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Abstract. A number of new results that say how to transfer the entailment relation
between two different finite generators of a quasi-variety of algebras is presented. As their
consequence, a well-known result saying that dualisability of a quasi-variety is independent
of the generating algebra is derived. The transferral of endodualisability is also considered
and the results are illustrated by examples.
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1. Introduction

In 1936 M.H. Stone published a seminal work on duality theory, exhibiting a dual

equivalence between the category of all Boolean algebras and the category of all

Boolean spaces [20]. Almost at the same time L. S. Pontryagin showed that the

category of abelian groups is dually equivalent to the category of compact topological

abelian groups [13], [14]. The most important step toward the development of general

duality theory was Priestley’s duality for distributive lattices: the category of all

distributive lattices was shown to be dually equivalent to the category of all compact

totally-order disconnected ordered topological spaces [15], [16]. The general duality

theory, called natural duality theory, grew out from these three dualities in a work by

B.A.Davey and H.Werner [10] and by D.M.Clark and P.Krauss [2], and has been

rapidly developed over the last twenty-five years. This culminated in a first-ever

monograph of the field by D.M.Clark and B.A.Davey [1] which has since become

The first author acknowledges support from Portuguese Project ISFL-1-143 of CAUL
financed by FCT and FEDER, the second author acknowledges support from Slovak
grants APVV-51-009605 and VEGA 1/0485/09.
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a standard reference on natural dualities. More recently, another monograph by

J.G. Pitkethly and B.A.Davey appeared [9]. The theory has already proved to be a

valuable tool in algebra, algebraic logic and certain parts of computer science.

Generally speaking, the theory of natural dualities concerns the topological rep-

resentation of algebras. The main idea of the theory is that, given a quasi-variety

A = ISP(M) of algebras generated by an algebraM, one can often find a topological

relational structure M
∼
on the underlying set M of M such that a dual equivalence

exists between A and a suitable category X of topological relational structures of

the same type as M
∼
. Requiring the relational structure of M

∼
to be algebraic over

M (this is explained in Section 2), all the requisite category theory “runs smoothly”

(we refer to Chapter 1 of [1]). A uniform way of representing each algebra A in

the quasi-variety A as an algebra of continuous structure-preserving maps from a

suitable structure X ∈ X intoM
∼
can be obtained. In particular, the representation

is relatively simple and useful for free algebras in A .

The quasi-variety A = ISP(M) of algebras generated by the algebraM is said to

admit a natural duality or to be dualisable if a natural duality based onM exists. It

is often simply said that in such case the algebra M is dualisable. The main result

proven by the first author in [18] is that, given a dualisable quasi-variety, each of

its finite generating algebras is dualisable. Hence dualisability of a quasi-variety

is independent of the generating algebra, which was also (independently) proved

by B.A.Davey and R.Willard in [11]. As the number of dualising relations in all

known dualities is finite and for a finite set S of relations, the dualisability via S is

equivalent to the entailment of every algebraic relation by S, we seek here for a better

understanding of the entailment process on different generators of a quasi-variety.

We present a number of new results that say how to transfer the entailment relation

and dualisability between two different generators of a quasi-variety.

Throughout the paper we assume that D and M are finite algebras of the same

type such that for the quasi-varieties D := ISP(D) and M := ISP(M) we have

D ⊆ M . We also assume that there are homomorphisms α : M → D
k, for some k,

and β : D → M such that β and α ◦ β are one-to-one. In Section 3 we concentrate

on the transferral of the entailment “up” from D toM, while in Section 4, where we

assume that D = M and that α is one-to-one, we concentrate on the transferral of

the entailment “down” from M to D. As a consequence of our results, we obtain a

new proof of the main result of [18] on the transferral of dualisability at the end of

Section 4. We also consider the transferral of endodualisability in Section 5, where

our main result slightly generalizes similar results of [18] and [9]. We finally present

an application of our results in two examples in Section 6.
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2. Preliminaries

We shall recall here the basic concepts of the theory of natural dualities. Those

wanting further details related to these concepts are referred to the monograph

D.M.Clark and B.A.Davey [1].

Let M be a finite algebra, and let A := ISP(M) be the quasi-variety generated

byM. LetM
∼

= 〈M ;G,H,R, T 〉 be a structure on the same underlying setM which

is algebraic over M
∼
, meaning that:

• G is a set of finitary algebraic operations on M, that is, each g ∈ G is a

homomorphism g : M
n → M for some n > 0;

• H is a set of finitary algebraic partial operations on M, that is, each h ∈ H is

a homomorphism h : N → M for some subalgebra N of Mn, n > 1;

• R is a set of finitary algebraic relations on M, that is, each r ∈ R is the

underlying set of a subalgebra ofMn for n > 1;

• T is the discrete topology on M .

Given a closed substructure X of a non-zero power of M
∼
, we define a morphism

from X intoM
∼
to be a map α : X →M

∼
that preserves the structure G∪H ∪R and

is continuous. Let s be a finitary algebraic relation on M (in particular, a graph of

a finitary algebraic partial operation h on M). We say that G ∪H ∪ R, or simply

M
∼
, entails s on the structure X (in particular, that G∪H ∪R orM

∼
entails h on the

structure X) if each morphism α : X →M
∼
preserves s.

The dual category to A is defined to be the class X := IScP
+(M

∼
) of all iso-

morphic copies of closed substructures of non-zero powers of the alter ego M
∼

=

〈M ;G,H,R, T 〉 of M. The morphisms of the category X are the continuous struc-

ture preserving maps. A natural duality on A provides us with a representation of

the algebras in A as algebras of structure-preserving maps from structures in X

into M
∼
.

More precisely, we consider a pair of contravariant functors D: A → X and

E: X → A defined naturally as follows. For every A ∈ A , D(A) is the homset

A (A,M) regarded as a closed substructure of M
∼

A; the structure D(A) ∈ X is

called the dual of A. Similarly, for every X ∈ X , its dual E(X) ∈ A is defined to

be the homsetX (X,M
∼

) regarded as a subalgebra ofMX . The functors D and E are

naturally defined on morphisms, too: for ϕ : A → B in A , D(ϕ) : D(B) → D(A) is

given by D(ϕ)(x) := x ◦ ϕ, and for ψ : X → Y in X , E(ψ) : E(Y) → E(X) is given

by E(ψ)(α) := α ◦ ψ.

For each A ∈ A , there is an embedding eA : A → ED(A) defined by eA(a)(x) :=

x(a) for all a ∈ A and x ∈ A (A,M); here eA(a) is called the evaluation map.

Similarly, for each X ∈ X , one can define an embedding εX : X → DE(X) by
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εX(x)(α) := α(x) for all x ∈ X and all α ∈ X (X,M
∼

). If eA is an isomorphism

for all A ∈ A , then we say that the structure M
∼
yields a duality on A or that M

∼

dualises M.

Let Afin be the category of all finite algebras in A . If for every A in Afin, eA is

an isomorphism, then M
∼
dualises M at the finite level.

The following Duality Compactness Theorem is due independently to Willard [22]

and Zádori [23].

Theorem 2.1 ([1], Theorem 2.2.11). If M
∼
is of finite type and yields a duality

on Afin, then M∼ yields a duality on A .

In caseM
∼
yields a duality on A , we have got a representation for A : each algebra

A ∈ A is isomorphic to the algebra ED(A) of all morphisms from its dualD(A) ∈ X

into M
∼
. If eA and εX are isomorphisms for all A ∈ A and X ∈ X , then M

∼
is said

to yield a full duality on A or one says that M
∼
fully dualises M. In this case, the

categories A and X are dually equivalent.

Entailment and duality are intimately connected. As far as duality is concerned we

are interested only in entailment on the structures X of the form D(A) for A ∈ A .

Thus we say (cf. [1], p. 55) that M
∼
entails s if it entails s on every structure of the

form D(A) for A ∈ A . Let BM be the class of all finitary algebraic relations on

M. If a set R of relations in Ω ⊆ BM is such that R entails s for every s ∈ Ω, then

we say that R is entailment-dense in Ω. Later on, in Lemma 2.3(ii) we state that in

case G ∪H ∪R dualises M, it is entailment-dense in BM .

We denote by s the subalgebra ofMn corresponding to the n-ary algebraic relation

s on M, where n > 1. For each i ∈ {1, . . . , n}, we define ̺s
i := πi↾s : s → M , where

πi : M
n → M is the natural projection. A formula in the language ofM

∼
is called a

primitive positive formula if it is an existential conjunct of atomic formulæ.

The following result is fundamental for the study of entailment (for its proof see

[7], 2.3 or [1], 8.1.3, 9.1.2; cf. also [8], 1.4). It is usually stated and proved for finitary

algebraic relations s. (We note that in [8], for the first time to our knowledge, the

entailed relation s was considered to be infinitary; however, the concept of structural

entailment introduced and studied in [8] is not considered in this paper.)

Theorem 2.2 (The Test Algebra Theorem). Let M be a finite algebra and let

M
∼
be its alter ego. Let s be an n-ary algebraic relation onM for some n ∈ N. Then

the following conditions are equivalent:

(1) M
∼
entails s;

(2) M
∼
entails s on D(s);

(3) every morphism α : D(s) →M
∼
satisfies (α(̺s

1), . . . , α(̺s
n)) ∈ s;

(4) s = { (α(̺s
1), . . . , α(̺s

n)) | α ∈ ED(s) };
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(5) s may be obtained from G ∪H ∪ R via a primitive positive construct, that is,

for some primitive positive formula Φ(x1, . . . , xn) in the language ofM
∼
,

s = { (c1, . . . , cn) ∈Mn |M
∼

|= Φ(c1, . . . , cn) }

and D(s) satisfies Φ(̺s
1, . . . ̺

s
n).

As an immediate consequence we obtain the following result (see [8], Lemma 1.5).

Lemma 2.3. Let M be a finite algebra and M
∼

= 〈M ;G,H,R, T 〉.

(i) Let s be an n-ary algebraic relation on M, for some n ∈ N. In order to show

thatM
∼
entails s it suffices to prove that the embedding eA : A → ED(A) is an

isomorphism for some isomorphic copy A of the algebra s.

(ii) If M
∼
dualises M, then M

∼
entails every finitary algebraic relation on M, or

equivalently, G ∪H ∪R is entailment-dense in BM .

The Brute Force Duality Theorem (cf. [1], Theorem 2.3.1) says that the set BM

of all finitary algebraic relations onM (the brute force) yields a duality on Afin. The

following Density Lemma obviously holds also at the finite level.

Lemma 2.4 ([1], Lemma 8.2.2). Let M be a finite algebra, let Ω ⊆ BM yield a

duality on A = ISP(M) and let R ⊆ Ω. The following conditions are equivalent:

(1) R yields a duality on A ;

(2) R is entailment-dense in Ω;

(3) R entails s for each s ∈ Ω \R;

(4) R entails s on D(s) for each s ∈ Ω \R.

Therefore, if a finite set R ⊆ BM entails the brute force BM , then R yields a

duality on Afin, and by the Duality Compactness Theorem 2.1, R yields a duality on

A . Hence we have the following result.

Lemma 2.5. LetM be a finite algebra. A finite set R ⊆ BM yields a duality on

A = ISP(M) if and only if R entails BM .

So, studying whenM is dualisable via a finite set of relationsR ⊆ BM is equivalent

to studying when R entails BM .
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3. Transferring entailment up

Throughout this section we assume that D andM are finite algebras of the same

type such that for the quasi-varieties D := ISP(D) and M := ISP(M) we have

D ⊆ M . We also assume that there exist homomorphisms α : M → D
k for some k,

and β : D → M such that β and α ◦β are one-to-one. In this section we concentrate

on studying the transferral of the entailment “up” from D to M.

For any algebra A ∈ D we can without loss of generality assume that A 6 D
I

for a set I. We denote by β the restriction to A of the embedding D
I → M

I that

assigns to each element 〈ai〉i∈I the element 〈β(ai)〉i∈I . By β
−1 we denote the inverse

of the isomorphism from A onto β(A) given by β.

To every n-ary partial operation h : domh ⊆ Dn → D we assign the n-ary partial

operation hβ : domhβ ⊆Mn →M as follows:

domhβ := { (β(a1), . . . , β(an)) | (a1, . . . , an) ∈ domh }

and

hβ((β(a1), . . . , β(an))) = β(h(a1, . . . , an))

for every (a1, . . . , an) ∈ domh. Then hβ is algebraic overM whenever h is algebraic

over D (cf. [18], p. 199). Similarly, we assign to every m-ary relation r on D the

relation

rβ := { (β(a1), . . . , β(am)) | (a1, . . . , am) ∈ r }

on M . Then rβ is algebraic overM whenever r is algebraic over D.

Definition 3.1. For every A ∈ D and every map u : M (β(A),M) →M that

preserves β(D), we define a map uD : D(A,D) → D by

uD(x) := β−1(u(β ◦ x ◦ β−1)).

We shall derive the following properties of the map uD.

Lemma 3.2. Let A ∈ D and let β : D → M be an embedding.

(i) If u : M (β(A),M) → M is a map that preserves β(D) and rβ for some relation

r on D, then the map uD preserves r.

(ii) If u : M (β(A),M) →M is a map that preserves β(D) and hβ for some (partial)

operation h on D, then uD preserves h.

P r o o f. Let r be anm-ary relation onD and let xi ∈ D(A,D) for i ∈ {1, . . . ,m},

be such that (x1, . . . , xm) ∈ r. This means that (x1(a), . . . , xm(a)) ∈ r for all a ∈ A.

Since we have

(β ◦ x1 ◦ β
−1, . . . , β ◦ xm ◦ β−1) ∈ rβ ,
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where β ◦ xi ◦ β
−1 ∈ M (β(A),M), and since u preserves rβ , we have

(u(β ◦ x1 ◦ β
−1), . . . , u(β ◦ xm ◦ β−1)) ∈ rβ ,

and consequently (uD(x1), . . . , uD(xm)) ∈ β−1(rβ) = r. Thus (i) holds.

Now we prove (ii). Let h be an n-ary (partial) operation on D and assume that

(x1, . . . , xn) ∈ domh, with xi ∈ D(A,D) for all i. Since u preserves hβ and since

domhβ = (domh)β , we get (uD(x1), . . . , uD(xn)) ∈ domh by applying (i). From

(β ◦ x1 ◦ β
−1, . . . , β ◦ xn ◦ β−1) ∈ domhβ we also get

u(hβ(β ◦ x1 ◦ β
−1, . . . , β ◦ xn ◦ β−1)) = hβ(u(β ◦ x1 ◦ β

−1), . . . , u(β ◦ xn ◦ β−1)).

Therefore

β−1(u(β ◦ h(x1 ◦ β
−1, . . . , xn ◦ β−1)))

= β−1(u(hβ(β ◦ x1 ◦ β
−1, . . . , β ◦ xn ◦ β−1)))

= β−1(hβ(u(β ◦ x1 ◦ β
−1), . . . , u(β ◦ xn ◦ β−1)))

= h(β−1(u(β ◦ x1 ◦ β
−1)), . . . , β−1(u(β ◦ xn ◦ β−1)))

= h(uD(x1), . . . , uD(xn)).

We finally observe that

h(x1 ◦ β
−1, . . . , xn ◦ β−1)(β(a))

= h(x1 ◦ β
−1(β(a)), . . . , xn ◦ β−1(β(a)))

= h(x1(a), . . . , xn(a))

= h((x1, . . . , xn)(a))

= (h(x1, . . . , xn) ◦ β−1)(β(a))

for every a ∈ A, which yields

β−1(u(β ◦ h(x1, . . . , xn) ◦ β−1)) = β−1(u(β ◦ h(x1 ◦ β
−1, . . . , xn ◦ β−1))).

We can conclude that uD(h(x1, . . . , xn)) = h(uD(x1), . . . , uD(xn)). �
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Theorem 3.3. Assume that D and M are finite algebras of the same type such

that D ∈ IS(M). Let β : D → M be an embedding.

If G∪H ∪R entails an m-ary algebraic relation s (the graph of a finitary algebraic

partial operation h) on D, then Gβ ∪Hβ ∪Rβ ∪ { β(D)} entails the relation sβ (the

graph of hβ) onM, where

(a) Gβ = { gβ | g ∈ G};

(b) Hβ = { hβ | h ∈ H};

(c) Rβ = { rβ | r ∈ R}.

P r o o f. Let u : M (sβ ,M) →M be a map preserving Gβ ∪Hβ ∪Rβ ∪ { β(D)}.

By Theorem 2.2, it suffices to prove that (u(̺
sβ

1 ), . . . , u(̺
sβ

m )) ∈ sβ , where for each

̺
sβ

i : sβ → M we have that ̺
sβ

i = β ◦ πi↾s ◦β−1 = β ◦ ̺s
i ◦ β

−1, i ∈ {1, . . . ,m} (we

note that u is automatically continuous here). By Lemma 3.2, uD : D(s,D) → D

preserves G ∪ H ∪ R. Since the set G ∪ H ∪ R entails s, the map uD preserves s.

We recall that sβ ⊆ β(D)m and hence, for all i ∈ {1, . . . ,m}, (̺i ◦ β)(s) ⊆ β(D).

Therefore we have ̺s
i = β−1 ◦ ̺

sβ

i ◦ β ∈ D(s,D). Since (uD(̺s
1), . . . , uD(̺s

m) ∈ s, we

obtain (u(β ◦ ̺s
1 ◦ β−1), . . . , u(β ◦ ̺s

m ◦ β−1)) ∈ sβ , so (u(̺
sβ

1 ), . . . , u(̺
sβ

m )) ∈ sβ as

required. �

Now we shall show that the relation β(D) is entailed from the set End(M) of

endomorphisms ofM whenever α(M) = (α ◦ β)(D). This is in particular true when

D is a retract of M.

Lemma 3.4. Let D and M be finite algebras for which there exist homomorph-

isms α : M → D
k for some k, and β : D → M such that β and α ◦ β are one-to-one.

Moreover, assume that α(M) = (α ◦ β)(D).

Then End(M) entails β(D).

P r o o f. Let u : M (β(D),M) → M preserve End(M). We take x ∈ M (β(D),

M) and assume that x ∈ β(D) on M (β(D),M), that is for every a ∈ dom(x),

x(a) ∈ β(D). Hence for every a ∈ β(D) there exists b ∈ D such that

x(a) = β(b) = (β ◦ (α ◦ β)−1 ◦ α ◦ β)(b) = (β ◦ (α ◦ β)−1 ◦ α)(x(a)),

whence x = β ◦ (α ◦ β)−1 ◦ α ◦ x and u(x) = u(β ◦ (α ◦ β)−1 ◦ α ◦ x). As u preserves

β ◦ (α◦β)−1 ◦α ∈ End(M), we finally obtain u(x) = (β ◦ (α◦β)−1 ◦α)(u(x)) ∈ β(D)

as required. �

If k = 1, and so α is a homomorphism from M into D, then the finiteness of D

implies that α ◦ β is an automorphism of D and consequently (α ◦ β)n = idD for

some n ∈ N. Hence α : M → D is a retraction and β ◦ (α ◦ β)n−1 : D → M is a
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co-retraction. In such a case we have the following consequence of the previous two

results.

Corollary 3.5. Let D and M be finite algebras and let D ∈ IS(M). Assume

that β : D → M is a co-retraction. If G ∪H ∪R entails an algebraic relation s (the

graph of a partial algebraic operation h) on D, then End(M)∪Gβ ∪Hβ ∪Rβ entails

the relation sβ (the graph of the partial operation hβ) on M .

Now let D and M satisfy D = ISP(D) = ISP(M) = M and assume there ex-

ist one-to-one homomorphisms β : D → M and α : M → D
k, where k > 1. In-

stead of ̺
α(M)
1 , . . . , ̺

α(M)
k we shall briefly write ̺1, . . . , ̺k. For every n-ary partial

operation h : domh ⊆ Mn → M , let domhα ⊆ Dnk be the set of all elements

(̺ ◦ α)((a1, . . . , an)) of the form

((̺1 ◦ α)(a1), . . . , (̺k ◦ α)(a1), . . . , (̺1 ◦ α)(an), . . . , (̺k ◦ α)(an)),

where (a1, . . . , an) ∈ domh. Let hα : domhα → Dk be the map defined so that for

all (a1, . . . , an) ∈ domh,

hα((̺ ◦ α)((a1, . . . , an))) = α(h(a1, . . . , an)).

We observe that hα is a homomorphism from the subalgebra domhα of D
nk into D

k

whenever h is algebraic overM (cf. [18], p. 201).

For every m-ary relation r on M , we define the mk-ary relation rα on D as

rα := {(̺ ◦ α)((a1, . . . , am)) | (a1, . . . , am) ∈ r}.

Again, rα is algebraic over D if r is algebraic overM (cf. [18], p. 202).

For every i ∈ {1, . . . , k}, the homomorphism ωi := β ◦ ̺i ◦ α is an endomorphism

of M. Let us denote

Γβα := {ω1, . . . , ωk}.

We now define a homomorphism

ω := ω1 ⊓ . . . ⊓ ωk : M → M
k

by ω(a) := (ω1(a), . . . , ωk(a)) for all a ∈ M . As the maps ω1, . . . , ωk separate the

points of M , ω is an embedding. Let

Mr := ω(M) ⊆Mk
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and let σ : Mr →M be the inverse of ω regarded as a k-ary algebraic partial opera-

tion onM. It follows that for all a ∈M ,

σ(ω1(a), . . . , ωk(a)) = a.

The partial operation σ on M introduced in Davey and Haviar [5] is known as the

schizophrenic operation corresponding to ω1, . . . , ωk and we shall apply it in the next

results. The proof of the following lemma is easy and we leave it to the reader.

Lemma 3.6. Assume that D and M are algebras such that there exist one-to-

one homomorphisms β : D → M and α : M → D
k for some k > 1. For any m-ary

relation r on M , the following conditions are equivalent:

(i) (̺ ◦ α)((a1, . . . , am)) ∈ rα;

(ii) (ω1(a1), . . . , ωk(a1), . . . , ω1(am), . . . , ωk(am)) ∈ (rα)β ;

(iii) (σ(ω1(a1), . . . , ωk(a1)), . . . , σ(ω1(am), . . . , ωk(am))) ∈ r.

The following lemma will play an important role in our further investigations.

Lemma 3.7. Let D and M be finite algebras such that there exist one-to-one

homomorphisms β : D → M and α : M → D
k for some k > 1.

For every m-ary relation r on M , r is entailed from Γβα ∪ {(rα)β}.

P r o o f. Let y1, . . . , ym ∈ D(r,M) be such that (y1, . . . , ym) ∈ r on D(r,M).

Then

(̺1 ◦ α ◦ y1, . . . , ̺k ◦ α ◦ y1, . . . , ̺1 ◦ α ◦ ym, . . . , ̺k ◦ α ◦ ym) ∈ rα.

Using Lemma 3.6 and the equality β ◦ ̺i ◦ α ◦ yj = ωi ◦ yj, we obtain

(ω1 ◦ y1, . . . , ωk ◦ y1, . . . , ω1 ◦ ym, . . . , ωk ◦ ym) ∈ (rα)β .

Let u : D(r,M) →M preserve Γβα ∪ {(rα)β}. Then we obtain

(u(ω1 ◦ y1), . . . , u(ωk ◦ y1), . . . , u(ω1 ◦ ym), . . . , u(ωk ◦ ym)) ∈ (rα)β

and

(ω1(u(y1)), . . . , ωk(u(y1)), . . . , ω1(u(ym)), . . . , ωk(u(ym))) ∈ (rα)β .

Applying the schizophrenic operation σ and Lemma 3.6 again, we now have

(σ(ω1(u(y1)), . . . , ωk(u(y1))), . . . , σ(ω1(u(ym)), . . . , ωk(u(ym)))) ∈ r,

whence

(u(y1), . . . , u(ym)) ∈ r

as required. �

We can now prove one of the main results of this section.
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Theorem 3.8. Let D and M be finite algebras for which there exist one-to-one

homomorphisms β : D → M and α : M → D
k for some k > 1.

(i) If S is entailment-dense in BD then Γβα ∪ Sβ ∪ {β(D)} is entailment-dense in

BM .

(ii) If S is entailment-dense in BD and α(M) = (α ◦ β)(D), then End(M) ∪ Sβ is

entailment-dense in BM .

P r o o f. Let r ∈ BM , r 6 Mm. By Lemma 3.7, r is entailed from Γβα∪{(rα)β}.

Because S entails rα by assumption, from Theorem 3.3 we have that (rα)β is entailed

from Sβ ∪ {β(D)}. Consequently, r is entailed from Γβα ∪Sβ ∪ {β(D)}. This proves

(i).

For (ii), if α(M) = (α ◦ β)(D), then β(D) is entailed from End(M) by Lemma 3.4

and thus r is entailed from End(M) ∪ Sβ (we recall that Γβα ⊆ End(M)). �

As a consequence of our results on entailment so far, we now obtain the first main

result of [18] under the assumption that the dualising structure G ∪H ∪R is finite,

which, as already mentioned, is the case in all known dualities to date. Under this

assumption, the result also generalizes Theorem 3.1 of [3].

Corollary 3.9 ([18], Proposition 2.1). Let M be a finite algebra in D = ISP(D)

and assume that D ∈ IS(M). If D is dualisable via a finite set of relations, then M

is dualisable.

More specifically, assume that M
∼

= 〈D;G,H,R, T 〉 yields a duality on D such

that G∪H ∪R is a finite set of finitary algebraic partial operations and relations on

D. Then M
∼

= 〈M ; Γβα, Gβ ∪Hβ , Rβ, T 〉 yields a duality on ISP(M) = D , where

(a) β : D → M is a one-to-one homomorphism;

(b) α : M → D
k is a one-to-one homomorphism;

(c) Gβ := { gβ | g ∈ G };

(d) Hβ := { hβ | h ∈ H };

(e) Rβ := { rβ | r ∈ R } ∪ { β(D) }.

P r o o f. If D is dualisable via a finite set G ∪ H ∪ R, then G ∪ H ∪ R is

entailment-dense inBD by Lemma 2.5. Hence by Theorem 3.8(i), Γβα∪Gβ∪Hβ∪Rβ

is entailment-dense in BM . Since this set is finite, too, it dualises M by applying

Lemma 2.5 again. �
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4. Transferring entailment down

Now we concentrate on studying the transferral of entailment “down” from M

onto D.

Throughout this section we assume that D andM are finite algebras of the same

type such that for the quasi-varieties D := ISP(D) and M := ISP(M) we have

that D = M . Moreover, we assume that there exist one-to-one homomorphisms

β : D → M and α : M → D
k for some k > 1.

Definition 4.1. For every A ∈ D and every map u : D(A,D) → D that pre-

serves α(M), we define a map uM : D(A,M) → M by

uM (x) = α−1((u(̺1 ◦ α ◦ x), . . . , u(̺k ◦ α ◦ x))),

where α−1 is the inverse of the isomorphism fromM onto α(M) given by α.

The next lemma follows immediately from the proof of Proposition 2.2 of [18]. We

note that the relations rα and the partial operations hα have been introduced in the

previous section after Corollary 3.5.

Lemma 4.2. Let A ∈ D and let α : M → D
k be an embedding.

(i) If u : D(A,D) → D is a map that preserves α(M) and rα for some relation r

on M , then the map uM preserves r.

(ii) If u : D(A,D) → D preserves {̺1◦hα, . . . , ̺k◦hα} and α(M), for some (partial)

operation h on M , then the map uM preserves h.

We now prove our first result on the transferral of entailment “down” from M

onto D.

Theorem 4.3. Let D and M be finite generators of the same quasi-variety and

let β : D → M and α : M → D
k for some k > 1, be one-to-one homomorphisms.

If G∪H∪R entails anm-ary relation s onM (m > 1), then Gα∪Hα∪Rα∪{α(M)}

entails the relation sα on D, where

(a) Gα := { ̺1 ◦ gα, . . . , ̺k ◦ gα | g ∈ G };

(b) Hα := { ̺1 ◦ hα, . . . , ̺k ◦ hα | h ∈ H };

(c) Rα := { rα | r ∈ R}.

P r o o f. Let u : D(sα,D) → D preserve Gα ∪Hα ∪Rα ∪{α(M)}. Let us further

assume that (x11, . . . , x1k, . . . , xm1, . . . , xmk) ∈ sα with xij ∈ D(sα,D).

By Lemma 4.2, the map uM : D(sα,M) → M preserves G ∪ H ∪ R and so it

preserves s provided G ∪H ∪R entails s.
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For every i ∈ {1, . . . ,m} we have (xi1, . . . , xik) ∈ α(M) and so we can define

a map yi := α−1 ◦ ⊔

j∈{1,...,k}
xij ∈ D(sα,M). Since (y1, . . . , ym) ∈ s, we have

(uM (y1), . . . , uM (ym)) ∈ s. But then

(u(x11), . . . , u(x1k), . . . , u(xm1), . . . , u(xmk))

= (u(̺1 ◦ α ◦ y1), . . . , u(̺k ◦ α ◦ y1), . . . , u(̺1 ◦ α ◦ ym), . . . , u(̺k ◦ α ◦ ym)),

which belongs to sα as required. �

Proposition 4.4. Let D and M be finite generators of the same quasi-variety

and let β : D → M and α : M → D
k for some k > 1, be one-to-one homomorphisms.

If Γβα ∪ {sβ} entails rβ on M for finitary relations r, s on D, then End(D) ∪

{s, α(M)} entails r on D.

P r o o f. Let r ⊆ Dm and s ⊆ Dn be such that Γβα ∪ {sβ} entails rβ onM. Let

u : D(r,D) → D be a map that preserves End(D) ∪ {s, α(M)}. We claim that the

map uM : D(r,M) →M preserves Γβα ∪ {sβ}.

For every i ∈ {1, . . . , k} and x ∈ D(r,M) we have that

uM (ωi(x)) = uM (ωi ◦ x) = α−1(u(̺1 ◦ α ◦ ωi ◦ x), . . . , u(̺k ◦ α ◦ ωi ◦ x))

= α−1(u(̺1 ◦ α ◦ β ◦ ̺i ◦ α ◦ x), . . . , u(̺k ◦ α ◦ β ◦ ̺i ◦ α ◦ x))

= α−1(̺1 ◦ α ◦ β(u(̺i ◦ α ◦ x)), . . . , ̺k ◦ α ◦ β(u(̺i ◦ α ◦ x)))

= α−1 ◦ α ◦ β(u(̺i ◦ α ◦ x)) = β(u(̺i ◦ α ◦ x))

= ωi(uM (x))

and so uM preserves Γβα.

For every (x1, . . . , xn) ∈ sβ we have that

(α ◦ x1, . . . , α ◦ xn) ∈ (α ◦ β)(s),

whence

((α ◦ β)
−1

◦ α ◦ x1, . . . , (α ◦ β)
−1

◦ α ◦ xn) ∈ s.

Since u preserves s, we obtain

(u((α ◦ β)
−1

◦ α ◦ x1), . . . , u((α ◦ β)
−1

◦ α ◦ xn)) ∈ s,

whence the tuple

(̺1 ◦ α ◦ β(u((α ◦ β)
−1

◦ α ◦ x1)), . . . , ̺k ◦ α ◦ β(u((α ◦ β)
−1

◦ α ◦ x1)) . . .

̺1 ◦ α ◦ β(u((α ◦ β)−1 ◦ α ◦ xn)), . . . , ̺k ◦ α ◦ β(u((α ◦ β)−1 ◦ α ◦ xn)))
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belongs to (α ◦ β)(s). As u preserves End(D), we have that

̺i ◦ α ◦ β(u((α ◦ β)
−1

◦ α ◦ xj)) = u(̺i ◦ α ◦ β ◦ (α ◦ β)
−1

◦ α ◦ xj)

= u(̺i ◦ α ◦ xj)

and hence

uM (xj) = α−1(̺1 ◦α ◦ β(u((α ◦ β)
−1

◦α ◦ xj)), . . . , ̺k ◦α ◦ β(u((α ◦ β)
−1

◦α ◦ xj))).

Thus we finally obtain

(uM (x1), . . . , uM (xn)) ∈ α−1((α ◦ β)(s)) = sβ .

Hence uM preserves sβ , and consequently, uM preserves rβ .

Now we take (y1, . . . , ym) ∈ r with yi ∈ D(r,D). Then

(β ◦ y1, . . . , β ◦ ym) ∈ rβ ,

and as uM preserves rβ ,

(uM (β ◦ y1), . . . , uM (β ◦ ym)) ∈ rβ .

Therefore the tuple

((u(̺1 ◦ α ◦ β ◦ y1), . . . , u(̺k ◦ α ◦ β ◦ y1)), . . .

(u(̺1 ◦ α ◦ β ◦ ym), . . . , u(̺k ◦ α ◦ β ◦ ym)))

belongs to α(rβ), thus to (α ◦ β)(r). This means that

((̺1 ◦ α ◦ β(u(y1)), . . . , ̺k ◦ α ◦ β(u(y1))), . . .

(̺1 ◦ α ◦ β(u(ym)), . . . , ̺k ◦ α ◦ β(u(ym))))

belongs to (α ◦ β)(r), whence

(α ◦ β(u(y1)), . . . , α ◦ β(u(ym))) ∈ (α ◦ β)(r).

Consequently, (u(y1), . . . , u(ym)) ∈ r. �

Before moving to the main results, we need one technical lemma.
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Lemma 4.5. Let D andM be finite generators of the same quasi-variety and let

β : D → M and α : M → D
k for some k > 1, be one-to-one homomorphisms. The

set End(D) ∪ {α(M)} entails ̺j ◦ (ωi)α for every i, j ∈ {1, . . . , k}.

P r o o f. Let us take i, j ∈ {1, . . . , k} and denote ̺j ◦ (ωi)α by h. Let A ∈ D and

let u : D(A,D) → D be a continuous map preserving End(D) ∪ {α(M)}. Note that

domh = α(M) and so for every (x1, . . . , xk) ∈ domh with x1, . . . , xk ∈ D(A,D) we

have (u(x1), . . . , u(xk)) ∈ domh. Also

h((x1, . . . , xk)) = ̺j((ωi)α(x1, . . . , xk))

= ̺j(α ◦ ωi(α
−1(x1, . . . , xk))) = ̺j ◦ α ◦ β(xi),

and thus

u(h((x1, . . . , xk))) = u(̺j ◦ α ◦ β(xi))

= ̺j ◦ α ◦ β(u(xi)) = h(u(x1), . . . , u(xk)).

�

Theorem 4.6. Let D and M be finite generators of the same quasi-variety and

let β : D → M and α : M → D
k for some k > 1, be one-to-one homomorphisms.

If Γβα∪G∪H∪R is entailment-dense inBM , then End(D)∪Gα∪Hα∪Rα∪{α(M)}

is entailment-dense in BD.

P r o o f. Let r ∈ BD. By assumption, Γβα ∪ G ∪ H ∪ R entails rβ , so by

Lemma 4.5 and Theorem 4.3, End(D)∪Gα ∪Hα ∪Rα ∪{α(M)} entails the relation

(rβ)α (we note here that for each ωi we have that (ωi)α = ⊔

j∈{1,...,k}
̺j ◦ (ωi)α). As,

by Lemma 3.7, Γβα ∪ {((rβ)α)β} entails rβ , we have that End(D) ∪ {(rβ)α, α(M)}

entails r, by Proposition 4.4. Consequently, End(D)∪Gα∪Hα∪Rα∪{α(M)} entails

r as required. �

Corollary 4.7. LetM be a finite algebra and let D ∈ ISP(M) be a finite algebra.

Assume that α : M → D
k is a one-to-one homomorphism for some k > 1. If M is

dualisable via a finite set {ω1, . . . , ωk} ∪G ∪H ∪R, then D is dualisable via the set

End(D) ∪Gα ∪Hα ∪Rα ∪ {α(M)}.

P r o o f. It follows from Theorems 4.6 and 2.1. �

From Corollary 3.9, Corollary 4.7 and the Duality Compactness Theoremwe imme-

diately obtain the following slight restriction of the important result of [18] (cf. [18],

Theorem 2.3). (We again note that our restriction on the dualisability, considering

it via a finite set of relations, is satisfied in all known dualities to date, so in practice

it is no restriction.)

55



Theorem 4.8. Let D and M be finite algebras such that M ∈ ISP(D) and

D ∈ IS(M). Then M is dualisable via a finite set of relations if and only if D is

dualisable via a finite set of relations.

Finally, as a consequence of Theorem 4.8, we obtain a new proof of the following

result (cf. [18], Theorem 2.5) which can be interpreted so that dualisability of a

quasi-variety is independent of the generating algebra.

Theorem 4.9. Let M be a finite algebra. If M is dualisable via a finite set of

relations then every finite algebra D that generates ISP(M) is dualisable via a finite

set of relations, as well.

P r o o f. We can assume that there exist one-to-one homomorphisms M → D
k

and D → M
m for some k,m > 1. By Theorem 4.8 applied to the algebras M and

M
m, we get that M

m is dualisable. But then, by applying Theorem 4.8 to the

algebras D and M
m, we conclude that D is dualisable, as well. �

5. Endodualisability

In Section 3 we showed that the relation β(D) is entailed from End(M) whenever

α(M) = (α◦β)(D). Now we show that also End(D)β is entailed from End(M) under

the same assumptions.

Lemma 5.1. Let D and M be finite algebras for which there exist homomorph-

isms α : M → D
k for some k > 1, and β : D → M such that β and α ◦ β are

one-to-one and α(M) = (α ◦ β)(D). Then End(M) entails End(D)β .

P r o o f. As for every g ∈ End(D), the graph of gβ ∈ End(D)β is isomorphic

to its domain β(D), which is entailed from End(M) by Lemma 3.4, it suffices to

show that for any map u : M (β(D),M) → M preserving End(M) and for any

x ∈ M (β(D),M) such that x ∈ β(D),

u(gβ(x)) = gβ(u(x)).

Similarly to the proof of Lemma 3.4 for every a ∈ β(D) there exists b ∈ D such that

gβ(x)(a) = gβ(x(a)) = gβ(β(b)) = gβ((β ◦ (α ◦ β)−1 ◦ α ◦ β)(b))

= (gβ ◦ β ◦ (α ◦ β)−1 ◦ α)(x(a)),

whence

gβ(x) = (gβ ◦ β ◦ (α ◦ β)−1 ◦ α)(x)
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and

u(gβ(x)) = u((gβ ◦ β ◦ (α ◦ β)−1 ◦ α)(x)).

As u preserves gβ ◦ β ◦ (α ◦ β)−1 ◦ α ∈ End(M) and u(x) ∈ β(D), we finally obtain

u(gβ(x)) = (gβ ◦ β ◦ (α ◦ β)−1 ◦ α)(u(x)) = gβ(u(x))

as required. �

From this and Theorem 3.8 (ii) we immediately obtain

Corollary 5.2. Let D and M be finite algebras for which there exist homo-

morphisms α : M → D
k for some k > 1, and β : D → M such that β and α ◦ β are

one-to-one and α(M) = (α ◦ β)(D).

If End(D) is entailment-dense in BD, then End(M) is entailment-dense in BM .

The conditions of the above result are in particular satisfied if D is, up to iso-

morphism, a retract of M. Therefore the following result generalizes a result ob-

tained previously by the first author (see [18], Proposition 3.1), and independently

by B.A.Davey and J.G. Pitkethly (see [9], Theorem 1.5 (i)), which says that if D is

a retract ofM, then the endodualisability of D yields the endodualisability of M.

Theorem 5.3. Let M be a finite algebra in ISP(D) such that there exist homo-

morphisms α : M → D
k and β : D → M such that β and α ◦ β are one-to-one and

α(M) = (α ◦ β)(D).

If D is endodualisable then M is endodualisable.

P r o o f. If D is endodualisable, then End(D) is entailment-dense in BD by

Lemma 2.5. By Corollary 5.2, End(M) is entailment-dense in BM . Since M is

finite, Lemma 2.5 now implies that End(M) yields a duality on ISP(M), thus M is

endodualisable. �

6. Examples

In this section we present two examples of lattice based algebras for which a dual-

ising set can be obtained by using known dualising sets of some of their subalgebras

and by applying the results of Section 3. The procedure we use in both examples

can be applied to any quasi-variety generated by a finite lattice based algebra M

which admits a set of dualisable subalgebras as the set of the domains of the partial

endomorphims ofM. We begin by describing this general procedure.
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Let M = ISP(M) be the quasi-variety generated by a finite lattice based algebra

M. Assume that for every partial endomorphism h of M a dualising set for its

domain Dh is already known. Let {D1, . . . ,Dn} be the set of the domains of the

partial endomorphisms of M. For each i ∈ {1, . . . , n}, let Ωi be the dualising set of

Di. Since Ωi entails every total or partial endomorphism of Di, we can get a set of

relations ΩM
i onM that entails the partial endomorphisms ofM having Di as their

domain, by applying the results of Section 3. Then the union ΩM
p of all those sets Ω

M
i

entails the set of partial endomorphisms of M. Hence the union of a generating set

ΩM
e of EndM with ΩM

p entails all the endomorphisms and partial endomorphisms

ofM. From the general theory of failsets in [17] and [19] (see also [1], section 8.3) it

follows that ΩM
e ∪ΩM

p ∪ T entails S(M2), where T is the so-called transversal of the

globally minimal failsets without partial endomorphisms. In the particular case of a

distributive lattice based algebra, one can apply the algorithmic procedure given in

[19], Section 3, and obtain T . Since Ω := S(M2) is known to yield a duality on M

(cf. [1], p. 55), we apply Lemma 2.4 to conclude that the set R := ΩM
e ∪ΩM

p ∪T ⊆ Ω

also yields a duality on M .

Below we illustrate by two examples the process of finding the set ΩM
e ∪ΩM

p ∪ T ,

and even a simpler set R that dualisesM.

6.1. The subvariety of Ockham algebras generated by the four element

chain K2.

LetM = ISP(K2) whereK2 is the Ockham four-element chain 〈{0, a, b, 1};∧,∨,
′,

0, 1〉 such that a′ = a and b′ = 0. Every partial endomorphism of K2 is a to-

tal or partial endomorphism of one of its two three-element subalgebras, K =

〈{0, a, 1};∧,∨, ′, 0, 1〉, which is the generating algebra of the variety of Kleene al-

gebras, and S = 〈{0, b, 1};∧,∨, ′, 0, 1〉, which is the generating algebra of the variety

of Stone algebras. Let D1 := K and D2 := S.

0 = b
′
= 1

′

a = a
′

b

1 = 0
′

K2

0 = 1
′

a = a
′

1 = 0
′

K

0 = b
′
= 1

′

b

1 = 0
′

S

It is well-known (cf. [1], Theorem 4.3.10), that

Ω1 := {{0, 1},4K,∼K}
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is a dualising set for K, where

4K= {(0, 0), (0, a), (a, a), (1, a), (1, 1)}

is a partial order on K and

∼K= {(0, 0), (0, a), (a, 0), (a, a), (a, 1), (1, a), (1, 1))}.

Further (cf. [1], Theorem 4.3.7), Ω2 = {f,4S} is a dualising set for S, where

f is the endomorphism of S that maps b to 1, and 4S is the partial order

{(0, 0), (b, b), (1, b), (1, 1)} on S.

Now for i ∈ {1, 2} we want to obtain a set of relations ΩK2

i on K2 that entails the

partial endomorphisms of K2 having Di as their domain, by applying the results of

Section 3. First we take the embeddings βK : K → K2 and βS : S → K2 to be the

inclusion maps and take the homomorphism α : K2 → K to be the retraction given

by α(0) = 0, α(a) = a and α(b) = α(1) = 1. By Corollary 3.5,

ΩK2

1 := EndK2 ∪ {{0, 1}βK
, (4K)βK

, (∼K)βK
}

entails (EndK ∪ Endp K)βK
, and consequently it entails all the partial endomorph-

isms of K2 whose domain is (a subalgebra of) K. By Theorem 3.3,

ΩK2

2 := {fβS
, (4S)βS

, βS(S)}

entails (EndS ∪ Endp S)βS
, so it entails all the partial endomorphisms of K2 whose

domain is (a subalgebra of) S. Then the set

ΩK2

p := EndK2 ∪ {{0, 1}, (4K)βK
, (∼K)βK

, fβS
, (4S)βS

, S}

entails EndpK2.

Obviously, EndK2 = {id, α}, thus ΩK2

e = {α}.

In [19], the authors determined one of the transversals T by applying the algorithm

developed there. They obtained T = {4,∼}, where 4 is the partial order

{(0, 0), (0, a), (a, a), (1, a), (1, 1), (1, b), (b, b)}

on K2 and

∼= {(0, 0), (0, a), (a, 0), (a, a), (a, b), (a, 1), (b, a), (b, b), (b, 1), (1, a), (1, b), (1, 1)}.
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We now conclude that

{α} ∪ {{0, 1}, (4K)βK
, (∼K)βK

, fβS
, (4S)βS

, S} ∪ {4,∼}

entails Ω = S(K2
2).

Now note that

• △{0,1} = (4K)βK
∩ (4S)βS

;

• (4K)βK
=4 ∩βK(K)2;

• (∼K)βK
=∼ ∩βK(K)2;

• graphfβS
= (graphα) ∩ βS(S)2;

• (4S)βS
=4 ∩βS(S)2.

Consequently, from the constructs for entailment (cf. [1]), p. 57), one can conclude

that the set R := {α, S,4,∼} entails Ω = S(K2
2), and thus, by Lemma 2.4, R dualises

K2. The set R is in fact the set that yields the piggyback duality onM = ISP(K2)

(for the piggyback dualities see Section 7 of [1]).

6.2. The irregular diamond V1 and the diamond M3.

Let V = ISP(V1) be the variety of lattices generated by the irregular diamondV1.

We will consider its subvarieties ISP(M3), which is the variety of modular lattices,

and ISP(N5), which is the variety generated by the pentagon N5.

1

2

3

0
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V1

3

1

2

0

4

M3

1

2

3

0

4

N5

Every partial endomorphism of V1 is entailed by a total or partial endomorphism

ofM3 orN5. So letD1 := M3 andD2 := N5. Let β3 : M3 → V1 and β5 : N5 → V1

be the embeddings such that β3(2) = 2, β3(3) = 4, β3(4) = 5 and β5(4) = 4, β5(2) =

2, β5(3) = 3. Then β3 is a co-retraction. C.B.Wegener (cf. [21], p. 41) proved that

Ω1 := {{1, 2}, (23), (34)· >3,♦3}

dualises M3,and hence the set

{{1, 2}, (23), (34),>3,♦3}

entails BM3
, where (23) and (34) are automorphisms of M3, >3=6

`
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lattice order of M3, ♦3 := ({1, 2} × M3) ∪ (M3 × {2, 0}) and (34)· >3 denotes
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the action by the automorphism (34) on the relation >3 (cf. [1], p. 59). Then, by

Corollary 3.5, the set

ΩV1

1 := EndV1 ∪ {{1, 2}, (23)β3
, (34)β3

, (>3)β3
, (♦3)β3

}

entails (EndM3 ∪ EndpM3)β3
. Wegener (cf. [21], p. 46) also proved that the set

Ω2 := {{1, 2}, {(1, 1), (2, 4), (3, 4), (4, 2), (0, 0)},>5,♦5}

dualises N5, where >5=6
`

5 with 65 the lattice order ofM5, and

♦5 := ({1, 2} ×N5) ∪ (N5 × {3, 0}).

Then, by Theorem 3.3, the set

ΩV1

2 :=
{

{1, 2}, {(1, 1), (2, 4), (3, 4), (4, 2), (0, 0)}, (>5)β5
, (♦5)β5

}

entails (EndN5 ∪ EndpN5)β5
. Consequently, we have that the set ΩV1

p := EndV1 ∪
{

{1, 2}, (23)β3
, (34)β3

, (>3)β3
, (♦3)β3

, {(1, 1), (2, 4), (3, 4), (4, 2), (0, 0)}, (>5)β5
,

(♦5)β5

}

entails Endp V1.

Since the globally minimal failsets without partial endomorphisms admit {♦,>}

as a transversal (cf. [21], p. 49), where

♦ := ({1, 2} × V1) ∪ (V1 × {3, 0})

and > is the converse of the lattice order 6 of V1, we conclude that the set

EndV1 ∪
{

{1, 2}, (23)β3
, (34)β3

, (>3)β3
, (♦3)β3

, {(1, 1), (2, 4), (3, 4), (4, 2), (0, 0)} ∪

{(>5)β5
, (♦5)β5

} ∪ {♦,>}
}

entails Ω = S(V2
1).

We note that

• (23)β3
and (34)β3

are entailed by EndV1 ∪ {β3(M3)};

• {(1, 1), (2, 4), (3, 4), (4, 2), (0, 0)} = f ↾ β5(N5), where f ∈ EndV1 maps 2 and 3

to 4, 4 to 2 and fixes the other elements;

• (>3)β3
= > ∩ β3(M3)

2 and (>5)β5
= >1 ∩ β5(N5)

2;

• (♦3)β3
= (β3 ◦ α)(♦) and (♦5)β5

= ♦ ∩ β5(N5)
2;

• Lemma 3.4 implies that β3(M3) is entailed by EndV1;

• β5(N5) = π1(graph f1∩graph f2), where f1, f2 ∈ EndV1 are defined by fi(2) =

fi(3) = 5, fi(4) = 4, f1(5) = 2 and f2(5) = 3.

Consequently (cf. [1], p. 57 again), the set R := EndV1 ∪ {{1, 2},>,♦} entails Ω =

S(V2
1) and therefore, by Lemma 2.4, R dualises V1.
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