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Curvature bounds for neighborhoods of self-similar sets

Steffen Winter

Abstract. In some recent work, fractal curvatures C
f
k
(F ) and fractal curvature

measures C
f
k
(F, ·), k = 0, . . . , d, have been determined for all self-similar sets F

in Rd, for which the parallel neighborhoods satisfy a certain regularity condi-
tion and a certain rather technical curvature bound. The regularity condition
is conjectured to be always satisfied, while the curvature bound has recently
been shown to fail in some concrete examples. As a step towards a better un-
derstanding of its meaning, we discuss several equivalent formulations of the
curvature bound condition and also a very natural technically simpler condition
which turns out to be stronger. These reformulations show that the validity of
this condition does not depend on the choice of the open set and the constant
R appearing in the condition and allow to discuss some concrete examples of
self-similar sets. In particular, it is shown that the class of sets satisfying the

curvature bound condition is strictly larger than the class of sets satisfying the
assumption of polyconvexity used in earlier results.

Keywords: self-similar set, parallel set, curvature measures, fractal curvatures,
Minkowski content, Minkowski dimension, regularity condition, curvature bound
condition

Classification: Primary 28A75, 28A80; Secondary 28A78, 53C65

1. Introduction

Total curvatures and curvature measures are well known for certain classes of
sets in Euclidean space Rd including convex bodies, differentiable submanifolds
with boundary, sets with positive reach and certain unions of such sets. In convex
geometry, total curvatures are better known as intrinsic volumes or Minkowski
functionals and in differential geometry as integrals of mean curvatures. Curva-
ture measures were introduced by Federer [4] for sets with positive reach and have
later been extended in various directions, see e.g. [1], [2], [14], [15].

In some recent work fractal counterparts — so called fractal curvatures and
fractal curvature measures — have been introduced for certain classes of self-
similar fractals, cf. [12], [16], [13], based on the following ideas: A compact (frac-
tal) set K ⊂ Rd is well approximated by its ε-parallel sets

Kε := {x ∈ R
d : dist (x,K) ≤ ε}

as ε tends to 0 (in the sense of Hausdorff metric) and for sufficiently regular sets K
the curvature measures behave nicely under such approximation. Also for singular
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sets K, the parallel sets are often regular enough to admit curvatures measures
Ck(Kε, ·). In this case fractal curvatures are explained as suitably scaled limits
of the total curvatures Ck(Kε) := Ck(Kε,R

d) and fractal curvature measures as
the corresponding weak limits of the curvature measures, as ε tends to zero.

The focus of recent work has been to establish the existence of these limits for
certain classes of (self-similar) sets. In [12], where these concepts were introduced,
the existence of fractal curvatures and fractal curvature measures was established
for self-similar sets with polyconvex parallel sets. This polyconvexity assumption
has been dropped in [16] for the fractal curvatures and in [13] for fractal curvature
measures. In the former paper, also random self-similar sets are treated. In these
papers the polyconvexity is replaced by two technical conditions. One is a regu-
larity condition on the parallel sets, which ensures that the curvature measures of
the ε-parallel sets are well defined for almost all ε (see condition RC below). This
condition is certainly weaker than the polyconvexity assumption as it is known
to be satisfied for all sets in Rd, d ≤ 3. Moreover, it is conjectured to be always
satisfied for self-similar sets satisfying the open set condition, see the discussion
below. The second condition is a bound on the curvature of Fε near certain in-
tersections of the cylinder sets of F , cf. condition CBC below. This curvature
bound condition is not very well understood. As it involves cylinder sets of F of
all scales, it is rather difficult to verify in concrete examples. But it is believed to
be satisfied for most self-similar fractals. Very recently, some self-similar sets for
which CBC does not hold have been discovered independently by Andreas Wust
and Jan Rataj, giving thus a negative answer to the question whether CBC holds
for all self-similar sets, see Example 4.10 below.

In this note we discuss the curvature bound condition in some greater detail.
We will give several equivalent reformulations of this condition. In particular, this
will allow to show that the validity of CBC does neither depend on the choice
of the open set O (a feasible set for the strong open set condition) nor on the
choice of the constant R, which appear both in the original formulation of CBC.
This removes some arbitrariness from the condition. The condition cannot be
weakened or strenghtened by making a different choice of O or R. Some of the
reformulations of CBC are also helpful when discussing examples, as they are
easier to verify. We also discuss a technically much simpler curvature bound
which involves only first level cylinder sets. This bound was a natural candidate
for an equivalent reformulation of CBC but turned out to be slightly stronger,
hence the term strong curvature bound condition (SCBC) used in the sequel.
This condition is interesting in practice, as it implies CBC and is much easier to
verify. On the other hand, it enlightens to some extent, why some knowledge of
the fine structure provided by CBC is necessary. In general, one needs to know
something about the intersections of cylinder sets at all scales. For certain ’simple’
fractals, knowledge of the first level suffices. Here ‘simple’ roughly means that
the intersections of the parallel sets of first level cylinder sets have no ‘fractal’
structure. We illustrate the results by verifying CBC for the Koch curve (using
SCBC) and for some other set for which SCBC fails. These two examples are
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sets, which do not have polyconvex parallel sets but for which CBC holds. They
show in particular, that the class of sets covered by the results in [16] and [13]
is strictly larger than the class of sets with polyconvex parallel sets considered
in [12].

The paper is organized as follows. In the next section, we collect some well
known facts about curvature measures required later on. In Section 3, we recall
the curvature bound condition and the results from [16] and [13] on the existence
of fractal curvatures and fractal curvature measures for self-similar sets. Finally, in
Sections 4 and 5, the main results are presented. Several equivalent reformulations
of CBC and their consequences are discussed in Sections 4, while SCBC is the
subject of interest in Section 5. In these sections also the examples are found.

2. Curvature measures

We denote the closure of the complement of a compact set K by K̃. A dis-

tance ε ≥ 0 is called regular for the set K if K̃ε has positive reach in the sense
of Federer [4] and the boundary ∂Kε is a Lipschitz manifold. In view of Fu
[5], in space dimensions d ≤ 3 this is fulfilled for Lebesgue almost all ε. (For
general d, a sufficient condition for this property is that ε is a regular value of
the distance function of K in the sense of Morse theory, cf. [5].) For regular ε
the Lipschitz-Killing curvature measures of order k are determined by means of
Federer’s versions for sets of positive reach:

(2.1) Ck(Kε, · ) := (−1)d−1−kCk(K̃ε, · ), k = 0, . . . , d− 1,

where the surface area (k = d−1) is included and the volume measureCd(Kε, · ) :=
λd(Kε ∩ · ) is added for completeness. For more details and some background on
singular curvature theory for fractals we refer to [12], [16].

The total curvatures of Kε are denoted by

(2.2) Ck(Kε) := Ck(Kε,R
d), k = 0, . . . , d.

We recall now the main properties of curvature measures required for our pur-
poses: By an associated Gauss-Bonnet theorem the Gauss curvature C0(Kε) co-
incides with the Euler-Poincaré characteristic χ(Kε).

The curvature measures are motion invariant , i.e.,

(2.3) Ck(g(Kε), g( · )) = Ck(Kε, · ) for any Euclidean motion g,

the k-th measure is homogeneous of degree k, i.e.,

(2.4) Ck(λKε, λ · ) = λk Ck(Kε, · ), λ > 0,

and they are locally determined , i.e.,

(2.5) Ck(Kε, · ∩G) = Ck(K
′
ε′ , · ∩G)
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for any open set G ⊂ Rd such that Kε ∩G = K ′
ε′ ∩G, where Kε and K ′

ε′ are both
parallel sets such that the closures of their complements have positive reach.

Finally, for sufficiently large distances the parallel sets are always regular and
the curvature measures may be estimated by those of a ball of almost the same
size: For any compact set K ⊂ R

d and any ε ≥ R >
√
2 diamK we have

Cvar
k (Kε) ≤ ck(K,R) εk,(2.6)

for a constant ck(K,R) independent of ε, see [16, Theorem 4.1]. Here Cvar
k (Kε, · )

denotes the total variation measure of Ck(Kr, · ) and Cvar
k (Kr) := Cvar

k (Kr,R
d)

its total mass.

3. Existence of fractal curvatures and fractal curvature measures

In this section, we briefly recall the results on fractal curvatures and fractal
curvature measures obtained in [16], [13]. For this purpose, we recall first some
concepts related to self-similar sets and give a precise formulation of the regularity
condition and the curvature bound condition.

For N ∈ N and i = 1, . . . , N , let Si : R
d → Rd be a contracting similarity with

contraction ratio 0 < ri < 1. Let F ⊂ R
d be the self-similar set generated by the

function system {S1, . . . , SN}. That is, F is the unique nonempty, compact set
invariant under the set mapping S( · ) :=

⋃
i Si( · ), cf. [7]. The set F (or, more

precisely, the system {S1, . . . , SN}) is said to satisfy the open set condition (OSC)
if there exists a non-empty, open and bounded subset O of Rd such that

⋃

i

SiO ⊆ O and SiO ∩ SjO = ∅ for i 6= j.

The strong open set condition (SOSC) holds for F (or {S1, . . . , SN}), if there exist
a set O as in the OSC which additionally satisfies O ∩ F 6= ∅. It is well known
that in Rd OSC and SOSC are equivalent, cf. [11], i.e., for F satisfying OSC, there
exists always such a set O with O ∩ F 6= ∅.

The unique solution s = D of the equation
∑N

i=1 r
s
i = 1 is called the similarity

dimension of F . It is well known that for self-similar sets F satisfying OSC, D
coincides with Minkowski and Hausdorff dimension of F . Further, a self-similar
set F is called arithmetic (or lattice), if there exists some number h > 0 such that
− ln ri ∈ hZ for i = 1, . . . , N , i.e. if {− ln r1, . . . ,− ln rN} generates a discrete
subgroup of R. Otherwise F is called non-arithmetic (or non-lattice).

Let Σ∗ :=
⋃∞

j=0{1, . . . , N}j be the set of all finite words over the alphabet

{1, . . . , N} including the emtpy word. For ω = ω1 . . . ωn ∈ Σ∗ we denote by |ω|
the length of ω (i.e., |ω| = n) and by ω|k := ω1 . . . ωk the subword of the first
k ≤ n letters. We abbreviate rω := rω1 . . . rωn

and Sω := Sω1 ◦ . . . ◦ Sωn
.

Throughout we assume that F is a self-similar set in Rd satisfying OSC and that
D denotes its similarity dimension. Furthermore, we assume that the following
regularity condition is satisfied:

(RC) Almost all ε ∈ (0,
√
2diam (F )) are regular for F .
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That is, the set M of irregular values is a Lebesgue null set. This condition is
always satisfied for subsets of Rd, d ≤ 3, cf. Section 2. For self-similar sets in
Rd satisfying OSC, it is conjectured to be true for all d. Note that there are no
irregular values ε ≥

√
2diam (F ), cf. for instance [16, Theorem 4.1].

In order to be able to formulate the curvature bound condition (CBC), we need
to fix some constant R = R(F ) for F such that

(3.1) R >
√
2 diamF

(to be able to apply (2.6)) and some open set O = O(F ) satisfying SOSC. Note
that the choice of R and O are otherwise completely arbitrary. For 0 < ε ≤ R,
let Σ(ε) be the family of all finite words ω = ω1 . . . ωn ∈ Σ∗ such that

(3.2) Rrω < ε ≤ Rrω||ω|−1,

and let

(3.3) Σb(ε) := {ω ∈ Σ(ε) : (SωF )ε ∩ ((SO)c)ε 6= ∅}.

The words ω in Σ(ε) describe those cylinder sets SωF which are approximately of
size ε and the words in Σb(ε) only those which are also 2ε-close to the boundary

of the set SO, the first iterate of the set O under the set mapping S =
⋃N

i=1 Si.

Note that SωF ⊂ SO for any ω ∈ Σ(ε) which is due to the well known relation
F ⊂ O (see e.g. [7, §3.1(8)]). Moreover, the family {SωF : ω ∈ Σ(ε)} is a covering
of F for each ε, which is optimal in that none of the sets can be removed. It is

an easy consequence of the equation
∑N

i=1 r
D
i = 1 that, for each ε ∈ (0, R],

(3.4)
∑

ω∈Σ(ε)

rDω = 1.

In [13], the curvature bound condition is formulated as follows:

(CBC) There is a constant ck such that for almost all ε ∈ (0, R) and all σ ∈ Σb(ε)

Cvar
k


Fε, ∂(SσF )ε ∩ ∂

⋃

σ′∈Σ(ε)\{σ}
(Sσ′F )ε


 ≤ ckε

k.

The following result on the limiting behaviour of the total curvatures was
obtained in [16]. We restrict our attention to the deterministic case. Set

(3.5) Rk(ε) := Ck(Fε)−
N∑

i=1

1(0,ri](ε)Ck((SiF )ε), ε > 0.

Theorem 3.1 ([16, Theorem 2.3.8 and Corollary 2.3.9]). Let k ∈ {0, 1, . . . , d}
and F be a self-similar set in R

d, d ≥ 1, satisfying OSC. If k ≤ d − 2, assume
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additionally that RC and CBC hold. Then

(3.6) Cf
k (F ) := lim

δ→0

1

| ln δ|

∫ 1

δ

εD−kCk(Fε)
dε

ε
=

1

η

∫ R

0

rD−k−1Rk(r) dr,

where η = −∑N
i=1 r

D
i ln ri. Moreover, if F is non-arithmetic, then

(3.7) esslim
ε→0

εD−kCk(Fε) = Cf
k (F ).

The numbers Cf
k (F ) are refered to as the fractal curvatures of the set F .

Formula (3.6) in Theorem 3.1 should in particular be understood to imply that
the integral on the right hand side exists and thus the fractal curvatures are
finite. For k = d, the limits in (3.6) and (3.7) specialize to the average Minkowski
content and the Minkowski content, respectively, and the result is due to Lapidus
and Pomerance [8], Falconer [3] (for d = 1) and Gatzouras [6] (for general d). The
case k = d− 1 is treated in [10]. In both cases the essential limits can be replaced
by limits and the limits are always positive. Recall that for d ≤ 3 RC is known to
be satisfied. For the special case of polyconvex parallel sets, where the conditions
RC and CBC are not needed, see [12].

It is shown in [13], that under the hypotheses of Theorem 3.1 also fractal

curvature measures exist.

Theorem 3.2 ([13, Theorem 2.3]). Let k ∈ {0, 1, . . . , d} and F be a self-similar

set in Rd, d ≥ 1, satisfying OSC. If k ≤ d − 2, assume additionally that RC and

CBC hold. Then

(3.8) Cf
k (F, · ) := wlim

ε→0

1

| ln ε|

∫ 1

ε

ε̃D−kCk(Fε̃, · )
dε̃

ε̃
= Cf

k (F )µF ,

where µF is the normalized D-dimensional Hausdorff measure on F . Moreover, if

F is non-arithmetic, then also the essential weak limit esswlimε→0 ε
D−kCk(Fε, · )

exists and equals Cf
k (F, · ).

4. Equivalent reformulations of CBC

We give some alternative equivalent formulations of CBC with the intension
to clarify the meaning of this condition and also to simplify its verification in
concrete examples.

Throughout we assume that k ∈ {0, . . . , d − 2} (since for k ∈ {d − 1, d} CBC
is not needed) and that F is a self-similar set in R

d satisfying OSC and RC. The
first equivalent reformulation of CBC is rather obvious and has been mentioned
in [13, cf. Remark 2.4] already: The boundary signs in CBC can be omitted. It
paves the road for further reformulations. For ε ∈ (0, R) and σ ∈ Σ(ε), let

(4.1) Aσ,ε :=
⋃

σ′∈Σ(ε)\{σ}
(Sσ′F )ε.
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Proposition 4.1. The following condition is equivalent to CBC:

(CBC1) There is a constant ck and a null set N ⊂ (0, R) such that for all

ε ∈ (0, R) \ N and all σ ∈ Σb(ε)

(4.2) Cvar
k (Fε, (SσF )ε ∩ Aσ,ε) ≤ ckε

k.

Proof: The assertion follows from the set equality

(SσF )ε ∩Aσ,ε ∩ ∂Fε = ∂(SσF )ε ∩ ∂Aσ,ε ∩ ∂Fε

and the fact that the curvature measure Ck(Fε, · ) is concentrated on the boundary
of Fε, see also [13, Remark 2.4]. �

Remark 4.2. Without loss of generality, we can assume that the set N in CBC1
has the following additional properties:

(4.3) M ⊆ N and rσN ⊂ N for all σ ∈ Σ∗,

where M is the (Lebesgue null) set of exceptions in RC. Indeed, the existence
of a null set N satisfying these additional conditions clearly implies the exis-
tence of a null set at all satisfying CBC1. Conversely, if CBC1 holds with an
arbitrary null set N of exceptions, then it also holds with the larger null set
N ∗ :=

⋃
σ∈Σ∗ rσ(M ∪ N ) ⊂ (0, R) of exceptions, which has both of the above

properties. In the sequel we will always assume that the set N of exceptions has
these two additional properties.

For the proof of the next reformulation we require the following estimate, which
is proved in [13]. Recall the definition of the set Aσ,ε from (4.1).

Lemma 4.3 ([13, Lemma 3.2]). Let k ∈ {0, . . . , d− 2} and let F be a self-similar

set in Rd satisfying OSC, RC and CBC. Then there is a constant c > 0 such that,

for all ε ∈ (0, R) \ N and all σ ∈ Σ(ε),

Cvar
k (Fε, (SσF )ε ∩ Aσ,ε) ≤ cεk.(4.4)

In the following reformulation of CBC we shift the parameter r in the families
Σ(r) in order to be able to work with larger cylinder sets compared to the parallel
width ε. Condition CBC2 below roughly means that one can work with cylinder
sets of diameter λε, λ ≥ 1. Practically, this allows to reduce the number of
mutual intersections between the cylinder sets. It also enables us to show that
the validity of CBC for a given self-similar set F does not depend on the choice
of the constant R.

Theorem 4.4. Let k ∈ {0, . . . , d − 2} and let F be a self-similar set in Rd

satisfying OSC and RC. Let λ ≥ 1. Then the following condition is equivalent to

CBC:
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(CBC2) There exist bk = bk(λ) > 0 and a null set N such that for all ε ∈
(0, R/λ) \ N and all ω ∈ Σb(λε)

Cvar
k


Fε, (SωF )ε ∩

⋃

ω′∈Σ(λε)\{ω}
(Sω′F )ε


 ≤ bkε

k,

and such that for all ε ∈ [R/λ,R) \ N

Cvar
k (Fε) ≤ bkε

k.

Remark 4.5. The second inequality should be viewed as an extension of the range
of (2.6) to the interval [R/λ,R). Note that it can equivalently be formulated with
the expression bkε

k on the right hand side replaced by bk (adapting the constant
if necessary), since εk is bounded on the relevant interval. We use this slightly
more complicated formulation with εk not only because it is more convenient in
the proofs, but mainly because it is more consistent with the general philosophy
that for the k-th curvature measure Ck(Fε, · ) bounds of order εk are needed at all
scales. The same applies to the second inequalities in CBC3, CBC2’ and CBC3’
below.

Proof: For λ = 1, CBC1 and CBC2 are obviously equivalent, since the first
inequality in CBC2 reduces to CBC1 in this case and the range of the second one
is the empty set.

So fix some λ > 1. We first show that CBC1 implies CBC2. For ω =
ω1 . . . ωm ∈ Σ(λε), let

Σω(ε) := {σ ∈ Σ(ε) : σi = ωi for i = 1, . . . ,m}.

Observe that the cardinality of the sets Σω(ε) is bounded by a constant (indepen-
dent of ε ∈ (0, R) and ω ∈ Σ(λε)). Indeed, each σ ∈ Σω(ε) is of the form σ = ωσ̃
with σ̃ ∈ Σ(ε/rω). Hence

#Σω(ε) ≤ #Σ(ε/rω) ≤ #Σ(λ−1R) =: ĉ,

where the last inequality is due to the relation ε/rω > λ−1R (since ω ∈ Σ(λε))
and the monotonicity of #Σ( · ). Since (SωF )ε =

⋃
σ∈Σω(ε)(SσF )ε, we have for

each ε ∈ (0, λ−1R) \ N ,

Cvar
k


Fε, (SωF )ε ∩

⋃

ω′∈Σ(λε)\{ω}
(Sω′F )ε




= Cvar
k


Fε,

⋃

σ∈Σω(ε)

(SσF )ε ∩
⋃

ω′∈Σ(λε)\{ω}
(Sω′F )ε



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≤
∑

σ∈Σω(ε)

Cvar
k


Fε, (SσF )ε ∩

⋃

ω′∈Σ(λε)\{ω}
(Sω′F )ε




≤
∑

σ∈Σω(ε)

Cvar
k


Fε, (SσF )ε ∩

⋃

σ′∈Σ(ε)\{σ}
(Sσ′F )ε




=
∑

σ∈Σω(ε)

Cvar
k (Fε, (SσF )ε ∩ Aσ,ε) ,

where the last inequality is due to the set inclusion
⋃

ω′∈Σ(λε)\{ω}
(Sω′F )ε ⊆

⋃

σ′∈Σ(ε)\{σ}
(Sσ′F )ε

and the last equality to (4.1). Now, since CBC1 is assumed to hold (which is
equivalent to CBC by Proposition 4.1), we can apply Lemma 4.3 and obtain that
each of the terms in this sum is bounded from above by cεk. Therefore, the whole
sum is bounded by bkε

k with bk := ĉc, showing the first inequality of CBC2.
The second inequality follows immediately from [13, Corollary 4.1], which states
that CBC implies the uniform boundedness of ε 7→ Cvar

k (Fε) on compact intervals
[a, b] ⊂ (0,∞). For the convenience of the reader, we provide the following direct
alternative proof of the second inequality: Observe that for ε ∈ (0, R) \ N

Cvar
k (Fε) = Cvar

k


Fε,

⋃

σ∈Σ(ε)

(SσF )ε




≤
∑

σ∈Σ(ε)

Cvar
k (Fε, (SσF )ε)

≤
∑

σ∈Σ(ε)

Cvar
k (Fε, (SσF )ε ∩Aσ,ε) + Cvar

k (Fε, (SσF )ε ∩ (Aσ,ε)c) .

By Lemma 4.3, for each σ ∈ Σ(ε), the first term in this sum is bounded by cεk.
For the second term, we have Fε ∩ (Aσ,ε)c = (SσF )ε ∩ (Aσ,ε)c and so, by the
locality property (2.5),

Cvar
k (Fε, (SσF )ε ∩ (Aσ,ε)c) = Cvar

k ((SσF )ε, (SσF )ε ∩ (Aσ,ε)c)

≤ Cvar
k ((SσF )ε) = rkσC

var
k

(
Fε/rσ

)
.

Since σ ∈ Σ(ε) implies ε
rσ

> R, the last term is bounded by rkσck(F,R)( ε
rσ
)k =

ck(F,R)εk, by (2.6). Finally observe that, for ε ∈ [λ−1R,R), the cardinality of
the family Σ(ε) is bounded by the constant c̃ := #Σ(λ−1R) and thus we conclude
that Cvar

k (Fε) is bounded by bkε
k (with bk = c̃(c + ck(F,R))) for ε ∈ [λ−1R,R)

as claimed in the second inequality in CBC2. This completes the proof of the
implication CBC1 ⇒ CBC2.
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For the reverse implication, let first ε ∈ [λ−1R,R) \ N . Then, by the second
inequality in CBC2, we immediately obtain for each σ ∈ Σ(ε),

Cvar
k (Fε, (SσF )ε ∩ Aσ,ε) ≤ Cvar

k (Fε) ≤ bkε
k,

which verifies the inequality in CBC1 for ε ∈ [λ−1R,R) \ N . Now let ε ∈
(0, λ−1R) \ N and σ ∈ Σ(ε). Let ω ∈ Σ(λε) be the unique sequence such that
σ = ωσ̃. In analogy with (4.1), we set

(4.5) Bω,ε :=
⋃

ω′∈Σ(λε)\{ω}
(Sω′F )ε.

Since (SσF )ε ⊆ (SωF )ε and obviously Aσ,ε ⊆ Rd = Bω,ε ∪ (Bω,ε)c we infer, that

(4.6)
Cvar

k (Fε, (SσF )ε ∩Aσ,ε) ≤ Cvar
k (Fε, (SωF )ε ∩Bω,ε)

+ Cvar
k (Fε, (SωF )ε ∩ (Bω,ε)c) .

Now, if we assume σ ∈ Σb(ε), then ω ∈ Σb(λε). Therefore, by CBC2, the first
term in the above expression is bounded by bkε

k. For the second term observe
that, by the locality property (2.5) (applicable, since ε and thus ε/rω are regular
values for F , cf. (4.3)), in the open set (Bω,ε)c we can replace Fε by (SωF )ε.
Hence this term is bounded by

Cvar
k ((SωF )ε, (SωF )ε ∩ (Bω,ε)c) ≤ rkωC

var
k

(
Fε/rω

)
.

Finally, recalling that w ∈ Σ(λε) and so λ−1R < ε/rω ≤ (λrωn
)−1R, we conclude

from the second inequality in CBC2 and (2.6) that the last expression is bounded
either by rkωbk(ε/rω)

k or by rkωck(F,R)(ε/rω)
k depending on whether ε/rω is less

or greater than R. In any case, there is a constant b′k (given by the maximum of
ck(F,R) and bk) independent of ε and ω such that the last expression (and thus
the second term in (4.6)) is bounded by b′kε

k. This verifies the inequality in CBC1
for ε ∈ (0, λ−1R) \ N and σ ∈ Σb(ε) and completes the proof of the implication
CBC2 ⇒ CBC1. �

Note that condition CBC2 in Theorem 4.4 can equivalently be phrased “There
exists a constant λ ≥ 1, a constant bk = bk(λ) and . . . ,” or “For all λ ≥ 1, there
exists a constant bk = bk(λ) and . . . ”. The next statement shows that it is not
important how the constant R is chosen. If for a self-similar set, CBC fails to
hold for some R, it cannot be verified by choosing a different R.

Corollary 4.6. CBC is independent of the choice of the constant R, i.e., if R1

and R2 are two constants with Ri >
√
2diamF , then CBC with R = R1 is satisfied

if and only if CBC with R = R2 is.

Proof: Without loss of generality, we may assume that R1 > R2. Suppose CBC1
holds with R = R1 and let λ := R1

R2
> 1. Then, by Theorem 4.4, CBC2 holds

with R = R1 and λ = R1

R2
. Since R1

λ = R2 and Σ(R1)(λε) = Σ(R2)(ε) (where the
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superscripts R1 and R2 indicate which R we have to use in the definition of Σ(r)),

we have in particular that for all ε ∈ (0, R2) \ N and for all w ∈ Σ
(R2)
b (ε)

Cvar
k


Fε, (SωF )ε ∩

⋃

ω′∈Σ(R2)(λε)\{ω}

(Sω′F )ε


 ≤ bkε

k,

which is just CBC1 with R = R2.
Conversely, if CBC1 with R = R2 holds, then the argument from above shows

that the first inequality of CBC2 with R = R1 and λ = R1

R2
also holds. Moreover,

by (2.6), there exists a constant c = c(F,R2) such that Cvar
k (Fε) ≤ cεk for ε >

R2 = R1

λ , i.e., in particular, for ε ∈ (R1

λ , R1]. Hence, the second inequality of
CBC2 with R = R1 is also satisfied. Now, again by Theorem 4.4, we infer that
CBC1 with R = R1 holds, which completes the proof. �

Condition CBC3 below shows that if the cylinder sets are chosen large enough
(compared to ε), then one can pass over to mutual intersections of pairs of cylinder
sets. The proof is based on a lemma in [12], which roughly says that a set (SσF )ε
from a family {(SωF )ε : ω ∈ Σ(λε)} does not intersect too many of the other
members of this family, provided λ is large enough, cf. [12, Lemma 5.3.1]. More
precisely, λ needs to be larger than Rρ−1, where ρ is given as follows: Because
of SOSC, there exists a word u ∈ Σ∗ such that SuF ⊂ O and the compactness
of SuF implies that there is a constant α > 0 such that each point x ∈ SuF
has a distance greater than α to ∂O, i.e., d(x,Oc) > α. Set ρ := rmin

α
2 , where

rmin := min{ri : 1 ≤ i ≤ N}. (Note that ρ depends on the choice of O and the
word u. Any choice ρ ≤ rmin

α
2 is also fine.) Compare also [12, Section 5.1].

Theorem 4.7. Let k ∈ {0, . . . , d − 2} and let F be a self-similar set in R
d

satisfying OSC and RC. Let λ ≥ max{1, Rρ−1}. Then the following condition is

equivalent to CBC:

(CBC3) There is a constant ak = ak(λ) and a null set N such that for all

ε ∈ (0, R/λ) \ N , ω ∈ Σb(λε) and ω′ ∈ Σ(λε) \ {ω}

Cvar
k (Fε, (SωF )ε ∩ (Sω′F )ε) ≤ akε

k

and such that for all ε ∈ [R/λ,R) \ N

Cvar
k (Fε) ≤ akε

k.

Proof: Fix some λ ≥ max{1, Rρ−1}. In view of Theorem 4.4, it suffices to show
that CBC3 is equivalent to CBC2 (with the same λ and N ). The implication
CBC2 ⇒ CBC3 is easy: If ε ∈ (0, R/λ) \ N , ω ∈ Σb(λε) and ω′ ∈ Σ(λε), then

Cvar
k (Fε, (SωF )ε ∩ (Sω′F )ε) ≤ Cvar

k


Fε, (SωF )ε ∩

⋃

v∈Σ(λε)\{ω}
(SvF )ε



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and, by CBC2, the right hand side is bounded by bkε
k, verifying the first inequality

of CBC3. The second inequalities are obviously equivalent in both conditions.
To show that CBC3 implies CBC2, let ε ∈ (0, R/λ)\N and ω ∈ Σb(λε). Using

the notation Bω(ε) from (4.5), we observe that

Cvar
k (Fε, (SωF )ε ∩Bω,ε) ≤

∑

ω′∈Σ(λε)\{ω}
Cvar

k (Fε, (SωF )ε ∩ (Sω′F )ε) .(4.7)

We can restrict the summation to those ω′ for which the intersection (SωF )ε ∩
(Sω′F )ε is nonempty. By [12, Lemma 5.3.1, p. 45], the number of such terms is
bounded by some constant Γmax (independent of ε or ω). (Note that this is where
the assumption λ > Rρ−1 is used.) Since CBC3 is assumed to hold, each term
in this sum is bounded by akε

k, giving the upper bound Γmaxakε
k for the whole

sum. This completes the proof. �

The following statement establishes that the families Σb(·), which occur in
conditions CBC1–CBC3 above, can equivalently be replaced by the larger fami-
lies Σ(·).

Theorem 4.8. Each of the following conditions is equivalent to CBC:

(CBC1’) There is a constant ck and a null set N ⊂ (0, R) such that for all

ε ∈ (0, R) \ N and all σ ∈ Σ(ε)

(4.8) Cvar
k


Fε, (SσF )ε ∩

⋃

σ′∈Σ(ε)\{σ}
(Sσ′F )ε


 ≤ ckε

k.

(CBC2’) There exist λ ≥ 1, bk = bk(λ) > 0 and a null set N such that for all

ε ∈ (0, R/λ) \ N and all ω ∈ Σ(λε)

Cvar
k


Fε, (SωF )ε ∩

⋃

ω′∈Σ(λε)\{ω}
(Sω′F )ε


 ≤ bkε

k

and such that for all ε ∈ [R/λ,R) \ N

Cvar
k (Fε) ≤ bkε

k.

(CBC3’) There exist λ ≥ max{1, Rρ−1}, ak = ak(λ) > 0 and a null set N such

that for all ε ∈ (0, R/λ) \ N and ωω′ ∈ Σ(λε) with ω 6= ω′

Cvar
k (Fε, (SωF )ε ∩ (Sω′F )ε) ≤ akε

k

and such that for all ε ∈ [R/λ,R) \ N

Cvar
k (Fε) ≤ akε

k.
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Proof: The implications CBC1’⇒ CBC1, CBC2’⇒ CBC2 and CBC3’⇒ CBC3
are obvious. The implication CBC1⇒ CBC2’ holds, since in the proof of CBC1⇒
CBC2 in Theorem 4.4 it is only used that ω ∈ Σ(λε) but not that ω ∈ Σb(λε). The
proofs of the implications CBC2’ ⇒ CBC1’ and CBC2’ ⇒ CBC3’ are completely
analogous to the proofs of CBC2 ⇒ CBC1 and CBC2 ⇒ CBC3 in Theorems 4.4
and 4.7, respectively. One can replace each instance of Σb(·) by Σ(·) and use the
“stronger” condition CBC2’ instead of CBC2. Thus we have the following cycles
of implications: CBC1 ⇒ CBC2’ ⇒ CBC1’⇒ CBC1 and CBC1 ⇒ CBC2’ ⇒
CBC3’ ⇒ CBC3, which, together with the equivalences in Theorems 4.4 and 4.7,
show the equivalence to CBC of each of these three conditions. �

Corollary 4.9. The validity of CBC is independent of the choice of the open

set O.

Proof: By Theorem 4.8, CBC is equivalent to CBC1’, a condition in which the
open set O does not occur. �

We point out that in concrete examples some of these conditions are easier to
verify than the original condition. However, we postpone examples to the next
section, where a simpler but slightly stronger condition is discussed which is even
easier to verify.

To complete the picture of the present state of the art regarding the curvature
bound condition, we briefly discuss an example of a self-similar set not satisfying
CBC. It was discovered independently by Andreas Wust and Jan Rataj. In fact,
in the example below we discuss a one-parameter family of sets F (p), p ∈ (0, 1

2 ),
for which CBC fails. In the proof we use one of the equivalent reformulations
of CBC.

Example 4.10. For p ∈ (0, 1
2 ), let F = F (p) be the self-similar set in R2 gene-

rated by the four similarities S1, . . . , S4 each with contraction ratio p, which map
the unit square Q = [0, 1]2 to the four squares of side length p in the corners of
Q, cf. Figure 1. F is a Cantor set satisfying the strong separation condition (and
thus in particular SOSC). F can also be viewed as the Cartesian product C ×C,
where C = C(p) is the self-similar Cantor set on R generated by the two mappings
f1(x) = px and f2(x) = px+ (1 − p), x ∈ R. It is clear that g

2 is a critical value
of the distance function of F , where g := 1− 2p is the minimal distance between
S1F and S2F . Note that for ε < g

2 , the intersection (S1F )ε ∩ (S2F )ε is empty,

while for ε = g
2 it is a Cantor set C̃ on the vertical line x = 1

2 , which is similar

to C (but shrinked by a factor 1
3 ). For ε >

g
2 , the intersection consists of a finite

number of (roughly lense-shaped) connected components whose number increases
as ε ց g

2 . The fact, that the number of these components is unbounded as ε ց g
2 ,

is essentially the reason, why CBC fails.
To provide a rigorous argument, we will now demonstrate that CBC2’ (and

thus, by Theorem 4.8, CBC) is not satisfied for F . Choose R and λ such that
R
λ = g

2p , R >
√
2diam (F ) = 2 and λ ≥ 1. (This can for instance be achieved

as follows: For p ≥ 1
8 , choose R = 3 and λ = R 2p

1−2p ≥ 1. For p < 1
8 , choose
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p

10 p

1

S1Q S2Q

S3QS4Q

Q

1

2
x

y

g = 1− 2p

α

T

x = 1

2

(S1F )ε (S2F )ε

g

ε

Figure 1. (Left): the iterates of the unit square Q = [0, 1]2

under the IFS generating the set F (p) of Example 4.10; (Right):
enlargement of the intersection (S1F )ε ∩ (S2F )ε for some ε > g

2 .

R = 1−2p
2p > 3 and λ = 1.) Let ω = 1 and ω′ = 2. These choices ensure that

ω, ω′ ∈ Σ(λε) for each ε ∈ (pR
λ ,

R
λ ] = ( g2 ,

g
2p ]. The validity of CBC2’ would in

particular imply the existence of a constant b0 and a null set N such that for all
ε ∈ (pR

λ ,
R
λ ) \ N

Cvar
0 (Fε, (S1F )ε ∩ (S2F )ε) ≤ Cvar

0 (Fε, (S1F )ε ∩
⋃

i6=1

(SiF )ε) ≤ b0.

Therefore, it suffices to show that for each constant b > 0 there is a set I = I(b) ⊂
(pR/λ,R/λ] with λ1(I) > 0 such that for all ε ∈ I,

Cvar
0 (Fε, (S1F )ε ∩ (S2F )ε) ≥ b.

Observe that the number N(ε) of connected components of the set (S1F )ε ∩
(S2F )ε is given by one plus the number of those complementary intervals L of

the set C̃, whose length l satisfies l2 > 4ε2 − g2, cf. Figure 1. Each component K
of (S1F )ε ∩ (S2F )ε has exactly 2 points in common with the set ∂Fε, namely the
endpoints of the segment K ∩ {x = 1

2}. Moreover, by symmetry, the curvature
C0(Fε, · ) at each of these points is the same (for fixed ε) and given by the angle
α = α(ε) at the point T in Figure 1. It is not difficult to see that α = 2 arcsin( g

2ε ),
which implies that α > g

ε , since arcsin(x) > x for x ∈ (0, 1). Hence we obtain, for



Curvature bounds for neighborhoods of self-similar sets 219

ε ∈ ( g2 ,
g
2p ], that α > 2p and thus

Cvar
0 (Fε, (S1F )ε ∩ (S2F )ε) = 2N(ε)Cvar

0 (Fε, {Q}) = 2N(ε)
α

2π
>

2p

π
N(ε).

So fix some b > 0. Choose u > g
2 such that N(u)2pπ > b. (This choice is possible,

since N(ε) → ∞ as ε ց g
2 ). Let I := ( g2 , u). Clearly, λ1(I) > 0 and, since

N( · ) is monotone decreasing, we have for all ε ∈ I, Cvar
0 (Fε, (S1F )ε ∩ (S2F )ε) >

2p
π N(ε) ≥ 2p

π N(u) > b as desired. This shows that CBC fails for each of the sets

F = F (p) with p ∈ (0, 1
2 ).

5. A simpler but stronger condition

In view of the results in [9] and [12], it is a natural question to ask, whether
the curvature bound condition can also be formulated in terms of intersections
of first level cylinder sets. Indeed, even formula (3.6) in Theorem 3.1 suggests
this, since the function Rk defined in (3.5) describes essentially the curvature
(of Fε) in the intersections of first level cylinder sets. However, it turns out that
the condition below which involves only first level cylinder sets is sufficient but
not necessary for CBC to be satisfied. We call this simpler condition the strong

curvature bound condition (SCBC). It provides a useful tool for the discussion of
concrete examples.

Theorem 5.1. Let k ∈ {0, . . . , d − 2} and let F be a self-similar set in Rd

satisfying OSC and RC. Then the following condition implies CBC:

(SCBC) There is a constant dk and a null set N such that for all ε ∈ (0, R) \ N
and all i, j ∈ {1, . . . , N} with i 6= j,

Cvar
k (Fε, (SiF )ε ∩ (SjF )ε) ≤ dkε

k.

Proof: Fix some λ ≥ max{1, Rρ−1}. We show that SCBC implies CBC2’ (with
the same null set N and this choice of λ), which is equivalent to CBC by Theo-
rem 4.8.

For ε ∈ (0, R/λ) \ N and ω ∈ Σ(λε), consider the family

Ω := {ω′ ∈ Σ(λε) \ {ω} : (SωF )ε ∩ (Sω′F )ε 6= ∅}.

By [12, Lemma 5.3.1, p. 45], the cardinality of Ω is bounded by some constant Γmax

(independent of ε and ω ∈ Σ(λε)), giving an upper bound for the number of terms
in the double union below. Write m := |ω|, ω = ω1ω2 . . . ωm and ω|n := ω1 . . . ωn

for n = 0, 1, . . . ,m. Observe that

(SωF )ε ∩Bω,ε = (SωF )ε ∩
⋃

ω′∈Ω

(Sω′F )ε(5.1)
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=

m−1⋃

n=0

⋃

ω′∈Ω

ω′|n=ω|n,ω′
n+1 6=ωn+1


(SωF )ε ∩ (Sω′F )ε \

⋃

σ∈Σ(λε)

σ|n6=ω|n

(SσF )ε


 .

Indeed, for each ω′ ∈ Ω there is a unique n ∈ {0, . . . ,m− 1} such that ω′|n = ω|n
but ω′

n+1 6= ωn+1. Moreover, from the intersection (SωF )ε∩(Sω′F )ε we can safely
subtract all sets (SσF )ε with σ ∈ Σ(λε) and σ|n 6= ω|n, since either σ /∈ Ω, in
which case (SσF )ε has no intersection with (SωF )ε and thus no intersection with
(SωF )ε ∩ (Sω′F )ε, or σ ∈ Ω, in which case the set (SσF )ε occurs already in the
union for some smaller n.

We infer that

(5.2)

Cvar
k (Fε, (SωF )ε ∩Bω,ε)

≤
m−1∑

n=0

∑

ω′∈Ω

ω′|n=ω|n,ω′
n+1 6=ωn+1

Cvar
k


Fε, (SωF )ε ∩ (Sω′F )ε \

⋃

σ∈Σ(λε)

σ|n6=ω|n

(SσF )ε


 ,

where we keep in mind that the number of terms in this double sum is bounded
by Γmax. Furthermore, each term in the double sum is bounded from above as
follows. For fixed ω′ ∈ Ω (and the corresponding n) write ω̃ := ω|n = ω′|n. The
sets Fε and (Sω̃F )ε coincide inside the open set

U :=




⋃

σ∈Σ(λε)

σ|n6=ω̃

(SσF )ε




c

.

Hence, by the locality property (2.5) and by the scaling properties (2.3) and (2.4),
we obtain

Cvar
k (Fε, (SωF )ε ∩ (Sω′F )ε ∩ U)

= Cvar
k ((Sω̃F )ε, (SωF )ε ∩ (Sω′F )ε ∩ U)

≤ Cvar
k ((Sω̃F )ε, (SωF )ε ∩ (Sω′F )ε)

≤ Cvar
k

(
Sω̃Fε/rω̃ , Sω̃

(
(Sωn+1F )ε/rω̃ ∩ (Sω′

n+1
F )ε/rω̃

))

= rkσ̃C
var
k

(
Fε/rω̃ , (Sωn+1F )ε/rω̃ ∩ (Sω′

n+1
F )ε/rω̃

)
.

Applying now SCBC, we conclude that the last term is bounded by dkε
k and thus

the whole expression in (5.2) by bkε
k, where bk := Γmaxdk. Since this bound is

valid for all ε ∈ (0, R/λ) \ N and ω ∈ Σ(λε), the proof of the first inequality of
CBC2’ is complete.
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For the second inequality of CBC2’, we decompose the set Fε as follows

Fε =
⋃

σ∈Σ(ε)

(SσF )ε =
⋃

σ∈Σ(ε)

(((SσF )ε ∩ Aσ,ε) ∪ ((SσF )ε ∩ (Aσ,ε)c)) .

For ε ∈ (R/λ,R), the cardinality of Σ(ε) is uniformly bounded by the constant
ĉ := #Σ(R/λ). Therefore, it suffices to show that there is a constant c such
that the curvature of each set in this union is bounded by cεk. For the sets
(SσF )ε ∩ (Aσ,ε)c, one can use directly (2.5) (in the open set (Aσ,ε)c) to infer that

Cvar
k (Fε, (SσF )ε ∩ (Aσ,ε)c) = Cvar

k ((SσF )ε, (SσF )ε ∩ (Aσ,ε)c)

≤ Cvar
k ((SσF )ε) ≤ rkσC

var
k

(
Fε/rσ

)
.

Since σ ∈ Σ(ε) and thus ε/rσ > R, we conclude from (2.6), that the last expression
is bounded by ck(F,R)εk as desired. For the sets (SσF )ε∩Aσ,ε a similar argument
as for the sets (SωF )ε ∩Bω,ε in (5.1) works. One has the decomposition

(SσF )ε ∩ Aσ,ε =

|σ|−1⋃

n=0

⋃

σ′∈Σ(ε)\{σ}

σ′|n=σ|n,σ′
n+1 6=σn+1


(SσF )ε ∩ (Sσ′F )ε \

⋃

τ∈Σ(ε)

τ |n6=σ|n

(SτF )ε


 .

Again the number of sets in this double union is bounded, but for a different reason
as before. Here the cardinality of Σ(ε) is bounded by ĉ (since ε > R/λ). The
remaining arguments carry over from the case (SωF )ε ∩Bω,ε and one obtains the
bound ĉdkε

k for Cvar
k (Fε, (SσF )ε ∩ Aσ,ε). This completes the proof of the second

inequality of CBC2’. �

We will now show that the converse of Theorem 5.1 is not true, i.e., that SCBC
is not equivalent to CBC, by providing a counterexample. We will discuss a set
which satisfies CBC but not SCBC.

Example 5.2 (U-set). Consider the self-similar set F ⊂ R2 generated by the
seven similarities S1, . . . , S7, each with ratio r = 1

3 , mapping the unit square

Q := [0, 1]2 to one of the seven subsquares forming the set U as depicted in
Figure 2. (Note that S4 includes a clockwise rotation by π

2 .) This modification
of the Sierpinski carpet is similar to the U-sets discussed in [9] and [12], but in
contrast to those sets, the present set F does not have polyconvex parallel sets.
For instance, for large ε, the intersection of Fε with the upper half space y ≥ 1
cannot be represented as a finite union of convex sets.

First we look at the measure C0(Fε, · ) at the intersection (S1F )ε ∩ (S2F )ε.
We will show that for ε ∈ [ 123

−(m+2), 1
23

−(m+1)) and m = 1, 2, . . .

Cvar
0 (Fε, (S1F )ε ∩ (S2F )ε) =

1

2
(2m − 1),(5.3)
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Figure 2. (Left): the iterates of the set U under the IFS in
Example 5.2; (Right): enlargement of the intersection (S1F )ε ∩
(S2F )ε for ε = 1

45 .

which immediately implies that Cvar
0 (Fε, (S1F )ε ∩ (S2F )ε) → ∞ as ε → 0. Hence

this curvature cannot be bounded by a constant on the whole interval (0, R) and
so SCBC does not hold.

For a proof of (5.3), observe that the intersection S1F ∩ S2F is a scaled copy

C̃ of the usual middle-third Cantor set (scaled by a factor 1
3 ) on the line y = 2

3 .
Moreover, for ε ∈ (0, R), the intersection ∂Fε∩(S1F )ε∩(S2F )ε consists of a finite
number of pairs of points on the line y = 2

3 − ε, where each pair corresponds to

a complementary interval of C̃ of length greater than 2ε, cf. Figure 2. (There
are two more intersection points with coordinates (−ε, 2

3 ) and (13 + ε, 2
3 ), which

carry no curvature.) In C̃, we have one complementary interval of length 1
9 , two

of length 1
33 , four of length

1
33 and so on, i.e., 2k of length 1

3k+2 for k = 0, 1, . . ..

Therefore, the number J(ε) of complementary intervals of C̃ with length greater
than 2ε is given by

J(ε) =

m−1∑

k=0

2k = 2m − 1

for 2ε ∈ [3−(m+2), 3−(m+1)) and m = 1, 2, . . .. Since each of the points contributes
a curvature of − 1

4 to C0(Fε, · ), we obtain the result claimed in (5.3). This
completes the proof of the assertion that SCBC is not satisfied.

It remains to show that, on the contrary, CBC is satisfied. We demonstrate
this by verifying CBC2’ for F . For this purpose, fix R > 2 and choose λ ≥ 1 large
enough to ensure that, for any ω, ω′ ∈ Σ(λε), the intersection (SωF )ε ∩ (Sω′F )ε
is nonempty only if the intersection SωF ∩ Sω′F is, i.e., only if the cylinder sets
SωF , Sω′F are direct neighbors. (Any choice λ ≥ 6R works. Two cylinder
sets ω, ω′ ∈ Σ(λε), which do not intersect each other, have distance at least
r|ω| as there is a square of this side length between them. On the other hand,
ω, ω′ ∈ Σ(λε) implies λε ≤ Rr|ω|−1, i.e. 2ε < r|ω|.) Obviously, a cylinder set
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SωF can have at most eight neighbors (corresponding to the eight neighboring
squares). In fact, it can have at most 5 neighbors, since there are always at least
three neighboring squares whose interior is outside F and which do not contain
any cylinder set of F , but we will not use this. To verify the first inequality of
CBC2’, it suffices to show that there is a constant b > 0 such that for ε ∈ (0, R/λ)
and ω, ω′ ∈ Σ(λε) with ω 6= ω′,

Cvar
0 (Fε, (SωF )ε ∩ (S′

ωF )ε) ≤ b,(5.4)

since this clearly implies that Cvar
0 (Fε, (SωF )ε ∩ Bw,ε) is bounded by 8b. So fix

ε ∈ (0, R/λ) and ω, ω′ ∈ Σ(λε) with ω 6= ω′. Then the intersection (SωF )ε ∩
(Sω′F )ε is a scaled copy of one of the following four sets: K1 := (S1F )δ ∩ (S2F )δ,
K2 := (S3F )δ ∩ (S4F )δ, K3 := (S2F )δ ∩ (S4F )δ or K4 := (S4F )δ ∩ (S6F )δ where
δ := ε3|ω|−1. Moreover, the intersection of (SωF )ε ∩ (Sω′F )ε with ∂Fε is a scaled
copy of the corresponding intersection Ki ∩ ∂Fδ. This implies

Cvar
0 (Fε, (SωF )ε ∩ (S′

ωF )ε) ≤ max
i∈{1,2,3,4}

Cvar
0 (Fδ,Ki).

For i = 2, 3, 4, it is easily seen that the set ∂Fδ ∩ Ki consists of 2 points (for
all δ > 0) and thus Cvar

0 (Fδ,Ki) is certainly bounded by 2. For i = 1, we infer
that δ ≥ R

λ r (since ω, ω′ ∈ Σ(λε)) and thus δ > 1
3

2
12 = 1

18 by the choice of R
and λ. Hence K1 is connected and so ∂Fδ ∩Ki consists of 2 points as in the other
cases. Therefore the maximium above is clearly bounded by 2, which completes
the proof of (5.4) and thus of the first inequality of CBC2’.

It remains to provide a proof of the second inequality of CBC2’. With the
choice λ = 6R above, it remains to show that Cvar

0 (Fε) is bounded by some
constant for ε ∈ (16 , R). It is easy to see that Fε and the parallel set Qε of the

unit square Q =: [0, 1]2 coincide in the open half plane H := {(x, y) ∈ R2 : y < 1}.
Hence, by (2.5),

Cvar
0 (Fε, H) = Cvar

0 (Qε, H) ≤ Cvar
0 (Qε) = 1,

where the last equality is due to the convexity of Qε. It remains to show that for
some η > 0 and Hη := {(x, y) : y ≥ 1− η} we also have

Cvar
0 (Fε, H

η) ≤ b

for ε ∈ (16 , R).

Fix η < 1
6 . Let Ω = {1, 7}2 and Aε :=

⋃
ω∈Ω(SωF )ε. Observe that for 1

6 < ε,

Fε ∩Hη = Aε ∩Hη.

Since the diameter of each of the cylinder sets SωF in Aε is
√
2r2, we can infer

from (2.6), that Cvar
0 ((SωF )ε) is bounded by some constant c = c(R′) for all

ε ≥ R′ := Rr2 (and all ω ∈ Ω). Therefore,

Cvar
0 (Fε, H

η) = Cvar
0 (Aε, Hη) ≤ Cvar

0 (Aε)
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≤
∑

σ∈Ω

Cvar
0 (Aε, (SσF )ε \B) + Cvar

0 (Aε, B),

where B :=
⋃

ω,ω′∈Ω,ω 6=ω′(SωF )ε ∩ (Sω′F )ε. Since, by (2.5),

Cvar
0 (Aε, (SσF )ε \B) = Cvar

0 ((SσF )ε, (SσF )ε \B) ≤ Cvar
0 ((SσF )ε) ≤ c,

we infer that the sum above is bounded by 4c. For the last term observe that

Cvar
0 (Aε, B) ≤

∑

ω,ω′∈Ω,ω 6=ω′

Cvar
0 (Aε, (SωF )ε ∩ (Sω′F )ε).

By noting that each of the intersections (SωF )ε∩(Sω′F )ε above is a convex set (or
empty) and that the intersection with ∂Aε consists of just two points (or none)
each contributing at most 1

2 to the curvature of Aε, we conclude that each term
in the latter sum is bounded by 1 and thus the whole sum by 6. This completes
the proof of the second inequality in CBC2’.

We conclude this section with a discussion of the well-known Koch curve. As
its parallel sets are clearly not polyconvex, it provides an example of a self-similar
set to which the results in [16] and [13] apply but which is not covered by the
results in [12]. It also illustrates how SCBC simplifies the verification of CBC
(compare with Example 5.2).

Example 5.3 (Koch curve). Let K ⊂ R2 ∼= C be the self-similar set generated by
the two similarity mappings S1, S2 given (in complex coordinates) by S1(z) = cz̄

and S2(z) = (1 − c)(z̄ − 1) + 1, respectively, where c = 1
2 + i

√
3
6 . The contrac-

tion ratios are r1 = r2 = r = 1√
3
. It is well known (and easily seen) that K

satisfies OSC.
The critical values of the distance function are 1

9r
k, k = 0, 1, 2, . . .. In particu-

lar, these values form a null set so that RC is satisfied. (More precisely, all critical
points lie either on the axis Re(z) = 1

2 or on one of its iterates Sω({Re(z) = 1
2}),

ω ∈ Σ∗. For ε = 1
9 , for instance, p = 1

2 + i
√
3

18 is the unique critical point with
this distance from K (cf. Figure 3). Note that also for the critical values ε the
curvature measure C0(Kε, · ) is well defined in this case.)

Now we want to look more closely at the curvature bound condition for k = 0.
We will verify that SCBC holds, which implies CBC by Theorem 5.1. Hence
instead of having to work with cylinder sets of all levels, it is enough to look at the
first level cylinder sets, of which there are only two in this case. It suffices to show
that, for all ε > (0, R), the expression Cvar

0 (Kε, (S1K)ε ∩ (S2K)ε) is bounded by
some constant d0. Since the measure C0(Kε, · ) is concentrated on the boundary
of Kε, it is enough to consider the intersection ∂(S1K)ε∩∂(S2K)ε, which consists
of some arc A = A(ε) of the circle of radius ε centered at the intersection point of
S1K and S2K and a single point p = p(ε), the intersection point of the two curves
bounding the parallel sets (S1K)ε and (S2K)ε from below, compare Figure 3. (In
fact, it requires some justification to see that those two curves intersect in a
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K1

9

Rez =
1

2

p

0 1

A

Figure 3. Approximation of the Koch curve and its ε-parallel
set for the critical value ε = 1

9 . p is a critical point realizing this
value. The intersection ∂(S1K)ε ∩ ∂(S2K)ε consists of the arc A
and the point p.

single point for each fixed ε > 0. We skip the details of the rather elementary
computations at this point.) Now observe that C0(Kε, A) =

α
2π where α = π

3 is

the angle determining the arc A (independent of ε). Hence, C0(Kε, A) = 1
6 for

all ε > 0. The measure C0(Kε, {p}) depends on ε and is negative. It is certainly
bounded from below by −1. (In fact, it is bounded by − 1

2 .) Hence, we get that,
for all ε > 0,

Cvar
0 (Kε, (S1K)ε ∩ (S2K)ε) ≤ Cvar

0 (Kε, A ∪ {p}) ≤ 1

6
+ 1 =: d0,

which verifies SCBC and thus CBC.
Since K is lattice, Theorem 3.1 implies the existence of the average limit

Cf
0 (K), as given by (3.6), but not the existence of the essential limit in (3.7).

Moreover, by Theorem 3.2, the corresponding fractal curvature measure Cf
0 (K, · )

exists and is given by Cf
0 (K)µK , where µK = HD⌊K( · )

HD(K) is the normalized D-

dimensional Hausdorff measure on K with D = log3 4.
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