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Abstract. New results are proved on the maximum number of isolated T -periodic solutions
(limit cycles) of a first order polynomial differential equation with periodic coefficients. The
exponents of the polynomial may be negative. The results are compared with the available
literature and applied to a class of polynomial systems on the cylinder.
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1. Introduction and main results

This paper is motivated by some recent results on the number of isolated peri-

odic solutions (limit cycles) of the first order differential equation with polynomial

nonlinearity

(1) u′ =

n
∑

i=0

ai(t)u
i,

where the coefficients ai are continuous and T -periodic functions for some T > 0.

This is a classical problem. The first non-trivial situation is the Abel equation n = 3.

If a3(t) > 0, Pliss [13] proved that (1) has at most three limit cycles, but in the general

case Lins-Neto [11] gave examples with an arbitrary number of limit cycles. Such

examples can be easily extended to higher-order polynomial equations, even with a

constant leading coefficient an. Sufficient conditions for n = 3 to have at most three

limit cycles were proved in [8], [2].
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More recently, the equation with three terms,

(2) u′ = an1
(t)un1 + an2

(t)un2 + an3
(t)un3 ,

has been considered in some related works. From now on, a continuous function

f : [0, T ] → R is said to have a definite sign if it is not null and either f(t) > 0 or

f(t) 6 0, and we write f ≻ 0 in the former case and f ≺ 0 in the latter case. Gasull

and Guillamon [7] proved that if n3 = 1 and an2
(t) or an3

(t) have a definite sign,

then (2) has at most two positive limit cycles. This gives a total maximum number

of five limit cycles by the change y = −u, since x = 0 is always a solution. This

remark leads us to focus our attention only on the positive limit cycles. In the same

paper, if n3 > 1 and only one of the coefficients has a definite sign, examples are

given with an arbitrary number of limit cycles.

Therefore, for equations with 3 or more monomials, in order to obtain bounds on

the number of limit cycles it is natural in some sense to assume that two coefficients

have a definite sign. The first result following this idea was obtained by Alwash

in [5], where it is proved that if n > 3 and an−3(t) 6 0, the equation

(3) u′ = un + an−1(t)u
n−2 + an−3(t)u

n−3

has at most one positive limit cycle. This result has been generalized very recently

in the following way.

Theorem 1 ([1]). Consider the differential equation

(4) u′ = an1
(t)un1 + an2

(t)un2 + an3
(t)un3 + am(t)um,

where n1 > n2 > n3 > m = 1. Suppose that an1
(t) and an2

(t), or an2
(t) and

an3
(t) have the same definite sign, or that an1

(t) and an3
(t) have opposite definite

signs. Then (4) has at most two positive limit cycles. If, moreover, am(t) has null

integral over [0, T ], then (4) has at most one positive limit cycle.

Our aim in this paper is to contribute to the literature by proving some related

results which can be seen as a complement to the previous ones. Our main result is

as follows.

Theorem 2. Let us assume that an1
has a definite sign. Fix integers n1, n2, n3,

m ∈ Z such that n1 > n2 > n3 verify the condition

(5) n1 − 2n2 + n3 = 0.
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If

(6) ∆ = a2
n2

(m − n2)
2 − 4an1

an3
(m − n1)(m − n3) 6 0,

then (4) has at most one positive limit cycle.

Here some comments are in order. First, if compared with Theorem 1, it is im-

portant to remark that the condition m < n3 is not required. If compared with

other results in the related literature, an original feature of Theorem 2 is that the

exponents n1, n2, n3, m ∈ Z can be negative. It is worthwhile to consider this case for

applications to the study of the number of limit cycles in polynomial planar systems

on the cylinder, as we will show in more detail in Section 4 with examples inspired

by [3]. About condition (5), it is easy to realize that it is equivalent to impose that

three of the terms of the equation have powers following an arithmetic sequence, that

is, there exist r ∈ N, β ∈ Z, such that

n1 = 2r + β, n2 = r + β, n3 = β.

If r = 1 we get consecutive numbers. On the other hand, m does not appear in

condition (5), therefore the result is quite flexible and gives a whole family of new

criteria.

The paper is divided into four sections. In Section 2 we will prove Theorem 2

and discuss some consequences for the comparison between this result and those

previously published. The method of proof is based on the known result that the

sign of the derivative up to order three of the nonlinearity on a given region gives a

bound on the number of limit cycles (see for instance [7], [8], [14]), but we exploit

the fact that this sign is not invariant under changes of variables. A similar idea

can be found in [10]. In Section 3, we combine this technique with upper and lower

solutions in order to get multiplicity results for the fourth-order differential equation.

Finally, in the last section the main results are applied to some specific examples of

polynomial planar systems in order to get information on the maximum number of

limit cycles.

2. The equation with four monomials

For the proof of Theorem 2, we will need the following result, which can be found

in [7], [8], [14].
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Proposition 1. Let us consider a general first order equation

(7) x′ = g(t, x),

with g continuous and T -periodic in t. Fix k ∈ {1, 2, 3}. Let J be an open interval and

let us assume that g(t, x) has a continuous derivative (∂k/∂xk)g(t, x) for all (t, x) ∈

[0, T ]× J . If (∂k/∂xk)g(t, x) > 0 for all (t, x) ∈ [0, T ]× J (or (∂k/∂xk)g(t, x) 6 0 for

all (t, x) ∈ [0, T ] × J), then the equation (7) has at most k limit cycles with range

contained in J .

P r o o f of Theorem 2. By means of the change in the independent variable

τ = −t, we can assume that an1
≻ 0 without loss of generality. Let us first consider

the case m = 1. We write the equation as

u′ = uF (t, u),

where

F (t, u) = an1
un1−1 + an2

un2−1 + an3
un3−1 + a1.

By using the change of variable u = ex, we get

(8) x′ = F (t, ex) := g(t, x).

Now,

gx(t, x) = exFx(t, ex)

= e(n3−1)x[(n1 − 1)an1
e(n1−n3)x + (n2 − 1)an2

e(n1−n2)x + (n3 − 1)an3
].

If we denote S = e(n1−n2)x, then S2 = e(n1−n3)x as a result of (5). Therefore, gx(t, x)

can be written as

gx(t, x) = e(n3−1)x[(n1 − 1)an1
S2 + (n2 − 1)an2

S + (n3 − 1)an3
].

The last factor is a quadratic polynomial with negative discriminant by hypothe-

sis (6). Hence by Proposition 1 there exists at most one limit cycle of equation (8),

which corresponds to at most one positive limit cycle of (8).

For m 6= 1, the equation is written as

u′ = umF (t, u).
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Now the adequate change is u = xα, satisfying (m−1)α+1 = 0. This change is well

defined for positive solutions and keeps the number of positive limit cycles. It leads

to

x′ =
1

α
F (t, xα) := g(t, x).

The derivative is

gx(t, x) = xα−1Fx(t, xα)

= αx(n3−m+1)α−2[an1
(n1 − m)S2 + an2

(n2 − m)S + an3
(n3 − m)],

where S = x(n1−n2)α. The conclusion is analogous. �

After this proof, we will compare our result with the related literature through

some corollaries. The first generalizes the result by Alwash already mentioned in

Introduction.

Corollary 1. If n1 > n2 > n3, the condition (5) holds and an1
, an3

have opposite

definite signs, then the equation (2) has at most two nontrivial limit cycles, at most

one positive and at most one negative.

P r o o f. Take m = n2 and apply Theorem 2, then (2) has at most one positive

limit cycle. For the negative one, make the change y = −x. �

For comparison with Theorem 1, note that it does not cover the case of an1
and

an3
(t) with the same definite sign. In fact, in [1] the authors provide examples

under this assumption with at least three limit cycles. Now we get the following

complementary result.

Corollary 2. Fix n1 > n2 > n3 > m = 1 verifying (5) and assume that an1
and

an3
have the same definite sign. If

an1
(t)an3

(t) >
(n2 − 1)2

4(n1 − 1)(n3 − 1)
an2

(t)2

for all t, then (4) has at most one positive limit cycle.

The proof is direct. Other variant is the following one.
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Corollary 3. Fix n1 > n2 > n3 verifying (5) and assume that an1
and an3

have

the same definite sign. If

4an1
(t)an3

(t) > a2
n2

(t)

for all t, then there exists m0 > 0 such that if |m| > m0 then (4) has at most one

positive limit cycle.

The number m0 is explicitly computable, for the proof follows easily from passing

to the limit in condition (6).

We close the section by pointing out that Theorem 2 and its corollaries can be

complemented with stability and exact multiplicity information by using the explicit

behavior near the origin, as is done for instance in [2], [7].

3. The complete fourth-order equation

The aim of this section is to provide some sufficient conditions for limiting the

number of limit cycles of the (4,3,2,1,0)-polynomial equation

(9) u′ = a4(t)u
4 + a3(t)u

3 + a2(t)u
2 + a1(t)u + a0(t).

In [7, Theorem 5] it is proved that (9) with a4(t) ≡ 1may have an arbitrary number of

T -periodic solutions. On the other hand, when a0 ≡ 0, the main result of [1] implies

that (9) has at most two positive T -periodic solutions if a4, a3 ≻ 0, or a3, a2 ≻ 0, or

a4 ≻ 0 ≻ a2. Our results can be seen as a partial counterpart.

Our first result is very similar to some results in [4] for the fifth-order homogeneous

equation.

Theorem 3. If a2, a4 ≻ 0 and a2
3 − 8

3a4a2 6 0 , equation (9) has at most two

limit cycles.

P r o o f. The second derivative of the right-hand side of equation (9) is

12a4(t)u
2 + 6a3(t)u + 2a2(t).

Viewing this as a second-order polynomial, the discriminant is 36a2
3 − 96a4a2. By

hypothesis, this is negative, hence by Proposition 1 there exist at most two limit

cycles. �

On the other hand, the next results are of a different nature.
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Theorem 4. Let us assume that a0(t)a4(t) > 0 for all t. If 4 4

√

a0a3
4 + a3 > 0,

equation (9) has at most two positive limit cycles.

P r o o f. We can assume without loss of generality that a0, a4 are both strictly

positive functions. After the change x = 1/u, the equation is

x′ = −xF
(

t,
1

x

)

,

where

F (t, x) = a4(t)x
3 + a3(t)x

2 + a2(t)x + a1(t) +
a0(t)

x
.

By defining g(t, x) := −xF (t, 1/x), the second derivative is

gxx(t, x) =
−1

x3
Fxx

(

t,
1

x

)

.

Therefore, the proof is reduced to showing that Fxx(t, x) is positive for x > 0. It

turns out that

Fxx(t, x) = 6a4(t)x + 2a3(t) +
2a0(t)

x3
.

Since a0, a4 are strictly positive, the function 6a4(t)x + 2a0(t)/x3 attains its global

minimum at a4(t)
−1/4a0(t)

1/4. Hence, for any x > 0,

Fxx(t, x) > 8a0(t)
1/4a4(t)

3/4 + 2a3(t) > 0

and the proof is done by a direct application of Proposition 1 with J = ]0, +∞[. �

Theorem 5. Let us assume that a4(t) > 0 for all t. Then equation (9) has at

most three limit cycles verifying the condition

(10) u(t) >
−a3(t)

4a4(t)
for all t.

Analogously, equation (9) has at most three limit cycles verifying the condition

(11) u(t) <
−a3(t)

4a4(t)
for all t.

P r o o f. First, we consider the case that the function ϕ(t) := a3(t)/4a4(t) has a

continuous derivative. By introducing the change x = u + ϕ in eq. (9), the resulting

equation is

(12) x′ = a4(t)(x−ϕ)4 +a3(t)(x−ϕ)3 +a2(t)(x−ϕ)2 +a1(t)(x−ϕ)+a0(t)+ϕ′(t).
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The third derivative of the right-hand side of the equation is

gxxx(t, x) = 24a4(t)x.

Then gxxx(t, x) > 0 if x > 0. By Proposition 1 with J = ]0, +∞[, there are at most

three positive limit cycles of eq. (12). Going back to the original equation, it gives

at most three limit cycles of eq. (9) verifying (10).

Now, let us prove the general case of a continuous function ϕ(t) by a limiting

argument. The set C1
T of T -periodic functions with continuous derivatives is dense

in the set CT of T -periodic and continuous functions. Hence, it is easy to prove that

there exists a sequence {ϕn(t)} ⊂ C1
T converging uniformly to ϕ(t) and such that

ϕn(t) > ϕ(t) for all n, t. Using the previous reasoning for each ϕn(t) and passing to

the limit we get the desired result.

In the same way it is proved that there are at most three limit cycles verifying (10).

�

Of course, in this latter result additional T -periodic solutions crossing −a3(t)×

(4a4(t))
−1 may appear. This possibility is excluded by an additional assumption.

At this moment we will need some basic facts about the concept of upper and lower

solutions. See for instance [12] for more details.

Definition 1. A T -periodic function ϕ is called a strict lower (upper) solution

of equation (4) if

ϕ′(t) < g(t, ϕ(t)) (ϕ′(t) > g(t, ϕ(t)))

for all t.

Lemma 1. A T -periodic solution does not intersect any eventual strict upper or

lower solution.

By using this notion, the following result is proved.

Corollary 4. Let us assume that −a3(t)/4a4(t) is an upper (lower) solution of

eq. (9). Then there are at most 6 limit cycles.

P r o o f. If −a3(t)/4a4(t) is an upper (or lower) solution, by Lemma 1 a T -

periodic solution can not cross it, so there are at most 3 of them above and at most 3

below. �
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4. Applications to polynomial systems in the cylinder

In this section we study the maximum number of limit cycles of some polynomial

vector fields in R
2, the so-called Hilbert number. The first example is known in

literature as a rigid system (see for instance [9], [7]).

The planar system

(13) x′ = −y + xP (x, y), y′ = x + yP (x, y)

where P (x, y) is a polynomial, is known in the related literature as a rigid system

(see for instance [7], [8], [9] and their references). In polar coordinates, the system

is rewritten as

r′ = rP (r cos θ, r sin θ), θ′ = 1.

If r is considered as a function of θ, we get the first order differential equation

(14)
dr

dθ
= rP (r cos θ, r sin θ),

and now it is easy to give applications of the results of Section 2 for suitable choices

of the polynomial P .

In the recent paper [3], the authors study the number of non-contractible limit

cycles of a family of systems in the cylinder R× R/[0, 2π] of the form

(15)















d̺

dt
= α̃(θ)̺ + β̃(θ)̺k+1 + γ̃(θ)̺2k+1,

dθ

dt
= b(θ) + c(θ)̺k,

where k ∈ Z
+ and all the above functions are continuous and 2π-periodic in θ. A

contractible limit cycle is an isolated periodic orbit which can be deformed continu-

ously to a point, otherwise it is called non-contractible. This type of systems arises as

the polar expression of several types of planar polynomial systems. Of course, when

b(θ) ≡ 1 and c(θ) ≡ 0 we have a rigid system. In general, if b(θ) does not vanish,

a widely used change of variables due to Cherkas [6] transforms the system into a

common Abel equation. We will consider the reciprocal case b(θ) ≡ 0, c(θ) ≡ 1. Let

us consider the system

(16)















d̺

dt
= α̃(θ)̺ + β̃(θ)̺N3 + γ̃(θ)̺N2 + δ̃(θ)̺N1 ,

dθ

dt
= ̺k,
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where N1 > N2 > N3 > 0 and k > 0. A limit cycle of this system is always

non-contractible and as a function of θ it is a limit cycle of the first order equation

r′ = β̃(θ)rn1 + γ̃(θ)rn2 + δ̃(θ)rn3 + α̃(θ)rm,

where ni = Ni − k for i = 1, 2, 3 and m = 1 − k. Now, a direct application of

Theorem 2 gives the following result.

Corollary 5. Take N1, N2, N3 such that N1 − 2N2 + N3 = 0 and assume

γ̃(θ)2(N2 − 1)2 − 4β̃(θ)δ̃(θ)(N1 − 1)(N3 − 1) 6 0.

Then the system (16) has at most one limit cycle in the semiplane {̺ > 0}.

In particular, the result holds if γ̃(θ) ≡ 0 and β̃(θ), δ̃(θ) have opposite definite

signs.

Similarly, the results contained in Section 3 can be applied to rigid systems when

the polynomial P (x, y) is a sum of homogeneous polynomials up to fourth degree, or

to a suitable system in the cylinder. We omit further details.

As a last remark, let us comment that the study of non-contractible limit cycles

of a general system on the cylinder















d̺

dt
= P (θ, ̺),

dθ

dt
= Q(θ, ̺)

where components of the field (P, Q) are periodic in θ and polynomial in ̺, leads

to the study of the existence and multiplicity of periodic solutions of a first order

equation with a rational (quotient of two polynomials) nonlinearity. This is a difficult

problem which deserves further investigation.
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