respectively, such that A = BC,

〈A〉 = 〈B〉 and 〈AT 〉 = 〈CT 〉.

Theorem 2.3 ([7]). A is regular in Mm,n if and only if A is space decomposable.

Lemma 2.4. If A ∈ Mm,n with b(A) 6 2, then A is regular.

P r o o f. If b(A) = 0, then A = O is clearly regular. If b(A) = 1, there are

permutation matrices P and Q such that PAQ =
[

J O

O O

]

, and hence PAQ is regular

by (2.1). It follows from Proposition 2.1 that A is regular.

If b(A) = 2, there are matrices B = [b1 b2] and C = [c1 c2]
T of orders m × 2

and 2 × n, respectively, such that A = BC, where b1 and b2 are distinct nonzero

columns of B, and c1 and c2 are distinct nonzero columns of C
T . Then we can easily

show that all columns of A are of the forms 0,b1,b2 and b1 +b2 so that 〈A〉 = 〈B〉.

Similarly, we have 〈AT 〉 = 〈CT 〉. Therefore A is space decomposable and hence A is

regular by Theorem 2.3. �

The number of nonzero entries of a matrix A ∈ Mm,n is denoted by |A|.
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Corollary 2.5. Let A be a nonzero matrix in Mm,n, where min{m, n} > 3.

(i) If |A| 6 4, then A is regular ;

(ii) if A is a cell, there is a regular matrix B such that A + B is not regular ;

(iii) if |A| = 3 and b(A) = 2 or 3, there is a matrix C with |C| = 2 such that A + C

is not regular ;

(iv) if |A| = 5 and A has a row or a column that has at least 3 nonzero entries, then

A is regular.

P r o o f. (i) By Lemma 2.4, we lose no generality in assuming that b(A) > 3 so

that b(A) = 3 or 4. Consider X =
[

A O

O 0

]

in Mm+1,n+1. Since |A| 6 4 and b(A) = 3

or 4, we can easily show that there are permutation matrices P and Q such that

PXQ =
[

Y O

O O

]

for some idempotent matrix Y ∈ M4 with |Y | = 3 or 4. By (2.1)

and Proposition 2.1, X is regular and hence A is regular by (2.1).

(ii) Consider the matrix Φm,n in (2.2). Let P and Q be permutation matrices such

that PAQ = E1,1. Consider the matrix B satisfying PBQ = E1,2+E2,2+E2,3+E3,3.

Then

(PBQ)(G2,1 + G3,3)(PBQ) = PBQ and P (A + B)Q = Φm,n,

where Gi,j are cells in Mn,m. Thus A + B is not regular, while B is regular by

Proposition 2.1.

(iii) Similar to (ii).

(iv) If |A| = 5 and A has a row or a column that has at least 3 nonzero entries, then

we can easily show that b(A) 6 3. By Lemma 2.4, it suffices to consider b(A) = 3.

Then A has either a row or a column that has just 3 nonzero entries. Suppose that a

row of A has just 3 nonzero entries. Since b(A) = 3, there are permutation matrices

P and Q such that

PAQ = E1,1 + E1,2 + E1,3 + E2,i + E3,j

for some i and j with i < j. If j > 4, then PAQ is regular by Lemma 2.6 and (2.1)

because b(E1,1 + E1,2 + E1,3 + E2,i) = 2. Hence A is regular by Proposition 2.1. If

1 6 i < j 6 3, there are permutation matrices P ′ and Q′ such that P ′PAQQ′ =
[

D O

O O

]

, where D =

[

1 1 1

0 1 0

0 0 1

]

. We can easily show that D is idempotent in M3, and

hence D is regular. It follows from (2.1) and Proposition 2.1 that A is regular.

If a column of A has just 3 nonzero entries, a parallel argument shows that A is

regular. �
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Linearity of operators on Mm,n is defined as for vector spaces over fields. A linear

operator onMm,n is completely determined by its behavior on the set of cells inMm,n.

An operator T on Mm,n is said to

(1) be singular if T (X) = O for some nonzero X ∈ Mm,n; otherwise T is nonsin-

gular ;

(2) preserve regularity if T (A) is regular whenever A is regular in Mm,n;

(3) strongly preserve regularity if T (A) is regular if and only if A is regular inMm,n.

Example 2.6. Let A be any regular matrix in Mm,n, where at least one entry of

A is 1. Define an operator T on Mm,n by

T (X) =

( m
∑

i=1

n
∑

j=1

xi,j

)

A

for all X = [xi,j ] ∈ Mm,n. Then we can easily show that T is nonsingular and T is

a linear operator that preserves regularity. But T does not preserve any matrix that

is not regular in Mm,n. �

Thus, we are interested in linear operators on Mm,n that strongly preserve regu-

larity.

Lemma 2.7. Let min{m, n} > 3. If T is a linear operator on Mm,n that strongly

preserves regularity, then T is nonsingular.

P r o o f. If T (X) = O for some nonzero X ∈ Mm,n, then we have T (E) = O for

all cells E ⊑ X . For such a cell E, there is a regular matrix B such that E + B is

not regular by Corollary 2.5(ii). Nevertheless, T (E + B) = T (B), a contradiction to

the fact that T strongly preserves regularity. Hence T (X) 6= O for all nonzero X .

Thus T is nonsingular. �

For min{m, n} 6 2, all matrices in Mm,n are regular by (2.3) and Lemma 2.4.

This proves:

Theorem 2.8. If min{m, n} 6 2, then all operators on Mm,n strongly preserve

regularity.
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3. Linear operators that strongly preserve regular matrices over

the Boolean algebra

In this section we have characterizations of the linear operators that strongly

preserve regular matrices over the Boolean algebra B.

As shown in Theorem 2.8, each operator T on Mm,n strongly preserves regularity

if min{m, n} 6 2. Thus in the sequel, unless otherwise stated, we assume that T

is a linear operator on Mm,n that strongly preserves regularity for min{m, n} > 3.

Furthermore, without loss of generality, we assume that 3 6 m 6 n.

Lemma 3.1. Let A ∈ Mm,n with |A| = k and b(A) = k. Then J \ A is regular if

and only if k 6 2.

P r o o f. If k 6 2, there are permutation matrices P and Q such that P (J\A)Q =

J \ (aE1,1 + bE2,2), where a, b ∈ B, and hence

P (J \ A)Q =















a′ 1

1 b′

1 1
...
...

1 1















[

1 0 1 . . . 1

0 1 1 . . . 1

]

so that b(J \ A) = b(P (J \ A)Q) 6 2, where a + a′ = b + b′ = 1 with a 6= a′ and

b 6= b′. Thus we have that J \ A is regular by Lemma 2.4.

Conversely, assume that J \ A is regular for some k > 3. It follows from |A| = k

and b(A) = k that there are permutation matrices U and V such that

U(J \ A)V = J \

k
∑

t=1

Et,t.

Let J \
k
∑

t=1
Et,t = X = [xi,j ]. By Proposition 2.1, X is regular, and hence there is a

nonzero B = [bi,j ] ∈ Mn,m such that X = XBX . Then the (t, t)th entry of XBX

becomes

(3.1)
∑

i∈I

∑

j∈J

bi,j

for all t = 1, . . . , k, where I = {1, . . . , n} \ {t} and J = {1, . . . , m} \ {t}. From

x1,1 = 0 and (3.1) we have

(3.2) bi,j = 0 for all i = 2, . . . , n; j = 2, . . . , m.
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Consider the first row and the first column of B. It follows from x2,2 = 0 and (3.1)

that

(3.3) bi,1 = 0 = b1,j for all i = 1, 3, 4, . . . , n; j = 1, 3, 4, . . . , m.

Also, from x3,3 = 0 we obtain b1,2 = b2,1 = 0, and hence B = O by (3.2) and (3.3).

This contradiction shows that k 6 2. �

Proposition 3.2. Let A ∈ Mm,n and let E be a cell with E 6⊑ A. If there are

distinct cells F and G that are not dominated by A such that b(E + F + G) = 3,

then |T (A)| < |T (A + E)|.

P r o o f. Suppose that |T (A)| = |T (A+E)|. Let B = J \ (E +F +G). It follows

from T (A) = T (A + E) that T (A + B) = T (A + E + B), equivalently

T (J \ (E + F + G)) = T (J \ (F + G)),

a contradiction because J \ (E + F + G) is not regular, while J \ (F + G) is regular

by Lemma 3.1. Thus the result follows. �

Proposition 3.3. Let E, F and G be distinct cells inMm,n with b(E+F +G) = 3.

Then |T (J \ (E + F + G))| 6 mn − 3.

P r o o f. By Proposition 3.1, J\(E+F+G) is not regular. If |T (J\(E+F+G))| >

mn − 2, then b(T (J \ (E + F + G)) 6 2 and so T (J \ (E + F + G)) is regular by

Lemma 2.6, a contradiction. Thus the result follows. �

Let A ∈ M3. If |A| 6 4, then A is regular by Corollary 2.5(i), and if |A| > 7,

then b(A) 6 2 and so A is regular by Lemma 2.4. Hence if A is not regular, then

|A| = 5 or 6 and there are permutation matrices P and Q such that PAQ is one of

the following forms:

B =





1 1 0

0 1 1

0 0 1



 or C =





0 1 1

1 0 1

1 1 0



 .

Furthermore, if E is a cell with E ⊑ C, there are permutation matrices P ′ and Q′

such that P ′(C \ E)Q′ = B and hence C \ E is not regular.
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Lemma 3.4. For all cells E in M3, T (E) is a cell.

P r o o f. It suffices to show that |T (E)| = 1 for all cells E. Suppose that

|T (E)| > 2 for some cell E. Without loss of generality we assume that E = E1,1.

Let A =

[

1 1 0

0 1 1

0 0 1

]

. Since A is not regular, neither is T (A) and hence |T (A)| ∈ {5, 6}.

Let B ∈ M3 be a matrix with B ⊑ A and |B| = 4. If |T (B)| > 5, then T (B) is not

regular, while B is regular by Corollary 2.5(i), a contradiction. Hence there is no

matrix B with B ⊑ A and |B| = 4 such that |T (B)| > 5.

It follows from Proposition 3.2 that

|T (E1,1)| < |T (E1,1 + E2,2)| < |T (E1,1 + E2,2 + E3,3)|

< |T (E1,1 + E2,2 + E3,3 + E1,2)|,

and hence |T (E1,1+E2,2+E3,3+E1,2)| > 5 because |T (E1,1)| > 2. This is impossible.

Thus |T (E)| 6 1 and so |T (E)| = 1 for all cells E by Lemma 2.7, equivalently T (E)

is a cell for all cells E. �

The following example is good for showing that |T (A)| 6 3 for all matrices A ∈

Mm,n with |A| = 2, where n > 4.

Example 3.5. Consider M3,4. By Propositions 3.2 and 3.3 we have

|T (E1,1 + E2,2)| < |T (E1,1 + E2,2 + E1,2)|

< |T (E1,1 + E2,2 + E1,2 + E3,3)|

< |T (E1,1 + E2,2 + E1,2 + E3,3 + E3,4)|

< |T (E1,1 + E2,2 + E1,2 + E3,3 + E3,4 + E1,3)|

< |T (E1,1 + E2,2 + E1,2 + E3,3 + E3,4 + E1,3 + E2,1)|

< |T (E1,1 + E2,2 + E1,2 + E3,3 + E3,4 + E1,3 + E2,1 + E3,1)|

6 |T (J \ (E1,4 + E2,3 + E3,2))| 6 3 · 4 − 3 = 9.

From this inequality, we have |T (E1,1 + E2,2)| 6 3. �

A matrix L ∈ Mm,n is called a line matrix if

L =
n

∑

s=1

Ei,s or L =
m

∑

t=1

Et,j

for some i ∈ {1, . . . , m} or j ∈ {1, . . . , n}; Ri =
n
∑

s=1
Ei,s is the ith row matrix and

Cj =
m
∑

t=1
Et,j is the jth column matrix.
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Proposition 3.6. Let A be a matrix in Mm,n with |A| = 2, where n > 4. Then

we have |T (A)| 6 3.

P r o o f. Without loss of generality we assume that

A = E1,1 + E2,2, A = E1,1 + E1,2 or A = E1,1 + E2,1.

Let B = E1,1 + E1,2 + E2,2. By Proposition 3.2 we have |T (E1,1 + E2,2)| < |T (B)|

and |T (E1,1 + E1,2)| < |T (B)|. Furthermore, we have

|T (B)| < |T (B + E4,1)| < . . . < |T (B + R4)|

< |T (B + R4 + E5,1)| < . . . < |T (B + R4 + R5)|

< . . . < |T (B + R4 + . . . + Rm)|.

Let X1 = B + R4 + . . . + Rm. Again by Proposition 3.2,

|T (X1)| < |T (X1 + E3,3)| < . . . < |T (X1 + E3,3 + . . . + E3,n)|.

Let X2 = X1 + E3,3 + . . . + E3,n. By Proposition 3.2 we have

|T (X2)| < |T (X2 + E1,3)| < . . . < |T (X2 + E1,3 + . . . + E1,n−1)|.

Let X3 = X2 + E1,3 + . . . + E1,n−1. It follows from Propositions 3.2 and 3.3 that

|T (X3)| < |T (X3 + E2,1)| < |T (X3 + E2,1 + E2,3)|

< . . . < |T (X3 + E2,1 + E2,3 + . . . + E2,n−2)|

< |T (X3 + E2,1 + E2,3 + . . . + E2,n−2 + E3,1)|

6 |T (J \ (E1,n + E2,n−1 + E3,2))| 6 mn − 3.

Thus we have

|T (X3)| 6 mn − 3 − (n − 2) = (m − 1)n − 1,

|T (X2)| 6 (m − 1)n − 1 − (n − 3) = (m − 2)n + 2,

|T (X1)| 6 (m − 2)n + 2 − (n − 2) = (m − 3)n + 4,

|T (B)| 6 (m − 3)n + 4 − (m − 3)n = 4.

Hence |T (E1,1 + E2,2)| 6 3 and |T (E1,1 + E1,2)| 6 3.

A parallel argument shows that |T (E1,1 + E2,1)| 6 3. Thus the result follows. �
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Lemma 3.7. T (E) is a cell for all cells E ∈ Mm,n.

P r o o f. For the case n = 3, we are done by Lemma 3.4. Assume that n > 4.

It suffices to show that |T (E)| = 1 for all cells E. First we claim that |T (E)| 6 2

for all cells E. Let F be a cell different from E. By Propositions 3.2 and 3.6 we have

|T (E)| < |T (E + F )| 6 3. Hence |T (E)| 6 2.

Now, suppose that |T (E)| > 2 for some cell E. Without loss of generality we

assume that E = E1,1. It follows from Propositions 3.2 and 3.6 that

|T (E1,1)| = 2 and |T (E1,1 + Ei,j)| = 3

for all (i, j) 6= (1, 1). This means that for each cell Ei,j with (i, j) 6= (1, 1), there is

a single cell G such that G 6⊑ T (E1,1), G ⊑ T (Ei,j) and

T (E1,1 + Ei,j) = T (E1,1) + G.

Let (s, t) be an arbitrary pair different from (1, 1) and (i, j). Similarly there is a

single cell H such that H 6⊑ T (E1,1), H ⊑ T (Es,t) and T (E1,1 +Es,t) = T (E1,1)+H .

It follows from Proposition 3.2 that G 6= H . Thus we have

|T (J \ (E1,3 + E2,2 + E3,1))| = 2 + (mn − 4) = mn − 2,

a contradiction because J \ (E1,3 + E2,2 + E3,1) is not regular by Lemma 3.1, while

T (J \ (E1,3 + E2,2 + E3,1)) is regular by Lemma 2.4. Thus the result follows. �

Corollary 3.8. T is bijective on the set of cells in Mm,n.

P r o o f. By Lemma 3.7, it suffices to show that T (E) 6= T (F ) for all distinct

cells E and F . Suppose T (E) = T (F ) for some distinct cells E and F . Then we

have T (E) = T (E + F ). But this is impossible because |T (E)| < |T (E + F )| by

Proposition 3.2. Thus the result follows. �

Lemma 3.9. If A ∈ Mm,n is a matrix with |A| = 3 and b(A) = 1, then

b(T (A)) = 1.

P r o o f. Suppose that A ∈ Mm,n is a matrix with |A| = 3 and b(A) = 1.

By Corollary 3.8, we have |T (A)| = 3. If b(T (A)) 6= 1, then b(T (A)) ∈ {2, 3}

and hence there is a matrix B with |B| = 2 such that T (A) + B is not regular by

Corollary 2.5(iii). Furthermore Corollary 3.8 implies that there is a matrix C with

|C| = 2 such that T (C) = B. But it follows from Corollary 2.5(iv) that A + C is

regular, while T (A + C) = T (A) + B is not regular, a contradiction. Hence we have

b(T (A)) = 1. �
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Corollary 3.10. T preserves all line matrices.

P r o o f. By Corollary 3.8, T is bijective on the set of cells. If T does not map

some line matrix into a line matrix, there is a matrix A ∈ Mm,n with |A| = 2 and

b(A) = 1 such that |T (A)| = 2 and b(T (A)) = 2. Take a cell E with |A+ E| = 3 and

b(A+E) = 1. Then by Lemma 3.9, we have b(T (A+E)) = 1. But this is impossible

because b(T (A)) = 2. Therefore the result follows. �

A linear operator T on Mm,n is called a (U, V )-operator if there are invertible

matrices U and V such that T (X) = UXV for all X ∈ Mm,n, or m = n and

T (X) = UXT V for all X ∈ Mn.

Recall that the n×n permutation matrices are the only invertible matrices inMn.

Now, we are ready to prove the main theorem.

Theorem 3.11. Let T be a linear operator on Mm,n with min{m, n} > 3. Then

the followings are equivalent:

(a) T strongly preserves regularity;

(b) T is a (U, V )-operator.

P r o o f. It follows from Proposition 2.1 that (b) implies (a). To prove that (a)

implies (b), assume that T strongly preserves regularity. Then T is bijective on the

set of cells by Corollary 3.8 and T preserves all line matrices by Corollary 3.10. Since

no combination of s row matrices and t column matrices can dominate Jm,n where

s + t = min{m, n} unless s = 0 or t = 0, we have that either

(1) the image of each row matrix is a row matrix and the image of each column

matrix is a column matrix, or

(2) the image of each row matrix is a column matrix and the image of each column

matrix is a row matrix.

If (1) holds, then there are permutations σ and τ of {1, . . . , m} and {1, . . . , n},

respectively, such that T (Ri) = Rσ(i) and T (Cj) = Cτ(j) for all i and j. Let U and

V be permutation (i.e., invertible) matrices corresponding to σ and τ , respectively.

Then we have

T (Ei,j) = Eσ(i),τ(j) = UEi,jV

for all cells Ei,j . Let X =
m
∑

i=1

n
∑

j=1

xi,jEi,j be any matrix in Mm,n. By the action of T

on the cells, we have T (X) = UXV . If (2) holds, thenm = n and a parallel argument

shows that there are invertible matrices U and V such that T (X) = UXT V for all

X ∈ Mn. �

Thus, as shown in Theorems 2.8 and 3.11, we have characterizations of the linear

operators that strongly preserve regular matrices over the Boolean algebra.
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