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Comparison game on Borel ideals

Michael Hrušák, David Meza-Alcántara

Abstract. We propose and study a “classification” of Borel ideals based on a
natural infinite game involving a pair of ideals. The game induces a pre-order ⊑
and the corresponding equivalence relation. The pre-order is well founded and
“almost linear”. We concentrate on Fσ and Fσδ ideals. In particular, we show
that all Fσ-ideals are ⊑-equivalent and form the least equivalence class. There
is also a least class of non-Fσ Borel ideals, and there are at least two distinct
classes of Fσδ non-Fσ ideals.

Keywords: ideals on countable sets, comparison game, Tukey order, games on
integers

Classification: 03E15, 03E05

Introduction

We propose and study a natural Wadge-like two-player game, called the com-
parison game, associated to a pair of ideals. The game introduces a pre-order
⊑ and the corresponding equivalence relation. On Borel ideals, this pre-order is
well-founded and almost-linear (all antichains have size at most 2).

We show that all Fσ-ideals are ⊑-equivalent, and form the least equivalence
class. In order to do this, we prove a combinatorial characterization of Fσ-
ideals, identifying Fσ-ideals as exactly those Borel ideals which have the P+(tree)-
property considered by Laflamme and Leary [4]. There is also a “second least”
equivalence class, the equivalence class of the ideal I0 defined below. We show
that there are at least two distinct classes of Fσδ non-Fσ ideals, and exactly two
distinct classes of analytic P-ideals.

We also study a problem of I. Farah concerning inner structure of Fσδ-ideals,
closely related to the comparison game.

By an ideal on ω we mean an ideal I on a countable set X (typically X = ω the
first infinite ordinal) which contains all finite subsets of X and does not containX .
By considering I as a subspace of P(X), endowed with the product topology of
the Cantor space 2X through the bijection A 7→ χA, we can calculate the Borel
complexity of I.

The research of the first and the second author was partially supported by PAPIIT grant
IN101608 and CONACYT grant 80355.

The second author was supported by CONACYT scholarship 180319 and partially supported
by PAPIIT grant IN108810-1.
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1. Comparison Game Order

Definition 1.1. Let I and J be ideals on ω. The Comparison Game for I and J

denoted by G(I, J) is defined as follows: In step n, Player I chooses an element In
of I and Player II chooses an element Jn of J. Player II wins if

⋃

n In ∈ I if and
only if

⋃

n Jn ∈ J; otherwise, Player I wins.

Comparison game induces an order between ideals on ω.

Definition 1.2. Let I and J be ideals on ω. We say I ⊑ J if Player II has a
winning strategy in the comparison game G(I, J). We say that I ≃ J if I ⊑ J and
J ⊑ I.

Let us note that the relation ⊑ is reflexive and transitive, but not antisymmet-
ric; and the relation ≃ is an equivalence relation.

First, we will prove that the comparison game among Borel ideals is deter-
mined. To that end we define the following game

Definition 1.3. The game G′(I, J) is defined for ideals I and J on ω as follows:
In step n Player I chooses a natural number kn and Player II chooses a natural
number ln. Player II wins if {kn : n < ω} ∈ I if and only if {ln : n < ω} ∈ J.

Let us note that by defining a set X̃ = {x ∈ ωω : rng(x) ∈ X} for a subset

X of P(ω), we have that game G′(I, J) is equivalent to the Wadge game W (̃I, J̃)
(see [3]).

Theorem 1.4. Player I has a winning strategy in G(I, J) if and only if Player I

has a winning strategy in G′(I, J), and the same for Player II.

Proof: First, let us assume that Player I has a winning strategy σ on the game
G(I, J), and take a bijective function f from ω onto ω×ω such that if f(n) = 〈k, l〉
then max{k, l} ≤ n. A winning strategy for Player I in G′(I, J) can be described
by playing in parallel the game G(I, J). In step 0, Player I plays the first element
k0 of I0, where I0 = σ(∅). If in the first n-many steps the players played a
sequence 〈k0, l0, . . . , kn, ln〉 in the game G′(I, J), and attached to this sequence,
we consider the corresponding sequence 〈I0, {l0}, I1, {l1}, . . . , In, {ln}〉 in the game
G(I, J) according to σ, then, by taking kn+1 as the k-th element of Il, where
f(n+ 1) = 〈k, l〉, (if it exists, and kn+1 = 0 if not), we have defined the winning
strategy for Player I. This is true since

⋃

n<ω In ⊆ {kn : n < ω} = {0} ∪
⋃

n In
and the sequence 〈I0, {l0}, I1, {l1}, . . . 〉 follows a winning strategy for Player I in
G(I, J), that is {kn : n < ω} ∈ I if and only if {ln : n < ω} /∈ J.

On the other hand, let us assume that Player I has a winning strategy τ in
G′(I, J). In step 0, Player I plays {k0}, where k0 = τ(∅), and in step n+1 Player I
plays {kn+1} where kn+1 is the answer given by Player I in G′(I, J) following τ
when Player II has played the l-th element ln+1 of Jk where f(n + 1) = 〈k, l〉,
if Jk has at least l elements, and 0 if not. Then,

⋃

n{kn} ∈ I if and only if
{kn : n < ω} ∈ I if and only if

⋃

n Jn = {0} ∪ {ln : n < ω} /∈ J.
Analogously it can be proved that Player II has a winning strategy in G(I, J)

if and only if Player II has a winning strategy in G′(I, J). �
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By the previous theorem we can conclude that I ⊑ J if and only if Ĩ ≤W J̃.
As the Wadge order is well founded (Theorem 21.15 in [3]), so is the comparison
game order, which is also “almost linear”.

Lemma 1.5. If I, J and K are Borel ideals, I 6⊑ J and J 6⊑ K then K ⊑ I.

Proof: The hypothesis means that Player I has a winning strategy in games
G(I, J) and G(J,K). Then Player II is going to follow those strategies. First, in
both games G(I, J) and G(J,K), Player I follows her own strategies, producing I0
and J0. Given the first choice K0 of Player I in G(K, I), let us consider K0 as
the answer of Player II in G(J,K), and then let J1 be the answer of Player I in
the same game, given by her winning strategy. Let us consider J1 as the answer
of Player II in G(I, J) and let I1 be the answer of Player I given by her winning
strategy and then I1 will be the answer of Player II in G(K, I). Let us suppose
that in step n, Player I chooses a set Kn. That set can be considered as the
answer of Player II in G(J,K) for the sequence 〈J0,K0, J1, . . . , Jn〉, and then the
winning strategy for Player I in this game makes her choose a set Jn+1. Such
set Jn+1 can be considered as the answer of Player II in G(I, J) for the sequence
〈I0, J1, I1, . . . , In〉 and then the winning strategy for Player I makes her choose
a set In+1. Such set will be what Player II plays in G(K, I) in step n. Hence,
since the sequences 〈J0,K0, J1,K1, . . . 〉 and 〈I0, J1, I1, J2, . . . 〉 follow the winning
strategies for Player I in G(J,K) and G(I, J) respectively, we have that

⋃

n Jn ∈ J

if and only if
⋃

n Kn /∈ K, and
⋃

n≥1 Jn ∈ J if and only if
⋃

n In /∈ I and then we
are done. �

An immediate consequence of the previous lemma is that if we have two in-
comparable ideals then every other ideal has the same order relation with both
ideals of the incomparable pair.

Corollary 1.6. Let I and J be two ⊑-incomparable ideals. Then, for any ideal K

on ω which is not ⊑-equivalent to I nor J, (K ⊑ I iff K ⊑ J) or (I ⊑ K iff J ⊑ K).
�

The next lemma shows that the order ⊑ “almost” respects Borel complexities.

Proposition 1.7. If I and J are Borel ideals, I ⊑ J and I is Σα then J is Σα+1. �

Proof: It suffices to show that if I is a Σ0
α (respectively Π0

α) ideal then Ĩ is
a Σ0

α+1 (resp. Π0
α+1) set. Define a function rngn : ωω → P(ω) by rngn(x) =

{x(k) : k < n} for all x ∈ ωω. Note that rngn is a continuous function and
rng(x) = limn→∞ rngn(x) for all x ∈ ωω. Hence, preimages of clopen sets under
rng are ∆0

2 sets, and inductively we can get the result. �

Another consequence is that comparison game order is at least as long as the
Borel hierarchy.

Corollary 1.8. • The game G(I, J) is determined for every pair I, J of Borel
ideals.

• The order ⊑ is well-founded.
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• The equivalence classes of ≃ are unions of “intervals” of Wadge degrees

of ideals.

• There are uncountably many ≃-classes.

Question 1.9. Is the order ⊑ linear (a well order)? Are there two Borel ideals

which are ⊑-equivalent, but one is Σα while the other is not?

2. Fσ-ideals in the comparison game order

The ideal Fin is below all ideals in the ⊑-order. We will show that the equiv-
alence class of Fin consists exactly of Fσ-ideals. In the process we give a combi-
natorial characterization of Fσ-ideals as exactly those Borel ideals which satisfy
the P+(tree)-property.

Proposition 2.1. Let J be an ideal on ω. Then Fin ⊑ J.

Proof: A winning strategy for Player II in G(Fin, J) is the following. Player II
answers the initial interval Jn = [0,max(

⋃

i≤n Ii)], given that Ii, (i ≤ n) are the

finite sets played by Player I until step n. Then,
⋃

n In ∈ Fin implies
⋃

n Jn is
a finite set and then an element of J. On the other hand, if

⋃

n In /∈ Fin then
⋃

n Jn = ω ∈ J
+. �

Remark 2.2. If I is an ideal on ω then I ⊑ Fin if and only if Player II has a
winning strategy in the game G′′(I) defined as follows: In step n, Player I chooses
an element In of I and Player II chooses a natural number kn. Player II wins if
⋃

n In ∈ I if and only if the sequence {kn : n < ω} is bounded.

To see this, note that if Player II has a winning strategy in G(I,Fin) then in
step n, Player II of G′′(I) plays kn = maxJn, where Jn is the finite set played
by Player II following a fixed winning strategy for her in G(I,Fin), keeping the
same play by Player I. On the other hand, the winning strategy for Player II in
G(I,Fin) consists in to play {kn} in step n, where kn is the answer given in step n
for a fixed winning strategy for Player II in G′′(I).

Dealing with Fσ ideals, the following theorem is useful. A lower semicontinuous

submeasure for ω (lscsm) is a function ϕ : P(ω) → [0,∞] such that (1) ϕ(∅) = 0,
(2) ϕ(A) ≤ ϕ(B) if A ⊆ B, (3) ϕ(A ∪ B) ≤ ϕ(A) + ϕ(B) and (4) ϕ(A) =
limn→∞ ϕ(A ∩ [0, n]). If ϕ is a lscsm then Fin(ϕ) = {A ⊆ ω : ϕ(A) < ∞} is an
Fσ-ideal, and moreover:

Theorem 2.3 (Mazur [5]). For each Fσ-ideal I there is a lscsm ϕ such that

I = Fin(ϕ).

Using Mazur’s theorem we can prove that all Fσ-ideals are equivalent.

Lemma 2.4. If I is an Fσ-ideal then I ⊑ Fin.

Proof: Let ϕ be a lscsm such that I = Fin(ϕ). Let us play the game G′′(I). In
step n Player II plays kn, the minimal k ∈ ω such that ϕ(

⋃

j≤n Ij) < k. Then

ϕ(
⋃

n In) < ∞ if and only if {kn : n < ω} is bounded. �
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The definition of a P+(tree)-ideal is taken from [4].

Definition 2.5 (Laflamme and Leary [4]). Let X be a set of infinite subsets of ω.
A tree T ⊆ ([ω]<ω)<ω is an X -tree of finite sets if for each s ∈ T there is an
Xs ∈ X such that saa ∈ T for each a ∈ [Xs]

<ω.
An ideal I on ω is a P+(tree)-ideal if every I

+-tree of finite sets has a branch whose
union is in I

+.

Laflamme and Leary proved that an ideal I is not P+(tree) if and only if Player I
has a winning strategy in the following game H(I): In step n, Player I chooses
an I-positive set Xn and Player II chooses a finite set Fn ⊆ Xn. Player II wins if
⋃

n<ω Fn ∈ I
+.

In fact, this game characterizes Fσ-ideals, as the following theorem shows:

Theorem 2.6. Let I be a Borel ideal. Then I is a P+(tree)-ideal if and only if I

is an Fσ-ideal.

Proof: The theorem follows immediately from the following claim and Borel
determinacy.

Claim 2.7. Let I be a Borel ideal. Then, Player II has a winning strategy in

H(I) if and only if I is an Fσ-ideal.

Proof: If I is an Fσ ideal then there is a lscsm ϕ such that I = Fin(ϕ). In
step n, II plays a finite subset Fn of Xn with ϕ(Fn) ≥ n. That is possible since
ϕ(Xn) = ∞.

On the other hand, we will prove that Player I has a winning strategy in H(I)
if I is not an Fσ ideal. Recall the following result (Theorem 21.22 in [3]).

Theorem 2.8 (Kechris-Louveau-Woodin). Let X be a Polish space, let A ⊆ X
be analytic, and let B ⊆ X be arbitrary with A ∩B = ∅. Then either there is an

Fσ set K ⊆ X separating A from B or there is a perfect set C ⊆ A∪B such that

C ∩B is countable dense in C. �

By 2.8, there is a perfect set C ⊆ P(ω) such that C ∩ I
+ is countable dense

in C. In the Banach-Mazur game played inside C (denoted by G0)
1 in C ∩ I

+,
Player I has a winning strategy, since I is comeager in C. Now, we will prove
that if Player I has a winning strategy in G0(C ∩ I

+) then Player I has a winning
strategy in H(I). Let σ be a winning strategy for Player I in G0(C∩ I

+). In step 0,
let τ(∅) = X0 ∈ V0 = σ(∅) be an I-positive set. Such set exists since V0 is an open
non-empty subset of C and I

+ ∩ C is dense in C. Let us assume that we have
defined our strategy τ until step n together with a sequence of σ-legal positions.
We will define it for step n+1. Given an answer F ⊆ Xn of Player II for a τ -legal
sequence 〈X0, F0, . . . , Xn−1, Fn−1, Xn〉, σ considers F as the clopen set U of all

1Banach-Mazur game G0(C∩I
+) is defined as follows: In step 0, Player I chooses a nonempty

open set V0 and Player II chooses a nonempty open subset U0 of V0. In step n+1, Player I chooses
a nonempty open set Vn+1 ⊆ Un and Player II chooses a nonempty open set Un+1 ⊆ Vn+1.

Player II wins if
⋂

n<ω Un =
⋂

n<ω Vn ⊆ I
+.
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subsets A of ω such that A∩(max(F )+1) = F , and if 〈V0, U0, . . . , Vn−1, Un−1, Vn〉
is the σ-legal position associated to 〈X0, F0, . . . , Xn−1, Fn−1, Xn〉, then U = Un,
Vn+1 = σ(〈V0, U0, . . . , Vn−1, Un−1, Vn, Un〉) and let (by density of I+ in C)

τ(〈X0, F0, . . . , Xn−1, Fn−1, Xn, F 〉) = Xn+1 ∈ Vn

be an I-positive set. Finally, note that τ is a winning strategy for I, since for
every τ -legal run of H(I) 〈X0, F0, X1, F1, . . . 〉,

⋃

n<ω Fn ⊆
⋂

n<ω Un ∈ I. �

Returning to the comparison game with the ideal Fin as Player II we have the
following result.

Lemma 2.9. If I is not a P+(tree)-ideal then Player I has a winning strategy

in G′′(I).

Proof: Let T be an I
+-tree of finite sets with all branches in I. In her first

few steps, Player I plays in the increasing order the elements of
⋃

succT (∅) until
Player II increases her answer. If in step n, Player II chooses a number bigger than
all of her previous plays then Player I collects the (finite) set F0 of answers given
by her until the current step and then she begins taking elements of succT (F0) in
the increasing order until the Player II increases her choice. Hence, if eventually
Player II does not increase her picks then Player I will choose every element of
succT (t) for some t ∈ T and then he will collect an I-positive set. In the other
case Player II will collect a set which follows a branch of T and then its union
will be in I. �

Theorem 2.10. For any Borel ideal I, I ≃ Fin if and only if I is Fσ.

Proof: It follows from two facts: If I is a Borel ideal then G′′(I) is determined,
and by Theorem 2.6, J is a P+(tree)-ideal if and only if J is an Fσ-ideal, for all
Borel ideal J. �

3. Fσδ-ideals in the Comparison Game Order

We now define an ideal I0 which is the minimal ideal I such that there is an
I
+-tree of finite sets which does not have an I-positive branch, i.e. which is not a
P+(tree)-ideal. Let us denote Af = {f ↾ n : n < ω} for a given f ∈ 2ω.

Definition 3.1. The ideal I0 is the ideal on 2<ω generated by the family of sets
Af where f ∈ 2ω is not eventually zero.

Theorem 3.2. If I is a Borel ideal which is not Fσ then I0 ⊑ I.

Proof: By the Kechris-Louveau-Woodin theorem 2.8 there is a Cantor set C ⊆
P(ω) such that D = C \ I is countable dense in C. Let T ⊆ 2<ω be a perfect
tree such that [T ] = C. Since D is a countable dense subset of 2ω, there is a
homeomorphism ϕ : 2ω → C such that if F = {f ∈ 2ω : (∀∞n)f(n) = 0} then
ϕ′′F = D. Such ϕ induces an embedding2 Φ : 2<ω → [ω]<ω which is monotone

2The embedding Φ is defined so that for each s ∈ 2<ω , the finite set Φ(s) determines the
clopen subset ϕ′′〈s〉 of C.
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(i.e. s ⊆ t implies Φ(s) ⊆ Φ(t)) and such that
⋃

n Φ(f ↾ n) ∈ I if and only if f is
not eventually zero.

Now we describe a winning strategy for Player II in G(I0, I). In step n, if
Player I plays In ∈ I0 then Player II plays Jn = [0, kn] ∪

⋃

{Φ(s) : (∃k ≤ n)(∃t ∈
Ik)(s ⊆ t)}, where kn is the maximal cardinality of an antichain in

⋃

k≤n Ik.

We argue why this is a winning strategy for Player II. If I =
⋃

n In ∈ I0 then
there are m < ω and f0, . . . , fm ∈ 2ω \ F such that I ⊆

⋃

j≤m Afj . Then m is an

upper bound for kn and
⋃

{Φ(s) : (∃k < ω)(∃t ∈ Ik)(s ⊆ t)} ⊆
⋃

j≤m

⋃

n Φ(fj ↾

n) ∈ I, and then
⋃

n Jn ∈ I. On the other hand, if I /∈ I0 then either 〈kn : n < ω〉
is unbounded, and then J =

⋃

n Jn /∈ I, or there is an eventually zero function f
such that f ↾ n ∈ I for infinitely many n < ω, and in that case,

⋃

n

{Φ(s) : (∃t ∈ In)s ⊆ t} ⊇
⋃

n

{Φ(f ↾ n) : n < ω} /∈ I. �

The ideal I0 is Fσδ . Consider another Fσδ-ideal.

∅ × Fin = {A ⊆ ω × ω : (∀n)(∃m)(∀k)((n, k) ∈ A → k ≤ m)}.

Theorem 3.3.

∅ × Fin 6⊑ I0.

Proof: For every 1 ≤ n < ω we define a game Gn as follows. In step k, Player I
picks a finite subset Ik of ω×ω and Player II picks an antichain Jk of cardinality
n in I0, and such that for all i < k and all t in Ji there is a unique s ∈ Jk such that
s ⊇ t. Player II wins if

⋃

n In ∈ ∅×Fin if and only if
⋃

n Jn ∈ I0. Inductively, we
will prove that Player I has a winning strategy in game Gn, for all n, having done
that, we will show how this fact implies that Player I has a winning strategy in
G(∅ × Fin, I0).

Claim 3.4. Player I has a winning strategy in the game Gn, for all n.

Proof of Claim: First we prove that Player I has a winning strategy in the
game G1. In step 0, Player I plays {(0, 0)}. In step k, define N(k) = min{

∑

h(l) :
h is a maximal sequence in Jk ∧ l ∈ dom(h)}, and Player I just plays a doubleton
with the form {(0, N(k)), (nk,mk)}, where n0 = m0 = 0; (1) if Jk ) Jk−1 and
there is m ∈ Jk \ Jk−1 such that Jk(m) = 1 then nk = nk−1 and mk = mk−1 + 1;
and (2) nk = nk−1 + 1 and mk = mk+1 otherwise.

We show why is this a winning strategy for Player I. If in some step k, Player II
plays an infinite set Jk then she will be playing along the branch

⋃

Jk and then
Player I know that she has won because she just will fill the column {0}×ω if

⋃

Jk
is not eventually zero, or the raw {k} × ω otherwise. Without loss of generality,
let us assume that Player II plays finite increasing sets. Then if there is K such
that Jk = JK for all k ≥ K then

⋃

n Jn ∈ I0 but Player I will fill the column
{mK} × (ω \ nK) for K minimal; and if Player II increases the length of Jk for
infinitely many steps k then, if there is K such that the increasing of Jk is just
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with 0’s then column {0} × N(k) will not increase and choices of Player I will
follow a horizontal line; but if Player II increases the length of Jk and she adds
a new 1 in infinitely many steps then Player I will make the column {0} ×N(k)
increase to {0} × ω and then

⋃

n In /∈ ∅ × Fin.
Inductively assume that Player I has a winning strategy in Gn and let us prove

that she has a winning strategy in Gn+1. Fix a partition {Xj
i : j ≤ n ∧ i < ω} of

ω \ {0}. In step 0, Player I plays ∅ and then, assume that Player II has played
an antichain Jk of cardinality n + 1 (we can assume this by identifying Jk with
its maximal elements. Let us enumerate this antichain as {a0r : r ≤ n} and for
each r ≤ n, we enumerate Jk = {akr : r ≤ n} in such way that akr ⊇ a0r for all
r ≤ n. Then, Player I will play simultaneously the game Gn in Xr

i × ω for some
i (depending of k and r), where answers of Player I are given by the winning
strategy for her when Player II plays Jk \a

k
r ; and following this rule: If akr ) ak−1

r

and Player I is playing in the copy Xr
i ×ω then she abandons this copy and begins

playing Gn in Xr
i+1 × ω; and if not, she still playing in the same Xr

i × ω, i.e.,
i(k, r) = i(k − 1, r). In both cases Player I adds the column {0} × N(k) (recall
N(k) was defined two paragraphs above). Now we prove that this is a winning
strategy for Player I.

If all the sequences akr are eventually increasing then we have two cases:

(1) For each k ≤ n the sequence
⋃

r a
k
r is not eventually-zero. Then, Player I

will increase the column {0} ×N(k) to {0} × ω, making
⋃

n Jn /∈ ∅ × Fin.

(2) There is k ≤ n such that
⋃

r a
k
r is an eventually-zero branch. Then, the

column {0} ×N(k) will not increase and in all the pieces of the partition will be
played the game Gn and since all increase, all pieces are eventually abandoned
and then,

⋃

n Jn ∈ ∅ × Fin.

If for some k, the sequence akr does not increase then Player I will be playing
the game Gn and since she has a winning strategy in this game, we are done,
because the column {0} ×N(k) will not increase. �

Let {Xr : r < ω} be a partition of ω \ {0} in infinite sets. The main idea is
based on the following trick: Player I is going to play the game Gn but in Xn×ω
instead of ω × ω. In step 0, Player I plays ∅ and in step k > 0, let M(k) be
the maximal cardinality of an antichain in

⋃

i<k Ji. If M(k) = M(k − 1) then
Player I has to play the game GM(k) in XM(k−1) × ω instead of ω × ω, and if
M(k) > M(k− 1), then Player I has to abandon what he has played and begin a
new game of GM(k) inside the copy XM(k) ×ω, and in both cases, Player I has to
add {minXM(k)} ×N(k) to the sets defined above.

If Player II makes M(k) increase in infinitely many steps, then
⋃

n Jn /∈ I0, but
Player I will abandon all pieces where he played, and then

⋃

n In ∈ ∅ × Fin.
If there is K such that M(k) = M(K) for all k > K then the winning strategy

for Player I in GM(K) makes Player I win in G(∅ × ω, I0). �

Now we give a criterion for ideals to be ⊑-below ∅ × Fin.
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Proposition 3.5. Let I be an ideal on ω. Then I ⊑ ∅×Fin if and only if Player II

has a winning strategy in the following game G′′′(I): In step n, Player I chooses
an element In of I and then Player II chooses an increasing function fn ∈ ωω.

Player II wins if
⋃

n In ∈ I if and only if the sequence {fn : n < ω} is bounded.

Proof: Let us assume that Player II has a winning strategy σ inG(I, ∅×Fin). For
every element J ∈ ∅ × Fin, let fJ : ω → ω given by fJ(n) = min{k > fJ(n− 1) :
(∀m > k) (n,m) /∈ J}. Then we describe a winning strategy for Player II in
G′′′(I) as follows: Given I0 ∈ I, let f0 be the function fσ(I0). Assume that the
legal position 〈I0, f0, . . . , In, fn〉 follows the strategy which we are defining. Then
in parallel we have a legal position 〈I0, J0, . . . , In, Jn〉 of G(I, ∅ × Fin) following
σ. Then, given In+1, define Jn+1 = σ(〈I0, J0, . . . , In, Jn, In+1〉) and the function
fn+1 = fJn+1

. It is easy to check that this is a winning strategy for Player II in
G′′′(I). On the other hand, for any function f ∈ ωω define Jf = {(n,m) ∈ ω×ω :
m ≤ f(n)}. Analogous to first part, Player II in G(I, ∅×Fin) has plays Jf where
f is the answer given by Player II in G′′′(I). �

Ilijas Farah asked in [2] if for every Fσδ-ideal I there is a family of compact
hereditary sets {Cn : n < ω} such that

I = {A ⊆ ω : (∀n < ω)(∃m < ω)(A \ [0,m) ∈ Cn)}.

We will say I is a Farah ideal if I fulfils that property. Note that every Farah ideal
I is an Fσδ ideal. The following is a simple observation.

Proposition 3.6. Let I be an ideal on ω. Then, I is Farah if and only if there

is a sequence {Fn : n < ω} of hereditary Fσ-sets closed under finite changes such

that I =
⋂

n Fn.

Proof: Let 〈Cn : n < ω〉 be a family of compact hereditary sets such that
I = {A ⊆ ω : (∀n)(∃k)(A \ k ∈ Cn)}. For any n, define Fn as the closure
of Cn under finite changes. It is clear that Fn is hereditary, Fσ, closed under
finite changes, and contains I. If A ∈ Fn then there is a finite set F such that
A △ F ∈ Cn and by taking an adequate k > max(F ) we have that A \ k ∈ Cn.

Now, let {Fn : n < ω} be an increasing sequence of hereditary Fσ-sets closed
under finite changes such that I =

⋂

n Fn. Let us write Fn =
⋃

k E
n
k where

〈En
k : k < ω〉 is an increasing sequence of closed sets. We can assume that each

En
k is a hereditary set, and we can define

Ẽn
k = {A \ (k + 1) ∪ {k} : A ∈ En

k }

and Cn = {∅} ∪
⋃

k Ẽ
n
k . Note that each Cn is a closed hereditary set, and if

A \ k ∈ Cn we can assume k ∈ A and then A ∈ Ẽn
k ⊆ Fn, for all n. Finally,

if A is an infinite set in I (the finite case is trivial) then for each n take k such
that A \ k ∈ En

k and k ∈ A (this is possible since the En
k is an increasing family).

Hence A \ k ∈ Cn. �
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We denote by nwd the ideal of all nowhere dense subsets of the set of rational
numbers Q.

Example 3.7. The ideal nwd is Farah.

Proof: Let {Un : n < ω} be a base of the topology of Q, and define Fn = {A ⊆
Q : (∃m)(Um ⊆ Un ∧ A ∩ Um = ∅)}. Note that nwd =

⋂

n Fn and each Fn is Fσ

hereditary and closed under finite changes. �

We refine Proposition 3.6 as follows.

Theorem 3.8. Let I be an ideal on ω. Then, I is Farah if and only if there is a

sequence {Fn : n < ω} of Fσ sets closed under finite changes such that I =
⋂

n Fn.

Proof: Without loss of generality, we can assume that every Fn is meager, be-
cause if Fn is non-meager then there is a non-empty clopen set contained in Fn

and by closedness under finite changes, Fn = 2ω.
Sufficiency is a consequence of Proposition 3.6, and by the same result, it will

be enough to prove that if F is a meager Fσ-set closed under finite changes and
containing I, then there is a hereditary Fσ-set E such that I ⊆ E ⊆ F , since
the closure of E under finite changes would be the hereditary closed under finite
changes wanted. Let us consider the game H defined so that in step k, Player I
chooses a set Bk /∈ F and Player II picks a finite subset ak of Bk. Player I wins
if
⋃

k ak ∈ I. Note that H is determined since I is Borel.

Claim 3.9. Player II has a winning strategy in H .

Proof of claim: Let {En : n < ω} be an increasing sequence of closed sets such
that F =

⋃

n En and for each n, let Tn be a pruned tree such that En = [Tn].
Since each En is a nowhere dense set, in step k, if Player I plays Bk then there is
mk < ω such that mk−1 < mk (m−1 = 0) and χBk

↾ mk /∈ Tk. Then, Player II
plays ak = Bk ∩mk. It is clear that

⋃

k ak /∈ F and then
⋃

k ak /∈ I. �

It is very easy to see that

Claim 3.10. Player II has a winning strategy inH if there is a tree T ⊆ ([ω]<ω)<ω

such that (a) for all A /∈ F and all t ∈ T there is a ∈ succT (t) such that a ⊆ A
and (b)

⋃

n f(n) ∈ I
+ for all f ∈ [T ]. �

Hence, by defining Ct = {A ⊆ ω : (∀a ∈ succT (t))(a * A)}, for all t ∈ T , we
have immediately that Ct is closed and hereditary and I ⊆

⋃

t∈T Ct. Finally, (a)
is equivalent to

⋃

t∈T Ct ⊆ F . Hence,
⋃

t Ct is the hereditary Fσ-set required. �

By Theorem 3.6 it is clear that any Farah ideal satisfies the following.

Definition 3.11. An ideal I is weakly Farah if there is a sequence 〈Fn : n < ω〉
of hereditary Fσ-sets such that I =

⋂

n Fn.

Without loss of generality, the sequence in the previous definition is decreasing,
and it is clear that any weakly Farah ideal is Fσδ .

Theorem 3.12. If I is a weakly Farah ideal then I ⊑ ∅ × Fin.
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Proof: Let {Fn : n < ω} be a family of hereditary Fσ-sets such that I =
⋂

n Fn.
Without loss of generality, we can assume that for any n, Fn =

⋃

k E
n
k where

(En
k )k is an increasing sequence of closed hereditary sets. Then, for any A ⊆ ω

A ∈ I iff (∃fA ∈ ωω)(∀k, n < ω)(A /∈ En
k ↔ k < fA(n)).

Hence, playing the game G′′′(I), for any step n, Player II plays f⋃
j<n

Ij . So, if

I =
⋃

n<ω In ∈ I then fI bounds all the fIn functions; and if I /∈ I then there is

j such that I /∈ Ej
k for all k < ω and then, 〈fIn(j) : n < ω〉 increases to infinity,

because in other case, there were k such that In ∈ Ej
k for all n and I /∈ Ej

k,

contradicting the closedness of Ej
k. �

A positive answer to Farah’s question would imply that every Fσδ-ideal is ⊑-
below ∅ × Fin.

Recall the following characterization of analytic P-ideals.

Theorem 3.13 (Solecki [7]). If I is an analytic P-ideal then there is a lscsm ϕ
such that I = Exh(ϕ) = {A ⊆ ω : limn→∞ ϕ(A \ [n,∞)) = 0}.

Note that by Solecki’s theorem, every analytic P-ideal is a Farah ideal, and
then, if I is an analytic P-ideal then I ⊑ ∅ × Fin. Concerning analytic P-ideals,
every one of them is either equivalent with Fin (i.e., is Fσ) or equivalent with
∅ × Fin, i.e., the class of P-ideals “skips” the intermediate class of I0.

Theorem 3.14. Let I be an analytic P-ideal. Then either I ≃ Fin or I ≃ ∅×Fin.

Proof: Let ϕ be a lscsm such that I = Exh(ϕ). Consider two cases:

Case 1. There is ε > 0 such that for any set X , ϕ(X) < ε implies X ∈ I. Note
than in such case I is an Fσ ideal, because C = {A ⊆ ω : ϕ(X) ≤ ε} is a closed
set and I =

⋃

n{A ⊆ ω : A \ n ∈ C}.

Case 2. For all ε > 0 there is an I-positive set X such that ϕ(X) < ε. We will
use the following result, which is a known consequence of Jalali-Naini–Talagrand
theorem (see [1]).

Lemma 3.15 (Disjoint Refinement Lemma for Definable Ideals, see [6]). If I

is a hereditarily meager ideal and {Xm : m < ω} is a family of I-positive sets

then there is a pairwise disjoint family {Ym : m < ω} of I-positive sets such that

Ym ⊆ Xm for all m < ω. �

Take a family Ym of I-positive sets such that ϕ(Ym) ≤ 2−m and by the Disjoint
Refinement Lemma for hereditary meagre ideals, there is a disjoint family of
positive sets {Xm : m < ω} such that ϕ(Xm) ≤ 2−m. Let {xm

k : k < ω}
be an enumeration of Xm. Let us describe a winning strategy for Player II in
G(∅ × Fin, I). In step n, if Player I plays In, we consider the function fn given
by fn(i) = max{0} ∪ {j : (∃l ≤ n)((i, j) ∈ Il)} and then Player II plays Jn =
{xi

j : j ≤ fn(i)}. Hence, if I =
⋃

n In ∈ I then the family 〈fn : n < ω〉 is bounded
by a function f , and then J =

⋃

n Jn intersects each Xn in a finite set Fn which
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has submeasure smaller than 2−n and so, J is a ϕ-exhaustive set. On the other
hand, if I /∈ ∅×Fin then there is m such that fn(m) increases to infinity, and so,
J ∩Xm = Xm ∈ I

+. �

Recall the asymptotical density zero ideal Z is defined by

Z =

{

A ⊆ ω : lim
n→∞

|A ∩ [0, n)|

n
= 0

}

and (by its definition) is an analytic P-ideal.

Remark 3.16. The following ideals on ω are comparison game equivalent:

(1) Z,
(2) nwd, and
(3) ∅ × Fin.

Proof: (1) ≃ (3) use Z is an analytic P-ideal which is not Fσ.
(2) ⊑ (3) use nwd is a Farah ideal.
(3) ⊑ (2) Let {Vn : n < ω} be a sequence of pairwise disjoint open subsets of

Q and for each n, let {qnk : k < ω} be an enumeration of Vn. Let us play the
G(∅ × Fin,nwd) game. In step n, if Player I has played In ∈ ∅ × Fin, take a
function f ∈ ωω such that for all k,m, (k,m) ∈ In implies m ≤ f(k), and then
Player II must play Jn = {qks : s < f(k) ∧ k < ω}. Jn is a nowhere dense subset
of Q since it intersects each Vn in a finite set, and if I =

⋃

n In ∈ ∅ × Fin then
J =

⋃

n Jn intersects each Vn in a finite set, and then, J ∈ nwd; and if for some k,

I ∩ ({k} × ω) is infinite, then J will contain Vk, and then J ∈ nwd+. �

4. Final remarks

Recall that Fin×Fin is the ideal on ω× ω generated by the columns {n}×ω
and the sets {(n,m) : m < f(n)}, for f ∈ ωω. We finally will show that the
ideal Fin × Fin belongs to a higher class than ∅ × Fin. It is easy to see that
∅ × Fin ⊑ Fin× Fin.

Proposition 4.1. ∅ × Fin ⊑ Fin× Fin.

Proof: Let {Xn : n < ω} be an infinite partition of ω in infinite pieces. Given I
in ∅ × Fin, we define an element JI of ∅ × Fin by

JI = {(k, l) : (∃n < ω)(k ∈ Xn ∧ (n, l) ∈ I)}.

The winning strategy for Player II consists in playing JIn as an answer to a set In
played by Player I in step n. If I =

⋃

n In ∈ ∅×Fin then J =
⋃

n JIn ∈ Fin×Fin,
and if for some k < ω, I ∩ ({k} × ω) is infinite then J ∩ ({l} × ω) will be infinite
for all l ∈ Xk, and so J /∈ Fin× Fin. �

Theorem 4.2. Fin× Fin 6⊑ ∅ × Fin.
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Proof: We will describe a winning strategy for Player I in G′′′(Fin × Fin).
Without loss of generality, we can assume that Player II plays in such a way that
fk(n) ≥ fk−1(n) for all n. First, take an infinite partition {Xn : n < ω} of ω in
infinite pieces, and let {xn

r : r < ω} be an enumeration of Xn. Player I will play
just selectors of the family {Xn × ω : n < ω}. In step 0, Player I plays {(x0

r , 0) :
r < ω}. In step k, if fk = fk−1 (f−1 ≡ 0) and Jk−1 = {(xn

r ,m
n
r ) : r < ω} then

Jk+1 = {(xn
r ,m

n
r + 1) : r < ω}, and otherwise, if l = min{n : fk(n) > fk−1(n)}

then Jk+1 = {(xn
r ,m

n
r + 1) : r ≤ l} ∪ {(xn

r+1,m
n
r ) : r > l}.

If there is N such that {fk(N) : k < ω} increases infinitely often then
⋃

n Jn ∈ I

since all but finitely many pieces Xr are “turning to the right” infinitely often
and if {fk : k < ω} is bounded by a function f then for each r, there are k
and N such that Player I will be “filling” the column {xk

r} × (ω \ N), making
⋃

n Jn /∈ Fin× Fin. �

Recall that a function f from I to J is a Tukey function if for each A ∈ J there
is B ∈ I such that I ⊆ B if f(I) ⊆ A. Tukey order is defined by I ≤T J if there
is a Tukey function from I to J; and let us denote by I ≤MT J when there is a
monotone (with respect to inclusion) Tukey function from I to J. The order ⊑
refines the monotone Tukey order.

Lemma 4.3. If I ≤MT J then I ⊑ J.

Proof: Let f : I → J be a monotone Tukey function. Then Player II only has
to answer f(In) for any In given by Player I. If

⋃

n In ∈ I then by monotonicity,
⋃

n f(In) ⊆ f(
⋃

n In) ∈ J. If
⋃

n In /∈ I then by Tukeyness
⋃

n f(In) /∈ J. �

Note that the Tukey and monotone Tukey orders are quite different: There
is a Tukey-maximal ideal among all ideals, which is Fσ . On the other hand, by
Lemma 4.3 and Proposition 1.7, if I ≤MT J and I is Fσ then J is Fσδσ .

5. Questions

(1) Are there exactly two classes of Fσδ non-Fσ-ideals?
(2) How many classes of Fσδσ-ideals are there?
(3) Is every Fσδ-ideal weakly Farah? Is every weakly Farah a Farah ideal?

Acknowledgments. We would like to thank the anonymous referee for careful
reading of the manuscript and for refuting one of our conjectures.
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