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On meager function spaces, network character

and meager convergence in topological spaces

Taras Banakh, Volodymyr Mykhaylyuk, Lyubomyr Zdomskyy

Abstract. For a non-isolated point x of a topological space X let nwχ(x) be
the smallest cardinality of a family N of infinite subsets of X such that each
neighborhood O(x) ⊂ X of x contains a set N ∈ N . We prove that

• each infinite compact Hausdorff space X contains a non-isolated point x
with nwχ(x) = ℵ0;

• for each point x ∈ X with nwχ(x) = ℵ0 there is an injective sequence
(xn)n∈ω in X that F-converges to x for some meager filter F on ω;

• if a functionally Hausdorff space X contains an F-convergent injective
sequence for some meager filter F , then for every path-connected space Y
that contains two non-empty open sets with disjoint closures, the function
space Cp(X, Y ) is meager.

Also we investigate properties of filters F admitting an injective F-convergent
sequence in βω.

Keywords: network character, meager convergent sequence, meager filter, meager
space, function space

Classification: Primary 54A20, 54C35; Secondary 54E52

This paper was motivated by a question of the second author who asked if the
function space Cp(ω

∗, 2) is meager. Here ω∗ = βω\ω is the remainder of the Stone-

Čech compactification of the discrete space of finite ordinals ω and 2 = {0, 1} is the
doubleton endowed with the discrete topology. According to Theorem 4.1 of [13]
this question is closely related to the so-called meager convergence of sequences
in ω∗.

A filter F on ω is meager if it is meager (i.e., of the first Baire category) in
the power-set P(ω) = 2ω endowed with the usual compact metrizable topology.
The simplest example of a meager filter is the Fréchet filter Fr = {A ⊂ ω : ω \A
is finite} of all cofinite subsets of ω. By the Talagrand characterization [18],
a free filter F on ω is meager if and only if ξ(F) = Fr for some finite-to-one
function ξ : ω → ω. A function ξ : ω → ω is finite-to-one if for each point y ∈ ω
the preimage ξ−1(y) is finite and non-empty. A filter F on ω is defined to be
ξ-meager for a surjective function ξ : ω → ω if ξ(F) = Fr.

We shall say that for a filter F on ω, a sequence (xn)n∈ω of points of a to-
pological space X F-converges to a point x∞ ∈ X if for each neighborhood
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O(x∞) ⊆ X of x∞ the set {n ∈ ω : xn ∈ O(x∞)} belongs to the filter F . Observe
that the usual convergence of sequences coincides with the Fr-convergence for
the Fréchet filter Fr. The filter convergence of sequences has been actively stud-
ied both in Analysis [1], [4] and Topology [5]. A sequence (xn)n∈ω will be called
meager-convergent if it is F -convergent for some meager filter F on ω. A sequence
(xn)n∈ω is called injective if xn 6= xm for all n 6= m.

We shall prove that for a zero-dimensional Hausdorff space X the function
space Cp(X, 2) is meager if X contains an injective meager-convergent sequence.
We recall that a topological space X is functionally Hausdorff if for any distinct
points x, y ∈ X there is a continuous function λ : X → I such that λ(x) 6= λ(y).
Here I = [0, 1] is the unit interval. For topological spaces X,Y by Cp(X,Y ) we
denote the space of continuous functions endowed with the topology of pointwise
convergence.

Theorem 1. Let X be a functionally Hausdorff space and let Y be a topological

space that contains two open non-empty subsets with disjoint closures. Assume

that X is zero-dimensional or Y is path-connected. If X contains an injective

meager-convergent sequence, then the function space Cp(X,Y ) is meager.

Proof: Let (xn)n∈ω be a sequence in X that F -converges to x∞ ∈ X for some
meager filter F in ω. Then there is a finite-to-one surjection ξ : ω → ω such that
ξ(F) = Fr. By our assumption, Y contains two non-empty open subsets W0,W1

with disjoint closures. For every n ∈ ω consider the subset Cn = {f ∈ Cp(X,Y ) :

∀ i ∈ {0, 1} (f(x∞) /∈ W i ⇒ ∀m ≥ n ∃k ∈ ξ−1(m) (f(xk) /∈W i))}.
The fact that Cp(X,Y ) is meager will follow as soon as we check that Cp(X,Y )

=
⋃

n∈ω Cn and each set Cn is nowhere dense in Cp(X,Y ).
To show that Cp(X,Y ) =

⋃

n∈ω Cn, fix any continuous function f ∈ Cp(X,Y ).

Since Y = (Y \W 0) ∪ (Y \W 1), there is i ∈ {0, 1} such that f(x∞) /∈ W i. Since
(xn) is F -convergent to x∞ and f−1(Y \W i) is an open neighborhood of x∞, the
set F = {n ∈ ω : f(xn) /∈ W i} belongs to the filter F and thus the image ξ(F ),
being cofinite in ω, contains the set {m ∈ ω : m ≥ n} for some n ∈ ω. Then
f ∈ Cn by the definition of the set Cn.

Next, we show that each set Cn is nowhere dense in Cp(X,Y ). Fix any non-
empty open set U ⊆ Cp(X,Y ). Without loss of generality, U is a basic open set
of the following form:

U = {f ∈ Cp(X,Y ) : ∀ z ∈ Z f(z) ∈ Uz}

for some finite set Z ⊆ X and non-empty open sets Uz ⊆ Y , z ∈ Z. We can
additionally assume that x∞ ∈ Z. We need to find a non-empty open set V ⊆
Cp(X,Y ) such that V ⊆ U \Cn. If U ∩Cn is empty, then put V = U . So we assume
that U ∩ Cn contains some function f0. For this function we can find i ∈ {0, 1}
such that f0(x∞) /∈ W i. Since f0(x∞) ∈ Ux∞

, we lose no generality assuming
that Ux∞

⊆ Y \W i.
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Since the sequence (xn)n∈ω is injective, we can find m ≥ n such that the set
Xm = {xk : k ∈ ξ−1(m)} does not intersect the finite set Z. Choose any function
g : Z ∪ Xm → Y such that g(z) = f0(z) for all z ∈ Z and g(x) ∈ W1−i for all
x ∈ Xm.

We claim that the function g has a continuous extension ḡ : X → Y . By our
assumption, X is zero-dimensional or Y path-connected. In the first case we can
find a retraction r : X → Z ∪ Xm and put ḡ = g ◦ r. If Y is path-connected,
then take any injective function φ : g(Z ∪ Xm) → I and extend the function
φ ◦ g : Z ∪Xm → I to a continuous map λ : X → I using the functional Hausdorff
property of X . Since Y is path-connected, the map φ−1 : (φ ◦ g)(Z ∪Xm) → Y
extends to a continuous map ψ : I → Y . Then the continuous map ḡ = ψ ◦ λ :
X → Y is a required continuous extension of g.

In both cases the set

V = {f ∈ Cp(X,Y ) : ∀ z ∈ Z f(z) ∈ Uz, and ∀x ∈ Xm f(x) ∈W1−i}

is an open neighborhood of ḡ that lies in U \ Cn, witnessing that the set Cn is
nowhere dense in Cp(X,Y ). �

Theorem 1 motivates the problem of detecting topological spaces that contain
injective meager-convergent sequences. This will be done for spaces containing
points with countable network character.

A family N of subsets of a topological space X is called a π-network at a point
x ∈ X if each neighborhood O(x) ⊂ X of x contains some set N ∈ N . If each set
N ∈ N is infinite, thenN will be called an i-network at x. An i-network at x exists
if and only if each neighborhood of x in X is infinite. In this case let nwχ(x;X)
denote the smallest cardinality |N | of an i-network N at x. If some neighborhood
of x in X is finite, then let nwχ(x;X) = 1. If the spaceX is clear from the context,
then we write nwχ(x) instead of nwχ(x;X) and call this cardinal the network

character of x in X . If X is a T1-space, then nwχ(x) ≥ ℵ0 if and only if the point
x is not isolated in X . The cardinal hnwχ(x) = sup{nwχ(x;A) : x ∈ A ⊂ X} is
called the hereditary network character at x. Points x ∈ X with hnwχ(x) ≤ ℵ0

are called Pytkeev points , see [11].

Theorem 2. If some point x of a topological space X has nwχ(x) = ℵ0, then

for each finite-to-one function ξ : ω → ω with limn→∞ |ξ−1(n)| = ∞ there is an

injective sequence (xn)n∈ω in X that F -converges to x for some ξ-meager filter F .

Proof: Let (Ni)i∈ω be a countable i-network at x. Since each set Ni is infinite,
we can choose an injective sequence (xk)k∈ω in X such that for every n ∈ ω and
0 ≤ i < |ξ−1(n)| the set Ni meets the set {xk : k ∈ ξ−1(n)}.

It is clear that the sequence (xn)n∈ω F -converges to x for the filter

F =
{

{n ∈ ω : xn ∈ O(x)} : O(x) is a neighborhood of x in X
}

.

It remains to check that the filter F is ξ-meager. Given any neighborhood O(x) ⊂
X of x we need to find n ∈ ω such that for every m ≥ n there is k ∈ ξ−1(m)
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with xk ∈ O(x). Since (Ni)i∈ω is a network at x, there is i ∈ ω such that
Ni ⊂ O(x). Taking into account that limn→∞ |ξ−1(n)| = ∞, find n ∈ ω such that
|ξ−1(m)| > i for all m ≥ n. Now the choice of the sequence (xk) guarantees that
for every m ≥ n there is k ∈ ξ−1(m) with xk ∈ Ni ⊂ O(x). �

Theorem 2 shows that it is important to detect points x with countable network
character nwχ(x). Let us recall that the character χ(x) (resp. the π-character
πχ(x)) of a point x in a topological space X is equal to the smallest cardinality
of a neighborhood base (resp. a π-base) at x. A π-base at x is any π-network at x
consisting of non-empty open subsets of X . These definitions imply the following
simple:

Proposition 3. For any non-isolated point x of a T1-space X ,

(1) nwχ(x) ≤ χ(x);
(2) nwχ(x) ≤ πχ(x) provided that x has a neighborhood containing no iso-

lated point of X ;

(3) nwχ(x) = ℵ0 if x is the limit of an injective Fr-convergent sequence in X .

The following simple example shows that the usual convergence of the injective
sequence in Proposition 3(3) cannot be replaced by the meager convergence. It
also shows that Theorem 2 cannot be reversed.

Example 4. Let F be the meager filter on ω consisting of the sets F ⊂ ω such
that

lim
n→∞

|F ∩ [2n, 2n+1)|

2n
= 1.

On the space X = ω ∪ {∞} consider the topology in which all points n ∈ ω are
isolated while the sets F ∪ {∞}, F ∈ F , are neighborhoods of ∞. It is clear that
the sequence xn = n, n ∈ ω, F -converges to ∞ in X . On the other hand, a simple
diagonal argument shows that nwχ(∞;X) > ℵ0.

Theorem 5. Each infinite compact Hausdorff space X contains a point x ∈ X
with nwχ(x) = ℵ0.

Proof: Theorem trivially holds if X contains a non-trivial convergent sequence.
So we assume that X contains no non-trivial convergent sequence. Then X con-
tains a closed subset C ⊂ X that admits a continuous map g : C → I onto the
unit interval I = [0, 1], see [7, p.172]. Replacing C by a smaller subset, we can
assume that the map g : C → I is irreducible, which means that g(C′) 6= I for
any proper closed subset C′ ⊂ C. Fix any countable base B of the topology
of I. The irreducibility of the map g : C → I implies that the space C has no
isolated points. Also the irreducibility of g implies that the countable family
N = {g−1(U) : U ∈ B} of open infinite subsets of C is an i-network at each point
x ∈ C. Consequently, nwχ(x) = ℵ0 for each point x ∈ C. �

Theorems 1–5 imply:



On function spaces and convergence in topological spaces 277

Corollary 6. For each infinite zero-dimensional compact Hausdorff space X and

each topological space Y containing two non-empty open sets with disjoint clo-

sures the function space Cp(X,Y ) is meager. In particular, the function space

Cp(ω
∗, 2) is meager.

Also Theorems 2 and 5 imply

Corollary 7. Let ξ : ω → ω be a finite-to-one function with limn→∞ |ξ−1(n)| =
∞. Each infinite compact Hausdorff space X contains an injective F -convergent

sequence for some ξ-meager filter F on ω.

In fact, the condition limn→∞ |ξ−1(n)| = ∞ in Corollary 7 cannot be weakened.
Let us recall that an infinite subset A is called a pseudointersection of a family

of sets F if A ⊆∗ F for all F ∈ F where A ⊆∗ F means that A \ F is finite. If
a sequence (xn)n∈ω in a topological space F -converges to a point x∞ for some
filter F with infinite pseudointersection A ⊆ ω, then the subsequence (xk)k∈A

converges to x∞ in the standard sense.

Lemma 8. Let I be a countable set and C =
⋃

i∈I Ci, where the sets Ci are

nonempty and mutually disjoint, and supi∈I |Ci| < ω. If H is a filter on C all

of whose elements intersect all but finitely many Ci’s, then H has an infinite

pseudointersection.

Proof: The proposition will be proved by induction on n = supi∈I |Ci|. In case
n = 1 there is nothing to prove. Suppose that it is true for all k < n and let I,
{Ci : i ∈ I}, H be as above with max{|Ci| : i ∈ I} = n. If for every H ∈ H
the set {i ∈ I : |Ci ∩ H | < n} is finite, then C itself is a pseudointersection of
H. So suppose that J = {i ∈ I : |Ci ∩ H0| < n} is infinite for some H0 ∈ H.
In this case we may use our inductive hypothesis for J , {Ci ∩ H0 : i ∈ J},
G = H ↾ (

⋃

i∈J Ci ∩ H0), and n − 1. Thus G has an infinite pseudointersection,
and hence so does H. �

Proposition 9. If F is a ξ-meager filter on ω for some surjective function ξ :
ω → ω with limn→∞|ξ−1(n)| < ∞, then any sequence (xn)n∈ω in a topological

space X that F -converges to a point x∞ ∈ X contains a subsequence (xnk
)k∈ω

that converges to x∞.

Proof: Choose an infinite set I ⊆ ω such that supi∈I |ξ
−1(i)| < ω. Let Ci =

ξ−1(i) for every i ∈ I, C =
⋃

i∈I Ci and H = {F ∩ C : F ∈ F}. According to
Lemma 8 there exists an infinite set D ⊆ C such that D ⊆∗ H for every H ∈ H.
Then the subsequence (xi)i∈D converges to x∞. �

Now let us compare two facts:

(1) the compact Hausdorff space βω contains no injective Fr-convergent se-
quences;

(2) each infinite compact Hausdorff space X contains an injective F -conver-
gent sequence for some meager filter F .
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These two facts suggest a problem of finding the borderline between filters F that
admit an injective F -convergent sequence in βω and filters that admit no such
sequences. We hope that this borderline passes near analytic filters. Let us recall
the definitions of some properties of filters.

A filter F is analytic (resp. an Fσ-filter , Fσδ-filter) if F is an analytic sub-
set (resp. Fσ-subset, Fσδ-subset) of the power-set P(ω) = 2ω endowed with the
natural compact metrizable topology.

A filter F is measurable (resp. null) if is it measurable (resp. has measure
zero) with respect to the Haar measure on the Cantor cube 2ω considered as the
countable product of 2-element groups. It is well-known that a filter is measurable
if and only if it is null. The relations between meager and null filters are not trivial
and were investigated in [18] and [2]. Since each analytic filter is meager and null,
we get the following chain of properties of filters:

Fσ ⇒ analytic ⇒ meager & null.

We are going to show that some meager and null filter F admits an injective
F -convergent sequence in βω while no Fσ-filer F admits such a sequence. The
latter fact holds more generally for analytic P+-filters.

A filter F on ω is called a P -filter (resp. a P+-filter) if each countable subfamily
C ⊂ F has a pseudointersection A that belongs to F (resp. to F+). Here

F+ = {A ⊂ ω : ∀F ∈ F A ∩ F 6= ∅}

coincides with the union of all filters that contain F . It is clear that each P -filter
is a P+-filter. In particular, the Fréchet filter F is both a P -filter and P+-filter.

For a filter F on ω by χ(F) we denote its character . It is equal to the smallest
cardinality |B| of the base B ⊂ F that generates F in the sense that F = {F ⊂
ω : ∃B ∈ B B ⊂ F}. It is well-known that the character of each free ultrafilter on
ω is uncountable. The uncountable cardinal u = min{χ(U) : U ∈ βω \ω} is called
the ultrafilter number , see [3], [20]. The dominating number d is the smallest
cardinality |D| of a cofinal subset D in the partially ordered set (ωω,≤), see [3],
[20]. By Ketonen’s Theorem [10], each filter F on ω with character χ(F) < d is

a P+-filter .
Now we can establish some properties of filters F admitting injective F -conver-

gent sequences in βω.

Theorem 10. Assume that a filter F admits an injective F -convergent sequence

(xn)n∈ω in βω.

(1) If F is a P+-filter, then for some set A ∈ F+ the filter F|A = {F ∩ A :
F ∈ F} on A is an ultrafilter.

(2) χ(F) ≥ min{d, u};
(3) F is not an analytic P+-filter;

(4) F is not an Fσ-filter.
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Proof: 1. Assume that F is a P+-filter. Let x∞ be the F -limit of the F -
convergent sequence (xn)n∈ω in βω. Since the sequence (xn) is injective, there is
m ∈ ω such that for every n ≥ m xn 6= x∞ and hence we can fix a neighborhood
Un of x∞ whose closure does not contain the point xn. Since the sequence (xk) F -
converges to x∞, for every n ≥ m the set Fn = {k ∈ ω : xk ∈ Un} belongs to the
filter F . Since F is a P+-filter, the sequence (Fn)n≥m has a pseudointersection
A ∈ F+. It follows from the choice of the neighborhoods Un that the set {xn}n∈A

is discrete in βω and the sequence (xn)n∈A is F|A-convergent to x∞. By Rudin’s
Theorem [16], the map f : A → βω, f : n 7→ xn, has injective Stone-Čech
extension βf : βA→ βω, which implies that the filter F|A is an ultrafilter.

2. If χ(F) < min{d, u}, then χ(F) < d and by the Ketonen’s Theorem [10]
F is a P+-filter. By the preceding statement, F|A is an ultrafilter for some set
A ∈ F+. Consequently,

u ≤ χ(F|A) ≤ χ(F) < u

and this is a desired contradiction.

3. If F is an analytic P+-filter, then by the first statement, F|A is an ultrafilter
for some subset A ∈ F+. On the other hand, the filter F|A is analytic being a
continuous image of the analytic filter F . So, F|A cannot be an ultrafilter.

4. Assume that F is an Fσ-filter. In order to apply the preceding statement,
it suffices to show that F is a P+-filter. This is done in the following lemma. �

Lemma 11. Each Fσ-filter F on ω is a P+-filter.

Proof: According to a result of Mazur [12] (see also [17]), for the Fσ-filter F
there exists a lower semi-continuous submeasure φ on P(ω) such that F = {A ⊂
ω : φ(ω\A) <∞}. Since F 6= P(ω), φ(ω) = ∞ and the subadditivity of φ implies
that φ(F ) = ∞ for all F ∈ F . It follows from F = {A ⊂ ω : φ(ω \A) < ∞} that
a set A ⊂ ω belongs to F+ if and only if φ(A) = ∞.

To show that F is a P+-filter, fix any decreasing sequence of sets (Ak)k∈ω in
F . Let n0 = 0 and by induction construct an increasing sequence of positive
integers (nk)k∈ω such that φ([nk, nk+1) ∩ Ak) > k for every k ∈ ω. Then the set
A =

⋃

k∈ω [nk, nk+1) ∩ Ak is a pseudointersection of (Ak)k∈ω and belongs to the

family F+ as φ(A) = ∞. �

Let us remark that Lemma 11 cannot be generalized to Fσδ-filters. The fol-
lowing example was suggested to the authors by Jonathan Verner.

Example 12. The filter

Fr ⊗ Fr =
{

A ⊂ ω × ω :
{

n ∈ ω : {m ∈ ω : (n,m) ∈ A} ∈ Fr
}

∈ Fr
}

on ω × ω is an Fσδ but not P+.

Looking at Theorem 10, it is natural to ask the following

Question 13. Does βω contain an injective F -convergent sequence for some

analytic filter F?
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On the other hand, we have the following fact:

Theorem 14. Each infinite compact Hausdorff space X contains an injective

F -convergent sequence for some meager and null filter F .

Proof: Choose any finite-to-one function ξ : ω → ω such that

lim
n→∞

|ξ−1(n)| = ∞ and
∏

n∈ω

(1− 2−|ξ−1(n)|) = 0.

By Corollary 7, any infinite compact Hausdorff space X contains an injective F -
convergent sequence for some ξ-meager filter F . It is clear that F is meager. It
remains to check that F is null. The filter F , being ξ-meager, lies in the union
⋃

n∈ω Fn where Fn = {A ⊂ ω : ∀ k ≥ n A ∩ ξ−1(k) 6= ∅}. It suffices to prove that
each set Fn has Haar measure zero. Observe that the set Fn can be identified
with the product

∏

k≥n(P(ϕ−1(k)) \ {∅}), which has Haar measure

∏

k≥n

2|ϕ
−1(k)| − 1

2|ϕ−1(k)|
=

∏

k≥n

(1− 2−|ϕ−1(k)|) = 0.

�

Remark 15. After writing this paper the authors learned from V. Tkachuk
that the meager property of the function space Cp(ω

∗, 2) was also established
by E.G. Pytkeev in his Dissertation [15, 3.24]. Game characterizations of topolo-
gical spaces X with Baire function space Cp(X,R) were given in [9], [19] and [14].
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the information about Pytkeev’s results on the Baire category of function spaces.
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[5] Garćıa-Ferreira S., Malykhin V., A. Tamariz-Mascarúa A., Solutions and problems on con-
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