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STRATONOVICH-WEYL CORRESPONDENCE
FOR DISCRETE SERIES REPRESENTATIONS

Benjamin Cahen

Abstract. Let M = G/K be a Hermitian symmetric space of the noncompact
type and let π be a discrete series representation of G holomorphically induced
from a unitary character of K. Following an idea of Figueroa, Gracia-Bondìa
and Vàrilly, we construct a Stratonovich-Weyl correspondence for the triple
(G, π,M) by a suitable modification of the Berezin calculus on M . We extend
the corresponding Berezin transform to a class of functions on M which
contains the Berezin symbol of dπ(X) for X in the Lie algebra g of G. This
allows us to define and to study the Stratonovich-Weyl symbol of dπ(X) for
X ∈ g.

1. Introduction

The notion of Stratonovich-Weyl correspondence was introduced in [35] as a
generalization of the classical Weyl correspondence [1]. The systematic study of the
Stratonovich-Weyl correspondences began with the work of J. M. Gracia-Bondìa,
J. C. Vàrilly and their co-workers (see [22], [19], [17] and [21]).

Definition 1.1 ([21]). Let G be a Lie group and π a unitary representation of G
on a Hilbert space H. Let M be a homogeneous G-space and let µ be a (suitably
normalized) G-invariant measure on M . Then a Stratonovich-Weyl correspondence
for the triple (G, π,M) is an isomorphism W from a vector space of operators on
H to a space of (generalized) functions on M satisfying the following properties:

(1) W maps the identity operator of H to the constant function 1;
(2) the function W (A∗) is the complex-conjugate of W (A);
(3) Covariance: we have W (π(g)Aπ(g)−1)(x) = W (A)(g−1 · x);
(4) Traciality: we have∫

M

W (A)(x)W (B)(x) dµ(x) = Tr(AB) .
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For example, if G is the (2n+ 1)-dimensional Heisenberg group Hn which acts
on R2n by translations and π is the Schrödinger representation of Hn on L2(Rn)
then the classical Weyl correspondence gives a Stratonovich-Weyl correspondence
for the triple (Hn, π,R2n) [20], [21].

When G is a compact semisimple Lie group, π a unitary irreducible representation
of G on a finite dimensional Hilbert spaceH and M the coadjoint orbit of G which is
associated with π by the Kostant-Kirillov method of orbits [26], a Stratonovich-Weyl
correspondence for (G, π,M) was constructed in [19] by a suitable modification of
the Berezin calculus on M (see also [12] and [15]).

Let us also mention that, in [17], a Stratonovich-Weyl correspondence for the
massive representations of the Poincaré group was constructed. Another examples
of Stratonovich-Weyl correspondences can be found in [5] and [6]. A generalization
of the notion of Stratonovich-Weyl correspondence was introduced in [9].

In the present paper, we consider a connected semisimple noncompact real
Lie group G with finite center. Let K be a maximal compact subgroup of G.
We assume that the center of K has positive dimension. Then M = G/K is a
Hermitian symmetric space of the noncompact type which is diffeomorphic to a
bounded symmetric domain D. Let πχ be a discrete series representation of G
holomorphically induced from a unitary character χ of K. The representation πχ
can be realized on a Hilbert space Hχ of holomorphic functions on D. The domain
D can be quantized by the general method of quantization introduced by Berezin
[7], [8]. In [14], we gave explicit formulas for the Berezin symbols of πχ(g) for g ∈ G
and dπχ(X) for X in the Lie algebra g of G (see also [13]). The Berezin symbol of
πχ(g) plays a central role in the Fourier theory for G [4], [38]. On the other hand,
the Berezin symbol of dπχ(X) is related to the coadjoint orbit of G associated
with πχ by the Kirillov-Kostant method of orbits (see [14, Proposition 5.5]; also,
see [13, Proposition 3.3]). However, for the Fourier theory of G and for physical
applications, it is convenient to use Stratonovich-Weyl symbols instead of Berezin
symbols [19].

Berezin quantization on D gives an isomorphism Sχ from the space of Hilbert-
-Schmidt operators on Hχ (endowed with the Hilbert-Schmidt norm) onto L2(D, µ)
where µ is a G-invariant measure on D. Here, we construct a Stratonovich-Weyl
correspondence Wχ for the triple (G, πχ,D) as in the compact case [19]. In fact,
if we revisit [19] in the light of [3], [2], [30], [18] and [32], then we see that Wχ

is the isometric part in the polar decomposition of Sχ, that is, Wχ = B
−1/2
χ Sχ

where Bχ = SχS
∗
χ is the so-called Berezin transform. Note that Berezin transforms

for weighted Bergman spaces on bounded symmetric domains and their spectral
decompositions have been intensively studied (see for instance [36], [32], [39] and
[18]).

Here, in contrast to the compact case, the operator dπχ(X) is generally not of
the Hilbert-Schmidt type and then Wχ(dπχ(X)) is not defined a priori. In this
paper, we show how to extend Bχ to a class of functions on D which contains the
Berezin symbols Sχ(dπχ(X)) for X ∈ g. This allows us to define Wχ(dπχ(X)). More
precisely, we show that there exists a constant aχ > 0 such that Wχ(dπχ(X)) =
aχSχ(dπχ(X)) for each X ∈ g. This result is similar to that obtained in the compact
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case, see [15, Proposition 5.2], and it implies that Wχ is generally not an adapted
Weyl correspondence in the sense of [11].

This paper is organized as follows. In Section 2, we introduce the representation
πχ, the Berezin calculus on D and we review some results from [14]. In Section 3,
we construct a Stratonovich-Weyl correspondence Wχ for (G, πχ,D) as mentioned
above. In Section 4, we show how to extend the Berezin transform to functions of the
form Sχ(dπχ(u)) where u ∈ U(g). As an application, we extend Wχ to the operators
dπχ(X) (X ∈ g) and we determine the form of Wχ(dπχ(X)) (Section 5). Finally,
in Section 6, we study the case of the holomorphic discrete series of G = SU(1, 1).

2. Berezin quantization for discrete series representations

In this section, we first review some well-known facts on Hermitian symmetric
spaces of the noncompact type and on holomorphic discrete series representations.
Our main references are [23, Chapter VIII], [27, Chapter 6], [29, Chapter XII] and
[34, Chapter II].

Let G be a connected semisimple noncompact real Lie group with finite center
and let K be a maximal compact subgroup of G. We assume that the center of the
Lie algebra of K is non trival. Then the homogeneous space G/K is a Hermitian
symmetric space of the noncompact type.

Let g and k be the Lie algebras of G and K, respectively. Let gc and kc be the
complexifications of g and k and Gc, Kc the corresponding complex Lie groups
containing G and K, respectively. We denote by β the Killing form of gc, that is,
β(X,Y ) = Tr(adX adY ) for X, Y ∈ gc. Let p be the ortho-complement of k in g
with respect to β. Then g = k⊕ p is a Cartan decomposition of g.

We fix a Cartan subalgebra h of k. Then h is also a Cartan subalgebra of g. We
denote by hc the complexification of h. Let H the connected subgroup of K with Lie
algebra h. Let ∆ be the root system of gc relative to hc and let gc = hc⊕

∑
α∈∆ gα

be the root space decomposition of gc. Then we have the direct decompositions
kc = hc ⊕

∑
α∈∆c

gα and pc =
∑
α∈∆n

gα where pc denotes the complexification
of p and ∆c (resp. ∆n) denotes the set of compact (resp. noncompact) roots.
We choose an ordering on ∆ as in [23, p. 384], and we denote by ∆+, ∆+

c and
∆+
n the corresponding sets of positive roots, positive compact roots and positive

noncompact roots, respectively. We set p+ =
∑
α∈∆+

n
gα and p− =

∑
α∈∆+

n
g−α.

Then we have [kc , p±] ⊂ p± and p+ and p− are abelian subspaces [23, Proposition
7.2.]. Since [p, p] ⊂ k, we also have [p+, p−] ⊂ kc. We denote by P+ and P− be the
analytic subgroups of Gc with Lie algebras p+ and p−, respectively.

For each µ ∈ (hc)∗, we denote by Hµ the element of hc satisfying β(H,Hµ) =
µ(H) for all H ∈ hc. Note that if µ is real-valued on ih then iHµ ∈ g. For
µ, ν ∈ (hc)∗, we set (µ, ν) := β(Hµ, Hν).

Let θ denotes conjugation over the real form g of gc. For X ∈ gc, we set
X∗ = −θ(X). We denote by g → g∗ the involutive anti-automorphism of Gc which
is obtained by exponentiating X → X∗ to Gc. Recall that the multiplication map
(z, k, y)→ zky is a diffeomorphism from P+ ×Kc ×P− onto an open submanifold
of Gc containing G [23, Lemma 7.9]. Following [29], we introduce the projections
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ζ : P+KcP− → P+, κ : P+KcP− → Kc and η : P+KcP− → P−. Then the map
gK → log ζ(g) from G/K to p+ induces a diffeomorphism from G/K onto a
bounded domain D ⊂ p+ [23, p. 392]. The natural action of G on G/K corresponds
to the action of G on D given by g ·Z = log ζ(g expZ). The G-invariant measure on
D is dµ(Z) = χ0(κ(expZ∗ expZ)) dµL(Z) where χ0 is the character on Kc defined
by χ0(k) = Detp+(Ad k) and dµL(Z) is a Lebesgue measure on D [29]. To simplify
the notation, we set k(Z) := κ(expZ∗ expZ) for Z ∈ D.

We introduce the holomorphic discrete series representations of scalar type of G
as follows. Let χ be a unitary character of K. We also denote by χ the extension
of χ to Kc. Let us introduce the Hilbert space Hχ of holomorphic functions on D
such that

‖f‖2χ :=
∫
D
|f(Z)|2χ(k(Z)) cχdµ(Z) < +∞

where the constant cχ is defined by

c−1
χ =

∫
D

(χ · χ0)
(
k(Z)

)
dµL(Z) .

Note that χ(k(Z)) > 0 for all Z ∈ D. Indeed, for each Z ∈ D there exists gZ ∈ G
such that gZ · 0 = Z. Writing gZ = expZky with k ∈ Kc and y ∈ P−, we have
k(Z) = (k∗)−1k−1 which gives χ(k(Z)) = χ(k)

−1
χ(k) = |χ(g−1

Z expZ)|2 > 0.

Proposition 2.1 ([31], [27]). Let λ := dχ|hc and δ = 1
2
∑
α∈∆+ α. Then Hχ is

nonzero if and only if (λ+ δ, α) < 0 for every noncompact positive root α. In that
case, Hχ contains all polynomials. Moreover, the action of G on Hχ defined by

πχ(g)f(Z) = χ
(
κ(g−1 expZ)

)−1
f(g−1 · Z)

is a unitary representation of G which belongs to the holomorphic discrete series of
G.

In the rest of the paper, we assume that χ satisfies the preceding condition.
Note that Hχ is a reproducing kernel Hilbert space. More precisely, we have the
reproducing property f(Z) = 〈f, eZ〉χ for each f ∈ Hχ and each Z ∈ D, where the
coherent states eZ ∈ Hχ are defined by eZ(W ) = χ(κ(expZ∗ expW ))−1 (see [29],
Chapter XII for instance). Here 〈·, ·〉χ denotes the inner product on Hχ.

Now we introduce the Berezin calculus on D as follows. Consider an operator
(not necessarily bounded) A on Hχ whose domain contains eZ for each Z ∈ D. The
Berezin (covariant) symbol of A is the function defined on D by

Sχ(A)(Z) = 〈AeZ , eZ〉χ
〈eZ , eZ〉χ

.

From the equality

(2.1) πχ(g) eZ = χ
(
κ(g expZ)

)−1
eg·Z

for g ∈ G and Z ∈ D (see [14, Proposition 2.2]), we deduce that, for each Z ∈ D,
eZ is a smooth vector for πχ and hence the Berezin symbol of dπχ(X) (X ∈ g) is
well-defined.
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Also, note that if A is an operator on Hχ whose domain contains the coherent
states eZ (Z ∈ D) then, for each g ∈ G, the domain of πχ(g−1)Aπχ(g) also contains
eZ for each Z ∈ D and we have

(2.2) Sχ(πχ(g−1)Aπχ(g))(Z) = S(A)(g · Z)

for each g ∈ G and Z ∈ D.
In [14], we gave explicit expressions for the derived representation dπχ, for the

Berezin symbols of πχ(g) and dπχ(X). In the rest of this section, we recall some
results from [14].

If L is a Lie group and X is an element of the Lie algebra of L then we
denote by X+ the right invariant vector field on L generated by X, that is,
X+(h) = d

dt (exp tX)h|t=0 for h ∈ L.
Let pp+ , pkc and pp− be the projections of gc onto p+, kc and p− associated with

the direct decomposition gc = p+ ⊕ kc ⊕ p−. By differentiating the multiplication
map from P+ ×Kc × P− onto P+KcP−, we can easily prove the following result.

Lemma 2.1 ([14]). Let X ∈ gc and g = z k y where z ∈ P+, k ∈ Kc and y ∈ P−.
We have

(1) dζg(X+(g)) = (Ad(z) pp+(Ad(z−1)X))+(z).
(2) dκg(X+(g)) = (pkc(Ad(z−1)X))+(k).
(3) dηg(X+(g)) = (Ad(k−1) pp−(Ad(z−1)X))+(y).

From this lemma, we deduce the following propositions (see [14] and also [29,
Proposition XII.2.1]).

Proposition 2.2. For X ∈ gc and f ∈ Hχ, we have

dπχ(X)f(Z) = dχ(pkc(Ad((expZ)−1)X)) f(Z)− (df)Z
(
pp+(e− adZ X)

)
.

In particular, we have
(1) If X ∈ p+ then dπχ(X)f(Z) = −(df)Z(X).
(2) If X ∈ kc then dπχ(X)f(Z) = dχ(X)f(Z) + (df)Z([Z,X]).
(3) If X ∈ p− then dπχ(X)f(Z) = −dχ([Z,X])f(Z)− 1

2 (df)Z([Z, [Z,X]]).

Proposition 2.3.
(1) Let g ∈ G. We have

Sχ
(
πχ(g)

)
(Z) = χ

(
κ(expZ∗g−1 expZ)−1κ(expZ∗ expZ)

)
.

(2) Let X ∈ gc. We have

Sχ
(
dπχ(X)

)
(Z) = dχ

(
pkc(Ad(ζ(expZ∗ expZ)−1 expZ∗)X

)
.

In particular, for X ∈ kc, we have

Sχ
(
dπχ(X)

)
(Z) = dχ

(
X + [log η((expZ∗ expZ), [X,Z]]

)
.
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(3) We can write

S
(
dπχ(X)

)
(Z) = iβ

(
ψχ(Z), X

)
where the map ψχ defined by

ψχ(Z) := Ad
(
exp(−Z∗) ζ(expZ∗ expZ)

)
(−iHλ)

is a diffeomorphism from D onto the orbit Oχ of −iHλ ∈ g for the adjoint
action of G.

3. Berezin transform and Stratonovich-Weyl correspondence

We retain the notation from Section 2. Also, we denote by L2(Hχ) the space of the
Hilbert-Schmidt operators on Hχ and by µχ the G-invariant measure on D defined
by dµχ(Z) = cχdµ0(Z) = cχχ0(k(Z))dµL(Z). Then the map Sχ is a bounded
operator on L2(Hχ) into L2(D, µχ) which is one-to-one and has dense range [33],
[36]. It is not hard to verify that the adjoint operator S∗χ : L2(D, µχ)→ L2(Hχ) is
given by

(3.1) S∗χF =
∫
D
F (Z)PZ dµχ(Z)

where PZ is the orthogonal projection operator of Hχ on the line generated by eZ .
The Berezin transform Bχ = SχS

∗
χ is then the operator on L2(D, µχ) given by

(3.2) BχF (Z) =
∫
D
F (W )

|〈eZ , eW 〉|2χ
〈eZ , eZ〉χ〈eW , eW 〉χ

dµχ(W )

(see, for instance, [7], [36], [39]). Note that Bχ commute with ρ(g) (g ∈ G) where
ρ denotes the left-regular representation of G on L2(D, µχ).

Now, we introduce the polar decomposition of Sχ: Sχ = (SχS∗χ)1/2W = B
1/2
χ Wχ

where Wχ := B
−1/2
χ Sχ is a unitary operator from L2(Hχ) onto L2(D, µχ). The

following proposition is analogous to Theorem 3 of [19].

Proposition 3.1. The map Wχ : L2(Hχ) → L2(D, µχ) is a Stratonovich-Weyl
correspondence for the triple (G, πχ,D).

Proof. We have to verify that the properties (1), (2) and (3) of Definition 1.1
are satisfied. Property (1) follows from the fact that Bχ1 = 1. Since we have the
properties Sχ(A∗) = Sχ(A) and S∗χ(F ) = (S∗χF )∗, we see that Bχ hence B−1/2

χ

commute with complex conjugation. This gives Property (2). Finally, Property (3)
is a consequence of Equality (2.2). �

In the rest of this section, we show that the Stratonovich-Weyl correspondence
Wχ is related to the operator Q introduced in [32] as a natural generalization of
the Weyl transform.
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Let A ∈ L2(Hχ). For Z ∈ D, we have

Af(Z) = 〈Af , eZ〉χ = 〈f , A∗ eZ〉χ

=
∫
D
f(W )A∗ eZ(W ) 〈eW , eW 〉−1

χ dµχ(W )

=
∫
D
f(W )〈A∗ eZ , eW 〉χ 〈eW , eW 〉

−1
χ dµχ(W )

=
∫
D
f(W )〈AeW , eZ〉χ 〈eW , eW 〉

−1
χ dµχ(W ) .

This shows that the kernel of A is the function

(3.3) kA(Z,W ) = 〈AeW , eZ〉χ
which is holomorphic in the variable Z and anti-holomorphic in the variable W .

Now, let H−χ be the Hilbert space conjugate to Hχ, that is, the elements of
H−χ are the functions f where f ∈ Hχ and the Hilbert norm on H−χ is defined
by ‖f‖H−χ = ‖f‖χ. We form the Hilbert space tensor product Hχ ⊗ H−χ which
can be identified with L2(Hχ) endowed with the Hilbert-Schmidt norm by means
of the map K : A → kA. In [32], the authors introduced the restriction operator
D : Hχ ⊗H−χ → L2(D, µχ)

k(Z,W )→ k(Z,Z)〈eZ , eZ〉−1
χ

and its polar decomposition D = |D|Q. Then, by using (3.3), we see immediately
that Sχ = D ◦ K. Hence we can conclude that Wχ = Q ◦ K.

4. Extension of the Berezin transform

We introduce some additional notation. Let (Eα)α∈∆+
n

be a basis for p+ as in
[23, Chapter VIII, Corollary 7.6]. In particular, we have Eα ∈ gα and [Eα, E−α] =

2
α(Hα)Hα for each α ∈ ∆+

n . Let α1, α2, . . . , αn be an enumeration of ∆+
n . We write

Z =
∑n
k=1 zkEαk for the decomposition of Z ∈ p+ in the basis (Eαk). If f is a

holomorphic function on D, then we denote by ∂kf the partial derivative of f
with respect to zk. We say that a function f(Z) on D is a polynomial of degree
q in the variable Z if f(

∑n
k=1 zkEαk) is a polynomial of degree q in the variables

z1, z2, . . . , zn. For Z, W ∈ D, we set lZ(W ) := log η(expZ∗ expW ) ∈ p−. We first
establish some technical lemmas.

Lemma 4.1. (1) For Z, W ∈ D and V ∈ p+, we have
d

dt
eZ(W + tV )

∣∣
t=0= −eZ(W ) dχ([lZ(W ), V ]) .

(2) For Z, W ∈ D and V ∈ p+, we have
d

dt
lZ(W + tV )

∣∣
t=0= 1

2[lZ(W ), [lZ(W ), V ]] .
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(3) The function (∂k1∂k2 . . . ∂kq eZ)(W ) is of the form eZ(W )P (lZ(W )) where
P is a polynomial of degree ≤ q.

(4) For each X1, X2, . . . , Xq ∈ gc, the operator dπχ(X1X2 . . . Xq) is a sum
of terms of the form P (Z)∂k1∂k2 . . . ∂kq where P is a polynomial in Z of
degree ≤ 2q.

Proof. By (2) of Lemma 2.1, we have
d

dt
eZ(W + tV )

∣∣
t=0= d

dt
χ−1(κ(expZ∗ expW exp tV )

)∣∣
t=0

= dχ−1
κ(expZ∗ expW )dκexpZ∗ expW

((
Ad(expZ∗ expW )V

)+(expZ∗ expW )
)

= −χ−1(κ(expZ∗ expW )) dχ
(
pkc
(
Ad
(
κ(expZ∗ expW )η(expZ∗ expW )

)
V
))
.

Since dχ(pkc(Ad(k)X)) = dχ(Ad(k)pkc(X)) = dχ(pkc(X)) for each k ∈ Kc and
each X ∈ gc, we obtain

d

dt
eZ(W + tV )

∣∣
t=0 = −eZ(W )dχ

(
pkc
(
Ad
(
η(expZ∗ expW )

)
V
))

= −eZ(W )dχ ([log η(expZ∗ expW ), V ]) .

Then Statement (1) is proved. Similarly, by using (3) of Lemma 2.1, we have
d

dt
lZ(W + tV )

∣∣
t=0

= d logη(expZ∗ expW ) dηexpZ∗ expW
(
(Ad(expZ∗)V )+(expZ∗ expW )

)
= Adκ(expZ∗ expW )−1 pp−

(
Ad
(
ζ(expZ∗ expW )−1 expZ∗

)
V
)

= pp−
(
Ad
(
η(expZ∗ expW )

)
V
)

= 1
2 [log η(expZ∗ expW ), [log η(expZ∗ expW ), V ]]

and hence we have proved (2). Now, by induction on q, we easily obtain (3). Finally,
(4) is a consequence of Proposition 2.3. �

The following lemma is an immediate consequence of Lemma 4.1 (see also [16]).

Lemma 4.2. Each holomorphic differential operator on D with polynomial coeffi-
cients has Berezin symbol. In particular, for each X1, X2, . . . , Xq ∈ gc,
Sχ(dπχ(X1X2 . . . Xq)) is well-defined and is a sum of terms of the form P (Z)Q(lZ(Z))
where P is a polynomial of degree ≤ 2q and Q is a polynomial of degree ≤ q.

Lemma 4.3. Let γ1, γ2, . . . , γr be a subset of ∆+
n consisting of strongly orthogonal

roots.
(1) Let χ̃ be a character (non necessarily unitary) on K and λ̃ = dχ̃|hc . Then

(λ̃, γk) does not depend on k = 1, 2, . . . , r.

(2) In particular, let λ0 := dχ0|hc . Then qχ = −2 (λ0+λ,γk)
(γk,γk) does not depend on

k = 1, 2, . . . , r.
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Proof. (1) By [28, Lemma 2.1], each γr is of the form γr = µ1 +
∑
i≥2 niµi where

µ1 is the unique noncompact simple root and the µi (i ≥ 2) are the compact simple
roots. Since (λ̃, µi) = 0 for each i ≥ 2, we have (λ̃, γk) = (λ̃, µ1) for each k.
(2) By [28, Theorem 2], (γk, γk) does not depend on k. The result then follows
from (1). �

We are now in position to extend the Berezin transform to a class of Berezin
symbols of unbounded operators. Note that, by fixing an Iwasawa decomposition
G = NAK, we get a smooth section G/K → NA ⊂ G and then we obtain a
smooth section D → G, Z → gZ .

Proposition 4.1. If q ≤ qχ then for each X1, X2, . . . , Xq ∈ gc, the Berezin
transform of Sχ(dπχ(X1X2 . . . Xq)) is well-defined.

Proof. First, note that if we change variables W → gZ ·W in the integral (3.2)
then by (2.1) we obtain

(BχF )(Z) =
∫
D
F (gZ ·W )〈eW , eW 〉−1

χ dµχ(W )

=
∫
D
F (gZ ·W ) cχ(χ · χ0)(k(W )) dµL(W ) .(4.1)

In particular, if F (W ) = Sχ(dπχ(X1X2 . . . Xq))(W ) then, by (2.2), we have F (gZ ·
W ) = Sχ(dπχ(Y1Y2 . . . Yq))(W ) where Yk := Ad(g−1

Z )Xk for k = 1, 2, . . . , q.
We will show that, under the condition that q ≤ qχ, the function

W → Sχ
(
dπχ(Y1Y2 . . . Yq)

)
(W )(χ · χ0)

(
k(W )

)
is bounded hence integrable on D. Recall that Sχ(dπχ(Y1Y2 . . . Yq))(W ) is the sum
of terms of the form P (W )Q(log η(expW ∗ expW )) where P is a polynomial and
Q is a polynomial of degree ≤ q.

Let γ1, γ2, . . . , γr as in Lemma 4.3. Then each W ∈ D can be written as
W = Ad(k)

(∑r
k=1 tsEγs

)
for k ∈ K and −1 < ts < 1, 1 ≤ s ≤ r (see for

instance [23, Chapter VIII]). From matrix calculations in the group SL(2,C) and
strongly orthogonality of the roots γs, we have

log η(expW ∗ expW ) = Ad(k)
(
−

r∑
s=1

ts
1− t2s

E−γs

)
(4.2)

and

k(W ) = κ(expW ∗ expW ) = k exp
( r∑
s=1

log 1
1− t2s

[Eγs , E−γs ]
)
k−1 .(4.3)

Then

(χ · χ0)
(
k(W )

)
=

r∏
s=1

(1− t2s)−(λ+λ0)([Eγs ,E−γs ])

and, since we have

−(λ+ λ0)([Eγs , E−γs ]) = −2 (λ+ λ0)(Hγs)
γs(Hγs)

= −2(λ0 + λ, γs)
(γs, γs)

= qχ ,
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we obtain

(4.4) (χ · χ0)
(
k(W )

)
=

r∏
s=1

(1− t2s)qχ .

Hence we see that the condition q ≤ qχ guarantees that the functions
W → P (W )Q

(
lW (W )

)
(χ · χ0)

(
k(W )

)
are bounded on D. This finishes the proof. �

Remarks.
(1) Since we have ∫

D
(χ · χ0)

(
k(W )

)
dµL(W ) < +∞ ,

we see immediately from (4.4) that qχ ≥ 0.
(2) By [13, Lemma 5.2], we have χ(k(Z)) ≤ 1 for each Z ∈ D with equality

if and only if Z = 0. This implies that −λ([Eγs , E−γs ]) > 0 for each
s = 1, 2, . . . , r.

(3) An extension of the Berezin transform to another class of functions on D
is given in [36].

5. Stratonovich-Weyl symbols of derived representation operators

When qχ ≥ 1, the Berezin transform of Sχ(dπχ(X)) (X ∈ gc) is well-defined
by Proposition 4.1. In this section, we determine the form of BχSχ(dπχ(X)) and
we show how to extend the Stratonovich-Weyl correspondence to the operators
dπχ(X) (X ∈ gc). To this aim, we first study the linear form bχ defined on gc by

(5.1) bχ(X) := BχSχ
(
dπχ(X)

)
(0) =

∫
D
Sχ
(
dπχ(X)

)
(Z)χ

(
k(Z)

)
dµχ(Z) .

Proposition 5.1. There exists a real number aχ ≥ 1 such that bχ(X) = aχλ(phc(X))
for each X ∈ gc. Here phc denotes the projection operator from gc onto hc associated
with the decomposition gc = hc ⊕

∑
α∈∆ gα.

Proof. For each k ∈ K and each Z ∈ D, we have πχ(k)eZ = χ(k)ek·Z and
then 〈ek·Z , ek·Z〉χ = 〈eZ , eZ〉χ. Thus, by changing variables Z → k−1 · Z in the
integral (5.1) and by using the fact that

Sχ
(
dπχ(X)

)
(k−1 · Z) = Sχ

(
dπχ(Ad(k)X)

)
(Z) ,

we get
(5.2) bχ(X) = bχ

(
Ad(k)X

)
for each k ∈ K and each X ∈ gc. Specializing to X = Eα (α ∈ ∆) and k = expY
where Y ∈ h and noting that Ad(k)Eα = eα(Y )Eα, we find that bχ(Eα) = 0 for
each α ∈ ∆.

On the other hand, observe that, for each X ∈ g,
bχ(X) = BχSχ

(
dπχ(X∗)

)
(0) = bχ(X∗) = −bχ(X)
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and then bχ(X) ∈ iR. Now, introduce the element Hbχ ∈ kc satisfying bχ(Y ) =
β(Y,Hbχ) for each Y ∈ kc. Then Hbχ ∈ ik. By (5.2), we have Ad(k)Hbχ = Hbχ for
each k ∈ K. This implies that iHbχ lies in the center of k. Since the center of k is
one-dimensional (see for instance [24]) and contains iHλ, there exists a real number
aχ such that iHbχ = aχiHλ. Thus we have bχ = aχλ on hc. Hence, we have obtained
that bχ(X) = aχλ(phc(X)) for each X ∈ gc. It remains to show that aχ ≥ 1. To
this goal, we consider the function ϕχ defined on D by ϕχ(Z) = Sχ(dπχ(Hλ))(Z).
By Proposition 2.3, we have

ϕχ(Z) = λ(Hλ) + λ([log η(expZ∗ expZ), [Hλ, Z]]) .

Moreover, since iHλ is central in k, we have ϕχ(Ad(k)Z) = ϕχ(Z) for each k ∈ K
and Z ∈ D.

As in the proof of Proposition 4.1 we write each Z ∈ D as Z = Ad(k) (
∑r
s=1 tsEγs)

with k ∈ K and −1 < ts < 1 for s = 1, 2, . . . , r. Then, for each Z ∈ D, we have

ϕχ(Z) = λ(Hλ) + λ
([
−

r∑
s=1

ts
1− t2s

E−γs , [Hλ,

r∑
s=1

tsEγs ]
])

=λ(Hλ) + 2
r∑
s=1

t2s
1− t2s

(γs, λ)2

(γs, γs)
≥ λ(Hλ)

Thus
aχλ(Hλ) = bχ(Hλ) =

∫
D
ϕχ(Z)χ

(
k(Z)

)
dµχ(Z) ≥ λ(Hλ) .

Hence aχ ≥ 1. �

Proposition 5.2. With the notation of Proposition 5.1, for each X ∈ gc, we have
BχSχ(dπχ(X)) = aχSχ(dπχ(X)).

Proof. Applying successively Equality (4.1), Proposition 5.1, Proposition 2.3 and
Equality (2.2), we have

BχSχ(dπχ(X))(Z) = BχSχ
(
dπχ(Ad(g−1

Z )X)
)
(0)

= aχλ
(
phc(Ad(g−1

Z )X)
)

= aχSχ
(
dπχ(Ad(g−1

Z )X)
)
(0)

= aχSχ
(
dπχ(X)

)
(gZ · 0) = aχSχ

(
dπχ(X)

)
(Z)

for each Z ∈ D and each X ∈ gc. �

Consequently, we can define B
−1/2
χ on the space of functions of the form

Sχ(dπχ(X)) and Wχ on the space {dπχ(X) : X ∈ gc}. Moreover, we have
Wχ(dπχ(X)) = a

−1/2
χ Sχ(dπχ(X)) for each X ∈ gc.

In [14], we showed that Sχ is adapted to πχ in the sense that the linear form
X → −iSχ(dπχ(X)) lies in the coadjoint orbit of G associated with πχ by the
method of orbits (see also Proposition 2.3). In general, we have aχ 6= 1 (see for
example Section 6) and then Wχ is not adapted to πχ. However, the following
proposition shows that Wχ is ‘asymptotically adapted’.

Proposition 5.3. We have limm→+∞ aχm = 1.
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Proof. Here we use the same notation as in the proofs of Proposition 4.1 and
Proposition 5.1. We have

aχm = 1
(mλ,mλ)

∫
D
ϕχm(Z)(χm · χ0)

(
k(Z)

)
cχmdµL(Z) .

Then

aχm − 1 =
∫
D

ϕχm(Z)− (mλ,mλ)
(mλ,mλ) (χm · χ0)

(
k(Z)

)
cχmdµL(Z) .

Changing variables Z → Z/
√
m in this integral, we get

aχm − 1 = m−ncχm

∫
√
mD

Im(Z) dµL(Z)

where we have put

Im(Z) := ϕχm(Z/
√
m)− (mλ,mλ)

(mλ,mλ) (χm · χ0)
(
k(Z/

√
m)
)
.

By [13, Lemma 5.3], we have limm→+∞m−ncχm = π−n. On the other hand, we
have

Im(Z) =
( r∑
s=1

2 (γs, λ)2

(λ, λ)(γs, γs)
(ts/
√
m)2

1− (ts/
√
m)2

)
×

r∏
s=1

(1− (ts/
√
m)2)−(λ0+mλ)([Eγs ,E−γs ])

where |ts| <
√
m for each s and we see that limm→+∞ Im(Z) = 0. In order

to obtain the desired result, it suffices to verify that the Lebesgue dominated
convergence theorem can be applied. This can be done as follows. Recall that we
have −λ([Eγs , E−γs ]) > 0 for each s = 1, 2, . . . , r. Then we fix m0 so that we have

−mλ([Eγs , E−γs ])− 1 ≥ −m2 λ([Eγs , E−γs ])

for each m ≥ m0 and each s = 1, 2, . . . , r. Thus for each m ≥ m0 and each
Z ∈
√
mD, we have

Im(Z) ≤
r∑
s=1

2 (γs, λ)2

(λ, λ)(γs, γs)

r∏
s=1

(1− (ts/
√
m)2)−(λ0+mλ)([Eγs ,E−γs ])−1

≤ C
r∏
s=1

(1− (ts/
√
m)2)−m2 λ([Eγs ,E−γs ])

≤ C exp
( r∑
s=1

1
2λ([Eγs , E−γs ])t2s

)
where C > 0 is a constant which does not depend on m. Hence we obtain the
estimate

Im(Z) ≤ Ce−D|Z|
2

where D > 0 is a constant and | · | is an Euclidean norm on P+. This ends the
proof. �



STRATONOVICH-WEYL CORRESPONDENCE. . . 63

6. Example

In this section, we consider the case of the holomorphic discrete series of SU(1, 1)
(see [10]). We take

G = SU(1, 1) =
{(

a b

b̄ ā

)
: |a|2 − |b|2 = 1, a, b ∈ C

}
and

K =
{(

eiθ 0
0 e−iθ

)
, θ ∈ R

}
.

The Lie algebra g of G has basis

u1 = 1
2

(
0 −i
i 0

)
, u2 = 1

2

(
0 1
1 0

)
, u3 = 1

2

(
−i 0
0 i

)
and its complexification gc is sl(2,C). Then we have Gc = SL(2,C) and

Kc =
{(

a 0
0 1/a

)
, a ∈ C \ (0)

}
.

The conjugation of gc with respect to g is given by

θ

(
a b
c d

)
=
(
−ā c̄

b̄ −d̄

)
and we have X∗ = −θ(X) for X ∈ gc.

The root system of gc = sl(2,C) relative to kc consists in the two noncompact
roots α and −α where α(iu3) = 1. The corresponding root spaces are

gα = C
(

0 1
0 0

)
, g−α = C

(
0 0
1 0

)
.

We say that a root is positive if it is positive on iu3 ∈ ih. Then α is the positive
root and p+ = gα and p− = g−α. The corresponding groups are

P+ =
{(

1 z
0 1

)
: z ∈ C

}
, P− =

{(
1 0
z 1

)
: z ∈ C

}
.

In the rest of this section, we identify p+ to C by means of the map

z → Z =
(

0 z
0 0

)
.

Each element g =
(
a b
c d

)
∈ SL(2,C) such that d 6= 0 has the following

P+KcP−-decomposition(
a b
c d

)
=
(

1 b/d
0 1

)(
1/d 0
0 d

)(
1 0
c/d 1

)
.

In particular we have G ⊂ P+KcP−.

The map gK =
(
a b

b̄ ā

)
K ∈ G/K → log ζ(g) = b/ā is then a diffeomorphism

from G/K onto the unit disk D = {z ∈ C : |z| = 1} and we can verify that the
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natural action of G on G/K corresponds to the action of G on D by fractional
linear transformations defined by

g · z = az + b

b̄z + ā
, g =

(
a b
c d

)
, z ∈ D.

Note that the map

z → gz := 1√
1− zz̄

(
1 z
z̄ 1

)
is a section for the action of G on D, that is, we have gz · 0 = z for each z ∈ D. One
can easily verify that a G-invariant measure on D is dµ(z) = (1 − zz̄)−2 dµL(z)
where dµL(z) := dx dy denotes the Lebesgue measure on D (z = x+ iy, x, y ∈ R).

Now, we fix an integer m and we consider the unitary character χm of K defined
by

χm

(
eiθ 0
0 e−iθ

)
= e−imθ .

We denote also by χm the extension of χm to Kc. We obtain immediately

χm
(
κ(expZ∗ expZ)

)
= (1− zz̄)m .

The space Hχm is the Hilbert space of holomorphic functions f such that

(6.1) ‖f‖2m :=
∫
D

|f(z)|2 (1− zz̄)m−2 m−1
π dxdy < +∞ .

Let λm = dχm. By Proposition 2.1, Hχm is nonzero if and only if the condition

(λm + 1
2α, α) > 0

holds. Since λm = −m2 α, this condition reads 1−m
2 (α, α) < 0 and, as the restriction

of β to ik is positive definite, it is equivalent to m ≥ 2.
Also, note that the normalization of the measure in (6.1) is taken so that

‖1‖m = 1.
For each m ≥ 2, the representation πm of G = SU(1, 1) corresponding to m is

realized in Hχm as(
πm(g)

)
f(z) = χ−1

m

(
κ(g−1 expZ)

)
f(g−1 · z)

= (−b̄z + a)−m f(g−1 · z)

for g =
(
a b

b̄ ā

)
∈ G, f ∈ Hχm and z ∈ D.

One can easily show that the family fp(z) :=
(
m+p−1

p

)1/2
zp is an orthonormal

basis for Hχm (see [29, p. 11], for instance). From this, we see that the coherent
states

ez(w) = χm(κ(expZ∗ expW )−1) = (1− z̄w)−m =
∑
p≥0

fp(z)fp(w)

satisfy the reproducing property 〈f, emz 〉m = f(z) for each f ∈ Hχm and each
z ∈ D.
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Here we obtain the following formula for the Berezin symbol of πm(g) for g ∈ G

Sm
(
πm(g)

)
(z) = (πm(g)ez)(z)

ez(z)
= (1− zz̄)m

(a− b̄z + bz̄ − āzz̄)m
, g =

(
a b

b̄ ā

)
.

Moreover, since dπm is given by

dπm (u1)f(z) = m

2 i z f(z) + 1
2 i (z2 + 1) f ′(z)

dπm (u2)f(z) = m

2 z f(z) + 1
2 (z2 − 1) f ′(z)

dπm (u3)f(z) = m

2 i f(z) + izf ′(z)

we get

Sm
(
dπm (u1)

)
(z) = i

m

2
z + z̄

1− zz̄

Sm
(
dπm (u2)

)
(z) = m

2
z − z̄
1− zz̄

Sm
(
dπm (u3)

)
(z) = i

m

2
1 + zz̄

1− zz̄ .

From this we deduce that Sm(dπm(X))(z) = iβ(X,ψm(z)) where the map ψm is
defined by

ψm(z) := m

8 i
( 1+zz̄

1−zz̄ − 2z
1−zz̄

2z̄
1−zz̄ − 1+zz̄

1−zz̄

)
.

Note that ψm(0) = −iHm where Hm is the coroot vector of λm and that
ψm(z) = Ad(gz) (−iHm). Then ψm is a diffeomorphism from D onto the orbit of
−iHm under the adjoint action of G.

Now, we turn to the Berezin transform Bm. Here we have

(6.2) Bm(f)(z) =
∫
D

F (w) |1− z̄w|
4

(1− zz̄)2 (1− ww̄)m−2 m−1
π dµL(w) .

Let us compute qχm (see Section 4). We have

qχm = −2 (dχ0 + λm, α)
(α, α) = −2(1− m

2 ) = m− 2

and Proposition 4.1 asserts that if q ≤ qχm then for each X1, X2, . . . , Xq in gc,
the Berezin transform of Sm(dπm(X1X2 . . . Xq)) is well-defined. Here, this can
be directly verified as follows. By using the formulas for dπm given above, we
immediately see that dπm(X1X2 . . . Xq) is a linear combination of the differential
operators Dp,r := zp( ddz )r where r ≤ q. By differentiating ez(w) = (1− z̄w)−m, we
get

Sm(Dp,r)(w) = m(m+ 1) . . . (m+ r − 1)wpw̄r(1− ww̄)−r .
Taking formula (6.2) into account, we see that the Berezin transform of Sm(Dp,r)
is well-defined. Hence the result.
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Now, we want to compute the constant aχm for m > 2 (see Section 5). To this
aim, we apply the equality (BmF )(0) = aχmF (0) to the function

F (Z) := Sm
(
dπm(iu3)

)
(z) = −m2

1 + zz̄

1− zz̄ .

We then obtain (BmF )(0) = −m2/2(m−2) and hence we find that aχm = m/m−2.
In particular, we have limm→+∞ aχm = 1, in accordance with Proposition 5.3.

Finally, let us mention that the computation of aχm can be performed similarly
when G = SU(p, q), K = S(U(p) × U(q)) and χm is the unitary character of K
defined by

χm

(
A 0
0 D

)
= (Det A)−m .

In that case, by adapting some methods from [25], we find that aχm = m/m−p− q
for m > p+ q.
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