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STOCHASTIC FUZZY DIFFERENTIAL EQUATIONS

WITH AN APPLICATION

Marek T. Malinowski and Mariusz Michta

In this paper we present the existence and uniqueness of solutions to the stochastic fuzzy
differential equations driven by Brownian motion. The continuous dependence on initial
condition and stability properties are also established. As an example of application we
use some stochastic fuzzy differential equation in a model of population dynamics.

Keywords: fuzzy random variable, fuzzy stochastic process, fuzzy stochastic Lebesgue–
Aumann integral, fuzzy stochastic Itô integral, stochastic fuzzy differential
equation, stochastic fuzzy integral equation

Classification: 60H05, 60H10, 60H30, 03E72

1. INTRODUCTION

The theory of fuzzy differential equations has focused much attention in the last
decades since it provides good models for dynamical systems under uncertainty.
Kaleva (in his paper [8]) started to develop this theory using the concept of H-
differentiability for fuzzy mappings introduced by Puri and Ralescu [18]. Currently
the literature on this topic is very rich. For a significant collection of the results
on fuzzy differential equations and further references we refer the reader to the
monographs of Lakshmikantham and Mohapatra [11], Diamond and Kloeden [3].

Recently some results have been published concerning random fuzzy differential
equations (see Fei [4], Feng [5], Malinowski [13]). The random approach can be
adequate in modeling of the dynamics of real phenomena which are subjected to
two kinds of uncertainty: randomness and fuzziness, simultaneously. Here a crucial
role play fuzzy random variables and fuzzy stochastic processes. In literature one
can find various definitions of fuzzy random variables as well as the results which
establish the relations between different concepts of measurability for fuzzy random
elements (see e. g. Colubi et al. [2]).

In [13] there were investigated the random fuzzy differential equations which, in
their integral form, contain random fuzzy Lebesgue–Aumann integral. The results
such as existence, uniqueness of the solutions to these equations were shown. Also
some applications of random fuzzy differential equations in the real-world phenom-
ena were presented. The extension of these studies and the next step in model-
ing of dynamical systems under two types of uncertainties should be the theory of
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stochastic fuzzy differential equations in which the stochastic fuzzy diffusion term
(stochastic fuzzy Itô integral) appears. The crisp stochastic differential equations
with stochastic perturbation terms are successfully used in a great number of mathe-
matical description of real phenomena in control theory, physics, economics, biology
(see e. g. Øksendal [16], Protter [17] and references therein). The models involv-
ing stochastic fuzzy differential equations could be promising in the framework of
phenomena where the quantities have imprecise values.

As far as we know there are two papers concerning this new area, i. e. Kim [9]
and Ogura [15]. However the approaches presented there are different. In [9] all the
considerations are made in the setup of fuzzy sets space of a real line, and the main
result on the existence and uniquenes of the solution is obtained under very par-
ticular conditions imposed on the structure of integrated fuzzy stochastic processes
such that a maximal inequality for fuzzy stochastic Itô integrals holds. Unfortu-
nately the paper [9] contains gaps. Moreover, in view of Zhang [21] we find out
that the intersection property (a crucial one to apply the Representation Theorem of
Negoita–Ralescu [14]) of a set-valued Itô integral may not hold true in general. Thus
a definition of fuzzy stochastic Itô integral, which is used in [9], seems to be incorrect.
Hence, unfortunately, most of results in [9] seem to be questionable. On the other
hand, in [15] a proposed approach does not contain any notion of fuzzy stochastic
Itô integral. The method presented there is based on selections sets. Therefore, in
this paper, we propose a new approach to the notion of fuzzy stochastic Itô integral
and consequently a new approach to stochastic fuzzy differential equations. We give
a result of existence and uniqueness of the solution to stochastic fuzzy differential
equation where the diffusion term (appropriate fuzzy stochastic Itô integral) is of
some special form, i. e. it is the embedding of real d-dimensional Itô integral into
fuzzy numbers space. We impose only standard requirements on the equation co-
efficients, i. e. the Lipschitz condition and a linear growth condition. The existence
theorem is obtained in the framework of a space of L2-integrably bounded fuzzy
random variables which is complete with respect to the considered metric. Further
we examine a boundedness of the solution, a continuous dependence on the initial
conditions and a stability of solutions.

The paper is organized as follows: in Section 2 we give some preliminaries on
measurable multifunctions and fuzzy random variables, which we will need later
on. In Section 3 the notions of fuzzy stochastic integrals of Lebesgue–Aumann type
and Itô type are defined, also some useful properties of these integrals are stated. In
Section 4 the stochastic fuzzy differential equations are investigated, and in Section 5
we apply them to a model of population dynamics.

2. PRELIMINARIES

Let K(IRd) be the family of all nonempty, compact and convex subsets of IRd. In
K(IRd) we consider the Hausdorff metric dH which is defined by

dH (A, B) := max

{

sup
a∈A

inf
b∈B

‖a − b‖, sup
b∈B

inf
a∈A

‖a − b‖

}

,
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where ‖·‖ denotes a norm in IRd. It is known that K(IRd) is a complete and separable
metric space with respect to dH .

If A, B, C ∈ K(IRd), we have dH (A + C, B + C) = dH (A, B) (see e. g. Laksh-
mikantham, Mohapatra [11]).

Let (Ω,A, P ) be a complete probability space and M(Ω,A;K(IRd)) denote the
family of A-measurable multifunctions with values in K(IRd), i. e. the mappings
F : Ω → K(IRd) such that

{ω ∈ Ω : F (ω) ∩ C 6= ∅ } ∈ A for every closed set C ⊂ IRd.

A multifunction F ∈ M(Ω,A;K(IRd)) is said to be Lp-integrably bounded, p ≥ 1, if
there exists h ∈ Lp (Ω,A, P ; IR+) such that ‖|F |‖ ≤ h P -a.e., where IR+ := [0,∞),

‖|A|‖ := dH (A, {0}) = sup
a∈A

‖a‖ for A ∈ K(IRd)

and Lp(Ω,A, P ; IR+) is a space of equivalence classes (with respect to the equal-
ity P -a.e.) of A-measurable random variables h : Ω → IR+ such that IEhp =
∫

Ω
hp dP < ∞. It is known (see Hiai and Umegaki [6]) that F ∈ M(Ω,A;K(IRd)) is

Lp-integrably bounded if and only if ‖|F |‖ ∈ Lp (Ω,A, P ; IR+). Let us denote

Lp(Ω,A, P ;K(IRd)) :=
{

F ∈ M(Ω,A;K(IRd)) : ‖|F |‖ ∈ Lp(Ω,A, P ; IR+)
}

.

The multifunctions F, G ∈ Lp
(

Ω,A, P ;K(IRd)
)

are considered to be identical, if
F = G P -a.e.

For F, G ∈ M(Ω,A;K(IRd)) there exist sequences {fn}, {gn} of measurable se-
lections for F and G, respectively, such that F (ω) = cl{fn(ω) : n ≥ 1} and
G(ω) = cl{gn(ω) : n ≥ 1}, where cl denotes the closure in IRd. Hence the func-
tion ω 7→ dH (F (ω), G(ω)) is measurable. Since dH (F, G) ≤ ‖|F |‖ + ‖|G|‖, we have
dH (F, G) ∈ Lp (Ω,A, P ; IR+) for F, G ∈ Lp(Ω,A, P ;K(IRd)). Therefore one can
define the distance

∆p(F, G) := (IEdp
H (F, G))

1/p
for F, G ∈ Lp(Ω,A, P ;K(IRd)), p ≥ 1.

In fact ∆p is a metric in the set Lp(Ω,A, P ;K(IRd)).

One can prove that:

Theorem 2.1. For p ≥ 1 the space Lp(Ω,A, P ;K(IRd)) is a complete metric space
with respect to the metric ∆p.

Let F(IRd) denote the fuzzy set space of IRd, i. e. the set of functions u : IRd →
[0, 1] such that [u]α ∈ K(IRd) for every α ∈ [0, 1], where [u]α := { a ∈ IRd : u(a) ≥ α }
for α ∈ (0, 1] and [u]0 := cl{ a ∈ IRd : u(a) > 0 }.

For u ∈ F(IRd) we define σ (p∗, α; u) := sup {(p∗, a) : a ∈ [u]α} and call it the
support function of the fuzzy set u at p∗ ∈ IRd and α ∈ [0, 1], where (·, ·) inside of
the supremum denotes the inner product in IRd.
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Definition 2.2. (Puri and Ralescu [19]). Let (Ω,A, P ) be a probability space. A
mapping x : Ω → F(IRd) is said to be a fuzzy random variable, if [x]α : Ω → K(IRd)
is an A-measurable multifunction for all α ∈ [0, 1].

The following result is a consequence of Proposition 2.39 in chap. 2 of Hu and
Papageorgiou [7].

Proposition 2.3. Let (Ω,A, P ) be a complete probability space. A mapping x : Ω →
F(IRd) is a fuzzy random variable if and only if for every α ∈ [0, 1] and every p∗ ∈ IRd

the function Ω ∋ ω 7→ σ (p∗, α; x(ω)) ∈ IR is A-measurable.

Definition 2.4. A fuzzy random variable x : Ω → F(IRd) is said to be Lp-integrably
bounded, p ≥ 1, if [x]α ∈ Lp(Ω,A, P ;K(IRd)) for every α ∈ [0, 1].

Let Lp(Ω,A, P ;F(IRd)) denote the set of all the Lp-integrably bounded fuzzy ran-
dom variables, where we consider x, y ∈ Lp(Ω,A, P ;F(IRd)) as identical if P ([x]α =
[y]α, ∀α ∈ [0, 1]) = 1.

Remark 2.5. Let x : Ω → F(IRd) be a fuzzy random variable and p ≥ 1. The
following conditions are equivalent:

(a) x ∈ Lp(Ω,A, P ;F(IRd)),

(b) [x]0 ∈ Lp(Ω,A, P ;K(IRd)),

(c) ‖|[x]0|‖ ∈ Lp(Ω,A, P ; IR+).

By virtue of Proposition 5.2 in chap. 2 of Hu and Papageorgiou [7] we can write
the following assertion.

Proposition 2.6. If x ∈ L1(Ω,A, P ;F(IRd)), then for every α ∈ [0, 1] and every
p∗ ∈ IRd it holds

σ
(

p∗, α;

∫

Ω

xdP
)

=

∫

Ω

σ(p∗, α; x) dP,

where
∫

Ω
xdP is a fuzzy integral defined levelwise in the same manner as in Kaleva [8],

i. e. the level sets of this integral are the set-valued integrals of level sets of x in the
sense of Aumann [1].

For x, y ∈ Lp(Ω,A, P ;F(IRd)) the mapping ω 7→ dp
H([x(ω)]α, [y(ω)]α) is A-

measurable for every α ∈ [0, 1]. Moreover, we have

sup
α∈[0,1]

∆p([x]α, [y]α) ≤ sup
α∈[0,1]

∆p([x]α, {0}) + sup
α∈[0,1]

∆p([y]α, {0})

≤
(

IE sup
α∈[0,1]

dp
H([x]α, {0})

)1/p

+
(

IE sup
α∈[0,1]

dp
H([y]α, {0})

)1/p

≤ ∆p([x]0, {0}) + ∆p([y]0, {0}) < ∞.

Therefore we can define a metric in Lp(Ω,A, P ;F(IRd)) in the following way

δp(x, y) := sup
α∈[0,1]

∆p([x]α, [y]α).
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Remark 2.7. Let x, y ∈ Lp(Ω,A, P ;F(IRd)), p ≥ 1. Then δp(x, y) = 0 if and only
if P ([x]α = [y]α, ∀α ∈ [0, 1]) = 1.

In a similar way as in the proof of Theorem 1 in Stojaković [20] we proceed with
a derivation of the following result.

Theorem 2.8. For p ≥ 1 the space Lp(Ω,A, P ;F(IRd)) is a complete metric space
with respect to the metric δp.

In the subsequent section we will apply the following properties of the metric δ2

which are immediate after-effects of the properties of the Hausdorff metric (see [7]).

Lemma 2.9. (a) If x, y, z ∈ L2(Ω,A, P ;F(IRd)), then

δ2(x + z, y + z) = δ2(x, y). (1)

(b) If x1, x2, . . . , xn, y1, y2, . . . , yn ∈ L2(Ω,A, P ;F(IRd)), then

δ2
2

(

n
∑

k=1

xk,

n
∑

k=1

yk

)

≤ n

n
∑

k=1

δ2
2(xk, yk). (2)

3. FUZZY STOCHASTIC PROCESSES
AND FUZZY STOCHASTIC INTEGRALS

In this section we establish the notion of a fuzzy stochastic Lebesgue–Aumann in-
tegral as a fuzzy adapted stochastic process with values in the fuzzy set space of
d-dimensional Euclidean space. We make also a discussion on a fuzzy stochastic Itô
integral.

Let T ∈ (0,∞) and let (Ω,A, {At}t∈[0,T ]
, P ) be a complete, filtered probability

space with a filtration {At}t∈[0,T ]
satisfying the usual hypotheses, i. e. {At}t∈[0,T ]

is
an increasing and right continuous family of sub-σ-algebras of A, and A0 contains
all P -null sets.

We call x : [0, T ] × Ω → F(IRd) a fuzzy stochastic process, if for every t ∈ [0, T ]
a mapping x(t, ·) = x(t) : Ω → F(IRd) is a fuzzy random variable in the sense of
Definition 2.2, i. e. x can be thought as a family {x(t), t ∈ [0, T ]} of fuzzy random
variables. A fuzzy stochastic process x is said to be {At}-adapted, if for every
α ∈ [0, 1] the multifunction [x(t)]α : Ω → K(IRd) is At-measurable for all t ∈ [0, T ].
It is called measurable, if [x]α : [0, T ] × Ω → K(IRd) is a B([0, T ]) ⊗ A-measurable
multifunction for all α ∈ [0, 1], where B([0, T ]) denotes the Borel σ-algebra of subsets
of [0, T ]. If x : [0, T ] × Ω → F(IRd) is {At}-adapted and measurable, then it will
be called nonanticipating. Equivalently, x is nonanticipating if and only if for every
α ∈ [0, 1] the multifunction [x]α is measurable with respect to the σ-algebra N ,
which is defined as follows

N := {A ∈ B([0, T ])⊗A : At ∈ At for every t ∈ [0, T ]},

where At = {ω : (t, ω) ∈ A} for t ∈ [0, T ].
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Let p ≥ 1 and Lp([0, T ] × Ω,N ; IRd) denote the set of all nonanticipating IRd-

valued stochastic processes {h(t), t ∈ [0, T ]} such that IE
(

∫ T

0 ‖h(s)‖p ds
)

< ∞. A

fuzzy stochastic process x is called Lp-integrably bounded, if there exists a real-
valued stochastic process h ∈ Lp([0, T ]×Ω,N ; IR+) such that ‖|[x(t, ω)]0|‖ ≤ h(t, ω)
for a.a. (t, ω) ∈ [0, T ]×Ω. By Lp([0, T ]×Ω,N ;F(IRd)) we denote the set of nonan-
ticipating and Lp-integrably bounded fuzzy stochastic processes.

Let x ∈ L1([0, T ]×Ω,N ;F(IRd)). For such x and a fixed t ∈ [0, T ] we can define
an integral

Lx(t, ω) :=

∫ t

0

x(s, ω) ds

depending on the parameter ω ∈ Ω, where the fuzzy integral
∫ t

0
x(s, ω) ds is defined

levelwise, i. e. the α-level sets of this integral are the set-valued integrals of α-level
sets of x in the sense of Aumann [1]. For the details and properties of such a
fuzzy integral we refer to Kaleva [8]. Since for every α ∈ [0, 1], every t ∈ [0, T ]

and every ω ∈ Ω the Aumann integral
∫ t

0
[x(s, ω)]α ds belongs to K(IRd) (see e. g.

Aumann [1], Kisielewicz [10]), we have
∫ t

0
x(s, ω) ds ∈ F(IRd) for every t ∈ [0, T ] and

every ω ∈ Ω. We will call Lx(t) = Lx(t, ·) the fuzzy stochastic Lebesgue–Aumann
integral. Obviously, such integral can be defined for every fuzzy stochastic process
x ∈ Lp([0, T ]× Ω,N ;F(IRd)), p ≥ 1.

Proposition 3.1. Let p ≥ 1 and x ∈ Lp([0, T ]× Ω,N ;F(IRd)). Then the mapping
Lx(·, ·) : [0, T ] × Ω → F(IRd) is a measurable fuzzy stochastic process and Lx(t) =
Lx(t, ·) ∈ Lp(Ω,At, P ;F(IRd)) for every t ∈ [0, T ].

P r o o f . Let us fix α ∈ [0, 1] and p∗ ∈ IRd. Accordingly to the Proposition 2.3 the
function [0, T ]×Ω ∋ (t, ω) 7→ σ(p∗, α; x(t, ω)) ∈ IR is measurable and {At}-adapted.
Note that for every (t, ω) ∈ [0, T ]× Ω

σ(p∗, α; x(t, ω)) = sup{ (p∗, a) : a ∈ [x(t, ω)]α }

≤ sup{ ‖p∗‖ · ‖a‖ : a ∈ [x(t, ω)]α } = ‖p∗‖ · ‖|[x(t, ω)]α|‖.

Hence σ(p∗, α; x(·, ·)) belongs to Lp([0, T ] × Ω,N ; IR).

Using Fubini’s theorem we get that the mapping ω 7→
∫ t

0 σ(p∗, α; x(s, ω)) ds is

At-measurable for every t ∈ [0, T ], and t 7→
∫ t

0 σ(p∗, α; x(s, ω)) ds is continuous for

ω ∈ Ω. By Proposition 2.6 we have σ(p∗, α;
∫ t

0 x(s, ω) ds) =
∫ t

0 σ(p∗, α; x(s, ω)) ds,

what allows us to claim that (t, ω) 7→ σ(p∗, α;
∫ t

0
x(s, ω) ds) is a measurable and

{At}-adapted real valued stochastic process. Now by virtue of Proposition 2.3 we

infer that the process [0, T ]×Ω ∋ (t, ω) 7→
∫ t

0
x(s, ω) ds ∈ F(IRd) is nonanticipating,

i. e. it is measurable and {At}-adapted.
Since x ∈ Lp([0, T ] × Ω,N ;F(IRd)), there exists h ∈ Lp([0, T ] × Ω,N ; IR+) such

that ‖|[x(t, ω)]0|‖ ≤ h(t, ω) for a.a. (t, ω) ∈ [0, T ] × Ω. Let t ∈ [0, T ] be fixed.
Applying Jensen’s inequality we obtain

IE
(

∫ t

0

h(s) ds
)p

≤ tp−1IE
(

∫ t

0

hp(s) ds
)

< ∞.
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Hence
∫ t

0
h(s) ds ∈ Lp(Ω,At, P ; IR+). Further, observe that using Th. 4.1. of Hiai

and Umegaki [6] we can write

‖|[Lx(t)]0|‖ = dH

(

∫ t

0

[x(s)]0 d ds, {0}
)

≤

∫ t

0

dH

(

[x(s)]0, {0}
)

ds =

∫ t

0

‖|[x(s)]0|‖ ds ≤

∫ t

0

h(s) ds.

By Remark 2.5 the proof is completed. �

Similar reasoning yields the following properties.

Proposition 3.2. Let x, y ∈ L1([0, T ] × Ω,N ;F(IRd)). Then for every p ≥ 1 and
every t ∈ [0, T ]

δp
p

(

Lx(t), Ly(t)
)

≤ tp−1

∫ t

0

δp
p

(

x(s), y(s)
)

ds. (3)

Moreover, if x, y ∈ Lp([0, T ]× Ω,N ;F(IRd)) with p ≥ 1 then the right-hand side of
the inequality (3) is bounded and the mapping

[0, T ] ∋ t 7→ Lx(t) ∈ Lp(Ω,A, P ;F(IRd))

is δp-continuous.

In the sequel we shall introduce a concept of a fuzzy stochastic Itô integral (being
a fuzzy random variable) needed in the paper.

Firstly, observe that a natural way to define fuzzy Itô integral could be the
following one: to define a stochastic set-valued Itô integral (being a measurable
multifunction) and then using the Representation Theorem of Negoita–Ralescu [14]
to introduce a notion of fuzzy Itô integral. Such a method of defining of fuzzy Itô
integral one can find in [9, 12]. Unfortunately, this approach fails as we find out from
[21] that an intersection property (a crucial one to apply Representation Theorem)
of the set-valued Itô integral may not hold true in general. As a consequence, this
way of defining of fuzzy stochastic Itô integral seems to be incorrect. Therefore the
notion of a fuzzy stochastic Itô integral, proposed in this paper, will be of a very
particular form.

Let
〈

·
〉

: IRd → F(IRd) denote an embedding of IRd into F(IRd), i. e. for r ∈ IRd

we have
〈

r
〉

(a) =

{

1, if a = r,

0, if a ∈ IRd \ {r}.

If x : Ω → IRd is an IRd-valued random variable on a probability space (Ω,A, P ),
then

〈

x
〉

: Ω → F(IRd) is a fuzzy random variable. For stochastic processes we have
a similar property.

Remark 3.3. Let x : [0, T ] × Ω → IRd be an IRd-valued stochastic process ({At}-
adapted, measurable, respectively). Then

〈

x
〉

: [0, T ] × Ω → F(IRd) is a fuzzy
stochastic process ({At}-adapted, measurable, respectively).
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In forthcoming section we want to consider the stochastic fuzzy differential equa-
tions with a diffusion term which is based on a notion of fuzzy stochastic Itô integral.
Let us introduce this fuzzy stochastic integral.

Let {B(t), t ∈ [0, T ]} be a one-dimensional {At}-Brownian motion defined on a
complete probability space (Ω,A, P ) with a filtration {At}t∈[0,T ] satisfying usual

hypotheses. For x ∈ L2([0, T ] × Ω,N ; IRd) let
∫ T

0
x(s) dB(s) denote the classical

stochastic Itô integral (see e. g. [16, 17]).

Definition 3.4. By fuzzy stochastic Itô integral we mean the fuzzy random variable
〈∫ T

0 x(s) dB(s)
〉

.

For every t ∈ [0, T ] one can consider the fuzzy stochastic Itô integral
〈∫ t

0
x(s) dB(s)

〉

,
which is understood in the sense:

〈

∫ t

0

x(s) dB(s)
〉

:=
〈

∫ T

0

1[0,t](s)x(s) dB(s)
〉

,

where 1[0,t](s) = 1 if s ∈ [0, t] and 1[0,t](s) = 0 if s ∈ (t, T ].

Proposition 3.5. Let x ∈ L2([0, T ]×Ω,N ; IRd). Then
{

〈∫ t

0
x(s) dB(s)

〉

, t ∈ [0, T ]
}

is an {At}-adapted fuzzy stochastic process. Moreover, for every t ∈ [0, T ] we have

〈

∫ t

0

x(s) dB(s)
〉

∈ L2(Ω,A, P ;F(IRd)).

Straightforward calculations and classical Itô isometry yield the next result, which
will be useful in the further section.

Proposition 3.6. Let x, y ∈ L2([0, T ]× Ω,N ; IRd). Then for every t ∈ [0, T ]

δ2
2

(〈

∫ t

0

x(s) dB(s)
〉

,
〈

∫ t

0

y(s) dB(s)
〉)

=

∫ t

0

δ2
2

(〈

x(s)
〉

,
〈

y(s)
〉)

ds, (4)

and the mapping

[0, T ] ∋ t 7→
〈

∫ t

0

x(s) dB(s)
〉

∈ L2(Ω,A, P ;F(IRd))

is δ2-continuous.

4. STOCHASTIC FUZZY DIFFERENTIAL EQUATIONS

Let 0 < T < ∞ and let (Ω,A, P ) be a complete probability space with a filtra-
tion {At}t∈[0,T ] satisfying usual conditions. By {B(t), t ∈ [0, T ]} we denote a one-
dimensional {At}-Brownian motion defined on (Ω,A, {At}t∈[0,T ], P ).

In this paragraph we shall consider the stochastic fuzzy differential equations
which can be written in symbolic form as:

dx(t) = f(t, x(t)) dt +
〈

g(t, x(t)) dB(t)
〉

, x(0) = x0, (5)

where f : [0, T ]×Ω×F(IRd) → F(IRd), g : [0, T ]×Ω×F(IRd) → IRd, and x0 : Ω →
F(IRd) is a fuzzy random variable.
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Definition 4.1. By a solution to (5) we mean a fuzzy stochastic process x : [0, T ]×
Ω → F(IRd) such that

(i) x(t) ∈ L2(Ω,At, P ;F(IRd)) for every t ∈ [0, T ],

(ii) x : [0, T ] → L2(Ω,A, P ;F(IRd)) is a continuous mapping with respect to the
metric δ2,

(iii) for every t ∈ [0, T ] it holds

x(t) = x0 +

∫ t

0

f(s, x(s)) ds +
〈

∫ t

0

g(s, x(s)) dB(s)
〉

P -a.e. (6)

The right-hand side of (6) is understood in the meaning described in the preceding
section, i. e. the second term is the fuzzy stochastic Lebesgue–Aumann integral, while
the third one is the IRd-valued stochastic Itô integral which is embedded into F(IRd).

Definition 4.2. A solution x : [0, T ] × Ω → F(IRd) to (5) is unique, if for every
t ∈ [0, T ]

P ([x(t)]α = [y(t)]α, ∀α ∈ [0, 1]) = 1,

where y : [0, T ]× Ω → F(IRd) is any solution of (5).

Here the concepts of solution to (6) and its uniqueness are in the weaker sense
than those proposed in Kim [9]. In our new setting it is enough to impose only the
standard conditions on the random coefficients of the equation in order to obtain
both the existence and the uniqueness of the solution. In the sequel we shall write
down the detailed conditions imposed on the coefficients of the equation (5). How-
ever, first, we recall some needed facts about different measurability concepts for
fuzzy random elements. As we mentioned in the Introduction, the Definition 2.2 is
one of the possible to be considered for fuzzy random variables. Generally, having
a metric ρ in the set F(IRd) one can consider σ-algebra Bρ generated by the topol-
ogy induced by ρ. Then a fuzzy random variable can be viewed as a measurable
(in the classical sense) mapping between two measurable spaces, namely (Ω,A) and
(F(IRd),Bρ). Using the classical notation, we write this as: x is A|Bρ-measurable.

The metrics which are the most often used in the set F(IRd) are:

d∞(u, v) := sup
α∈[0,1]

dH

(

[u]α, [v]α
)

,

dp(u, v) :=
(

∫ 1

0

dp
H

(

[u]α, [v]α
)

dα
)1/p

, p ≥ 1,

and Skorohod metric

dS(u, v) := inf
λ∈Λ

max

{

sup
t∈[0,1]

|λ(t) − t|, sup
t∈[0,1]

dH(xu(t), xv(λ(t)))

}

,
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where Λ denotes the set of strictly increasing continuous functions λ : [0, 1] → [0, 1]
such that λ(0) = 0, λ(1) = 1, and xu, xv : [0, 1] → K(IRd) are the càdlàg repre-
sentations for the fuzzy sets u, v ∈ F(IRd), see Colubi et al. [2] for details. The
space (F(IRd), d∞) is complete and non-separable, (F(IRd), dp) is separable and

non-complete, and the space (F(IRd), dS) is Polish.
The fuzzy random variables defined such as in Definition 2.2 will be called Puri–

Ralescu fuzzy random variables. It is known (see [2]) that for a mapping x : Ω →
F(IRd), where (Ω,A, P ) is a given probability space, it holds:

(v1) x is the Puri–Ralescu fuzzy random variable if and only if x is A|BdS
-measurable,

(v2) x is the Puri–Ralescu fuzzy random variable if and only if x is A|Bdp
-measurable

for all p ∈ [1,∞),

(v3) if x is A|Bd∞
-measurable, then it is the Puri–Ralescu fuzzy random variable;

the opposite implication is not true.

Hence the Skorohod metric measurability condition on F(IRd) is equivalent to the
measurability of the α-level mappings and to the A|Bdp

-measurability for all p ≥ 1.

Now we are in the position to formulate the assumptions imposed on the equation
coefficients. Assume that f : [0, T ] × Ω × F(IRd) → F(IRd), f 6≡ θ̂, g : [0, T ] × Ω ×
F(IRd) → IRd satisfy:

(c1) the mapping f : ([0, T ] × Ω) × F(IRd) → F(IRd) is N ⊗ BdS
|BdS

-measurable
and g : ([0, T ]× Ω) ×F(IRd) → IRd is N ⊗ BdS

|B(IRd)-measurable,

(c2) there exists a constant L > 0 such that

δ2

(

f(t, u), f(t, v)
)

≤ Lδ2(u, v),

(

IE‖g(t, u)− g(t, v)‖2
)1/2

= δ2

(〈

g(t, u)
〉

,
〈

g(t, v)
〉)

≤ Lδ2(u, v)

for every t ∈ [0, T ], and every u, v ∈ F(IRd),

(c3) there exists a constant C > 0 such that for every t ∈ [0, T ], and every u ∈
F(IRd)

δ2

(

f(t, u), θ̂
)

≤ C
(

1 + δ2(u, θ̂)
)

,

(

IE‖g(t, u)‖2
)1/2

= δ2

(〈

g(t, u)
〉

, θ̂
)

≤ C
(

1 + δ2(u, θ̂)
)

,

where θ̂ ∈ F(IRd) is defined as θ̂ :=
〈

0
〉

.

One can see that for non-random u, v the right-hand sides of the inequalities ap-
pearing in (c2), (c3) could be written as Ld∞(u, v) and C(1+d∞(u, θ̂)), respectively.
However, in the sequel we will work with u, v which will be random elements, so we
keep (c2), (c3) with δ2 as above.

Using the properties (v1), (v2) and observing that Bd1 ⊂ Bdp
for all p ≥ 1, we

can rewrite the condition (c1) in its equivalent form as follows:
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(c11) the mapping f : ([0, T ] × Ω) × F(IRd) → F(IRd) is N ⊗ Bdp
|Bdq

-measurable

for all p, q ∈ [1,∞), and g : ([0, T ] × Ω) × F(IRd) → IRd is N ⊗ Bd1 |B(IRd)-
measurable,

Each subsequent condition (c12) or (c13) implies that (c1) holds:

(c12) — for every u ∈ F(IRd)
the mapping f(·, ·, u) : [0, T ]×Ω → F(IRd) is the nonanticipating fuzzy stochas-
tic process, and g(·, ·, u) : [0, T ] × Ω → IRd is the nonanticipating IRd-valued
stochastic process,

— for every (t, ω) ∈ [0, T ]× Ω
the fuzzy mapping f(t, ω, ·) : F(IRd) → F(IRd) is continuous with respect to
the metric dS , and the mapping g(t, ω, ·) : F(IRd) → IRd is continuous as a
function from a metric space (F(IRd), dS) to (IRd, ‖ · ‖),

(c13) — for every u ∈ F(IRd) the mapping f(·, ·, u) : [0, T ] × Ω → F(IRd) is the
nonanticipating fuzzy stochastic process and g(·, ·, u) : [0, T ] × Ω → IRd is the
nonanticipating IRd-valued stochastic process,

— for every (t, ω) ∈ [0, T ]× Ω
the fuzzy mapping f(t, ω, ·) : F(IRd) → F(IRd) is continuous as a mapping
from a metric space (F(IRd), dp) to (F(IRd), dq), for every p, q ∈ [1,∞),

the mapping g(t, ω, ·) : F(IRd) → IRd is continuous as a function from a metric
space (F(IRd), d1) to (IRd, ‖ · ‖).

Each of the conditions (c1), (c11), (c12), (c13) guarantees the proper measura-
bility of the integrands in (6). In particular, we have:

Lemma 4.3. Let f : [0, T ] × Ω × F(IRd) → F(IRd), g : [0, T ] × Ω × F(IRd) → IRd

satisfy the condition (c1) and a nonanticipating fuzzy stochastic process x : [0, T ]×
Ω → F(IRd) be given. Then the mapping f◦x : [0, T ]×Ω → F(IRd), g◦x : [0, T ]×Ω →
IRd defined by

(f ◦ x)(t, ω) := f(t, ω, x(t, ω)), (g ◦ x)(t, ω) := g(t, ω, x(t, ω))

for (t, ω) ∈ [0, T ]×Ω, is a nonanticipating fuzzy stochastic process and a nonantici-
pating IRd-valued stochastic process, respectively.

Now we formulate the main result of the paper.

Theorem 4.4. Let x0 ∈ L2(Ω,A, P ;F(IRd)) be an A0-measurable fuzzy random
variable and let f : [0, T ] × Ω × F(IRd) → F(IRd), g : [0, T ] × Ω × F(IRd) → IRd

satisfy (c1) – (c3). Then the equation (5) has a unique solution.

P r o o f . We shall prove the theorem in the setup of metric space
(

L2(Ω,A, P ;F(IRd)), δ2

)

which is complete due to Theorem 2.8.
Let us define a sequence xn : [0, T ] × Ω → F(IRd), n = 0, 1, . . . of successive

approximations as follows:

x0(t) = x0, for every t ∈ [0, T ],
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and for n = 1, 2, . . .

xn(t) = x0 +

∫ t

0

f(s, xn−1(s)) ds +
〈

∫ t

0

g(s, xn−1(s)) dB(s)
〉

for every t ∈ [0, T ].

Note that applying (1), (2), (3), (4) we obtain for every t ∈ [0, T ]

δ2
2

(

x1(t), x0(t)
)

= δ2
2

(

∫ t

0

f(s, x0) ds +
〈

∫ t

0

g(s, x0) dB(s)
〉

, θ̂
)

≤ 2δ2
2

(

∫ t

0

f(s, x0) ds, θ̂
)

+ 2δ2
2

(〈

∫ t

0

g(s, x0) dB(s)
〉

, θ̂
)

≤ 2t

∫ t

0

δ2
2

(

f(s, x0), θ̂
)

ds + 2

∫ t

0

δ2
2

(〈

g(s, x0)
〉

, θ̂
)

ds.

Using the assumption (c3) we get

δ2
2

(

x1(t), x0(t)
)

≤ 22C2γ(T + 1)t ≤ 22C2γ(T + 1)T < ∞,

where γ = 1 + δ2
2(x0, θ̂).

Observe further that for n = 2, 3, . . . one has

δ2
2

(

xn(t), xn−1(t)
)

≤ 2t

∫ t

0

δ2
2

(

f(s, xn−1(s)), f(s, xn−2(s))
)

ds

+ 2

∫ t

0

δ2
2

(〈

g(s, xn−1(s))
〉

,
〈

g(s, xn−2(s))
〉)

ds.

Hence, using assumption (c2), we infer that

δ2
2

(

xn(t), xn−1(t)
)

≤ 2L2(T + 1)

∫ t

0

δ2
2

(

xn−1(s), xn−2(s)
)

ds,

and therefore

δ2
2

(

xn(t), xn−1(t)
)

≤ 2L−2C2γ

(

2L2(T + 1)t
)n

n!
≤ 2L−2C2γ

(

2L2(T + 1)T
)n

n!
< ∞.

It follows that xn(t) ∈ L2(Ω,At, P ;F(IRd)) for every n and every t. Moreover, for
every n the mapping xn(·) : [0, T ] → L2(Ω,A, P ;F(IRd)) is continuous with respect
to the metric δ2.

In the sequel we shall show that the sequence (xn(t))∞n=0 satisfies Cauchy condi-
tion uniformly in t. Notice that

δ2

(

xn(t), xm(t)
)

≤
(

2L−2C2γ
)1/2

n
∑

k=m+1

(

(2L2(T + 1)T )k

k!

)1/2

,

and the series
∑

∞

k=0

(

zk

k!

)1/2

is convergent for every z ∈ IR. Hence for any ε > 0

there exists n0 ∈ IN such that for any n, m ≥ n0 it holds

sup
t∈[0,T ]

δ2

(

xn(t), xm(t)
)

< ε.
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Thus (xn)∞n=0 is uniformly convergent to some fuzzy stochastic process x : [0, T ] ×
Ω → F(IRd) which is {At}-adapted and δ2-continuous. We want to show that this
limit process is a solution to (5). In order to do this we show that x satisfies (6).
Indeed, for every t ∈ [0, T ] we have

δ2
2

(

x(t), x0 +

∫ t

0

f(s, x(s)) ds +
〈

∫ t

0

g(s, x(s)) dB(s)
〉)

≤ 3δ2
2

(

x(t), xn(t)
)

+ 3δ2
2

(

xn(t), x0 +

∫ t

0

f(s, xn−1(s)) ds +
〈

∫ t

0

g(s, xn−1(s)) dB(s)
〉)

+ 3δ2
2(Sn−1, S),

where

Sn−1 =

∫ t

0

f(s, xn−1(s)) ds +
〈

∫ t

0

g(s, xn−1(s)) dB(s)
〉

,

S =

∫ t

0

f(s, x(s)) ds +
〈

∫ t

0

g(s, x(s)) dB(s)
〉

.

The first term on the right-hand side of the inequality converges uniformly to zero,
whereas the second is equal to zero. So it is enough to consider the third one above.
By Lemma 2.9, Proposition 3.2, Proposition 3.6 and assumptions we have

δ2
2(Sn−1, S) ≤ 2δ2

2

(

∫ t

0

f(s, xn−1(s)) ds,

∫ t

0

f(s, x(s)) ds
)

+ 2δ2
2

(〈

∫ t

0

g(s, xn−1(s)) dB(s)
〉

,
〈

∫ t

0

g(s, x(s)) dB(s)
〉)

≤ 2L2(t + 1)

∫ t

0

δ2
2

(

xn−1(s), x(s)
)

ds

≤ 2L2(T + 1)T sup
t∈[0,T ]

δ2
2

(

xn−1(t), x(t)
)

→ 0, as n → ∞.

Therefore

δ2

(

x(t), x0 +

∫ t

0

f(s, x(s)) ds +
〈

∫ t

0

g(s, x(s)) dB(s)
〉)

= 0 for every t ∈ [0, T ].

Hence the existence of the solution is proved. For the uniqueness assume that
x : [0, T ] × Ω → F(IRd) and y : [0, T ] × Ω → F(IRd) are two solutions to (5). Then
let us notice that

δ2
2

(

x(t), y(t)
)

≤ 2L2(T + 1)

∫ t

0

δ2
2

(

x(s), y(s)
)

ds.

Thus, by Gronwall’s lemma, we obtain δ2
2

(

x(t), y(t)
)

≤ 0 for every t ∈ [0, T ]. This
implies that for every t ∈ [0, T ] it holds

P
(

[x(t)]α = [y(t)]α, ∀α ∈ [0, 1]
)

= 1,
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what ends the proof. �

Now we want to indicate that some results from a classical crisp stochastic differ-
ential equations theory are a part of the approach proposed in this paper. Indeed,
let us consider a crisp stochastic differential equation

dy(t) = a(t, y(t)) dt + b(s, y(s)) dB(s), y(0) = y0, (7)

where B is a Brownian motion as earlier, y0 : Ω → IRd is a square integrable IRd-
valued random variable which is A0-measurable. Let the coefficients a, b : [0, T ] ×
Ω × IRd → IRd satisfy:

— a(·, ·, r), b(·, ·, r) : [0, T ]×Ω → IRd are the nonanticipating, IRd-valued stochas-
tic processes, for every r ∈ IRd,

— there exists a constant L > 0 such that P -a.e. for every t ∈ [0, T ], every
r1, r2 ∈ IRd

max {‖a(t, r1) − a(t, r2)‖, ‖b(t, r1) − b(t, r2)‖} ≤ L‖r1 − r2‖,

— there exists a constant C > 0 such that P -a.e. for every (t, r) ∈ [0, T ]× IRd

max {‖a(t, r)‖, ‖b(t, r)‖} ≤ C(1 + ‖r‖).

It is a classical result that in such a setting there exists a solution y : [0, T ]×Ω → IRd

to (7), which is {At}-adapted IRd-valued square integrable stochastic process such
that for every t ∈ [0, T ]

y(t) = y0 +

∫ t

0

a(s, y(s)) ds +

∫ t

0

b(s, y(s)) dB(s) P -a.e.

Moreover, if y, z : [0, T ]×Ω → IRd are any two solutions to (7) then P
(

y(t) = z(t)
)

= 1
for every t ∈ [0, T ].

Let
〈

IRd
〉

denote the image of IRd by the embedding
〈

·
〉

: IRd → F(IRd).

Consider now equation (5), where x0 =
〈

y0

〉

, f : [0, T ] × Ω ×
〈

IRd
〉

→ F(IRd) is
defined by

f(t, u) =
〈

a(t, r)
〉

, if t ∈ [0, T ] and u =
〈

r
〉

, r ∈ IRd,

and g : [0, T ]× Ω ×
〈

IRd
〉

→ IRd is defined by

g(t, u) = b(t, r), if t ∈ [0, T ] and u =
〈

r
〉

, r ∈ IRd.

It is a matter of simple calculations to check that x0, f , g satisfy assumptions of
Theorem 4.4. Hence a unique solution x to (5) exists. It is clear that x =

〈

y
〉

, where
y is the solution to the crisp problem (7).
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Example 4.5. Let us take a fuzzy random variable x0 : Ω → F(IR) as x0 =
〈

y0

〉

,
where y0 : Ω → IR is a crisp random variable such that IE|y0|

2 < ∞. Let f : [0, T ]×
Ω ×

〈

IR
〉

→ F(IR), g : [0, T ]× Ω ×
〈

IR
〉

→ IR be as follows

f(t, u) =
〈

ar
〉

, if t ∈ [0, T ] and u =
〈

r
〉

, r ∈ IR,

g(t, u) = br, if t ∈ [0, T ] and u =
〈

r
〉

, r ∈ IR,

where a, b ∈ IR \ {0}. Then due to Theorem 4.4 the equation (5), for f , g, x0 as
above, has a unique solution x : [0, T ] × Ω → F(IR). Moreover, for this solution x
we have

x(t) =
〈

y0 exp
{

(a − b2/2)t + bBt

}〉

for t ∈ [0, T ].

The next result presents the boundedness of the solution to (5).

Theorem 4.6. Let x0 ∈ L2(Ω,A, P ;F(IRd)) and let f : [0, T ] × Ω × F(IRd) →
F(IRd), g : [0, T ]×Ω×F(IRd) → IRd satisfy the assumptions of Theorem 4.4. Then
the solution x to the equation (5) satisfies

sup
t∈[0,T ]

δ2
2

(

x(t), θ̂
)

≤ 3
(

δ2
2

(

x0, θ̂
)

+ 2C2T (T + 1)
)

e6C2T (T+1).

P r o o f . Since for every t ∈ [0, T ]

δ2
2

(

x(t), θ̂
)

= δ2
2

(

x0 +

∫ t

0

f(s, x(s)) ds +
〈

∫ t

0

g(s, x(s)) dB(s)
〉

, θ̂
)

,

using Lemma 2.9, Proposition 3.2 and Proposition 3.6 we can write the following
estimation for δ2

2

(

x(t), θ̂
)

:

δ2
2

(

x(t), θ̂
)

≤ 3δ2
2(x0, θ̂) + 3T

∫ t

0

δ2
2

(

f(s, x(s)), θ̂
)

ds + 3

∫ t

0

δ2
2

(〈

g(s, x(s))
〉

, θ̂
)

ds.

By assumption (c3) we obtain

δ2
2

(

x(t), θ̂
)

≤ 3δ2
2

(

x0, θ̂
)

+ 6C2T (T + 1) + 6C2(T + 1)

∫ t

0

δ2
2

(

x(s), θ̂
)

ds.

Hence, by Gronwall’s lemma, we get the assertion. �

In the sequel we want to give some estimation for the distance of the solu-
tions of the two fuzzy stochastic differential equations. In what follows let y0, z0 ∈
L2(Ω,A, P ;F(IRd)), f1, f2 : [0, T ]×Ω×F(IRd) → F(IRd), g1, g2 : [0, T ]×Ω×F(IRd) →
IRd satisfy the same assumptions as x0 and f, g in Theorem 4.4, respectively. Let
us denote by y, z the solutions to the stochastic fuzzy differential equations written
in their symbolic form:

dy(t) = f1(t, y(t)) dt +
〈

g1(t, y(t)) dB(t)
〉

, y(0) = y0, (8)
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dz(t) = (f1 + f2)(t, z(t)) dt +
〈

(g1 + g2)(t, z(t)) dB(t)
〉

, z(0) = z0, (9)

respectively, where (f1 + f2)(t, ω, u) = f1(t, ω, u) + f2(t, ω, u) for every (t, ω, u) ∈
[0, T ]× Ω ×F(IRd).

Theorem 4.7. Assume that y, z : [0, T ] × Ω → F(IRd) are the solutions to the
problems (8), (9), respectively. Then

(i) the following inequality holds true

sup
t∈[0,T ]

δ2
2(y(t), z(t)) ≤

[

3δ2
2(y0, z0)

+ 12C2T (T + 1)
(

1 + sup
t∈[0,T ]

δ2
2

(

z(t), θ̂
))

]

e6L2T (T+1),

(ii) if there exists a constant K ≥ 0 such that for every (t, u) ∈ [0, T ] ×F(IRd) it
holds

max
{

δ2

(

f2(t, u), θ̂
)

,
(

IE‖g2(t, u)‖2
)1/2

}

≤ K,

then

sup
t∈[0,T ]

δ2
2

(

y(t), z(t)
)

≤
(

3δ2
2(y0, z0) + 6T (T + 1)K2

)

e6L2T (T+1).

P r o o f . We shall prove (i). Notice that for every t ∈ [0, T ]

δ2
2

(

y(t), z(t)
)

≤ 3δ2
2(y0, z0)

+ 6T

∫ t

0

(

δ2
2

(

f1(s, y(s)), f1(s, z(s))
)

+ δ2
2

(

f2(s, z(s)), θ̂
)

)

ds

+ 6

∫ t

0

(

δ2
2

(〈

g1(s, y(s))
〉

,
〈

g1(s, z(s))
〉)

+ δ2
2

(〈

g2(s, z(s))
〉

, θ̂
)

)

ds.

Now the result follows when we use assumptions (c2), (c3) and the Gronwall lemma.
The proof of (ii) is analogous. �

Corollary 4.8. Let the assumptions of Theorem 4.7 be satisfied. Suppose that
f2 ≡ θ̂, g2 ≡ 0. Then

sup
t∈[0,T ]

δ2
2

(

y(t), z(t)
)

≤ 3δ2
2(y0, z0)e

3L2T (T+1).

Hence, it follows a continuous dependence on initial conditions of solutions to the
stochastic fuzzy differential equation (5).
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Finally we present a stability property of solutions to the system of stochastic
fuzzy differential equations.
Let us consider the following problems:

dx(t) = f(t, x(t)) dt +
〈

g(t, x(t)) dB(t)
〉

, x(0) = x0,

and for n = 1, 2, . . .

dxn(t) = fn(t, xn(t)) dt +
〈

gn(t, xn(t)) dB(t)
〉

, xn(0) = x0,n.

Theorem 4.9. Let f, g and fn, gn satisfy the assumptions of Theorem 4.4, i. e. the
conditions (c1) – (c3) with the same constants L, C. Let also x0, x0,n be such as
in Theorem 4.4. If δ2

(

x0,n, x0

)

→ 0, δ2

(

fn(t, u), f(t, u)
)

→ 0 and IE‖gn(t, u) −

g(t, u)‖2 → 0, for every (t, u) ∈ [0, T ]×F(IRd), as n → ∞, then

sup
t∈[0,T ]

δ2

(

xn(t), x(t)
)

→ 0, as n → ∞.

P r o o f . By virtue of Lemma 2.9, Proposition 3.2 and Proposition 3.6 let us note
that for every t ∈ [0, T ]

δ2
2

(

xn(t), x(t)
)

≤ 3δ2
2

(

x0,n, x0

)

+ 3T

∫ t

0

δ2
2

(

fn(s, xn(s)), f(s, x(s))
)

ds

+ 3

∫ t

0

δ2
2

(〈

gn(s, xn(s))
〉

,
〈

g(s, x(s))
〉)

ds

≤ 3δ2
2

(

x0,n, x0

)

+ 6T

∫ t

0

δ2
2

(

fn(s, x(s)), f(s, x(s))
)

ds

+ 6

∫ t

0

δ2
2

(〈

gn(s, x(s))
〉

,
〈

g(s, x(s))
〉)

ds

+ 6L2(T + 1)

∫ t

0

δ2
2

(

xn(s), x(s)
)

ds.

Thus by Gronwall’s lemma we infer that

δ2
2

(

xn(t), x(t)
)

≤
(

3δ2
2

(

x0,n, x0

)

+ 6T

∫ t

0

δ2
2

(

fn(s, x(s)), f(s, x(s))
)

ds

+ 6

∫ t

0

δ2
2

(〈

gn(s, x(s))
〉

,
〈

g(s, x(s))
〉)

ds
)

e6L2T (T+1).

Hence, by the assumptions and the Lebesgue dominated convergence theorem, the
proof is completed. �
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5. APPLICATION TO A MODEL OF POPULATION DYNAMICS

Consider a population of some species, which lives on a given territory. Let x(t)
denote the number of individuals in the underlying population at the instant t. A
classical, crisp, deterministic model of the evolution of given population is described
by the Malthus differential equation:

x′(t) = (r − m)x(t), x(0) = x0, (10)

where r, m are the constants which describe a reproduction coefficient and mortality
coefficient, respectively. The symbol x0 denotes the initial number of individuals.
The solution x of this equation is: x(t) = x0 exp{at}, where a = r − m. Assume
further that a 6= 0. Let us recall that with the equation (10) one can associate an

equivalent integral equation: x(t) = x0 + a
∫ t

0 x(s) ds.
In the sequel we shall transform the preceding model to the case, when some

uncertainties in x(t) appear. Let us introduce an observer (who watches this pop-
ulation) to the considerations. Assume that the state of the population depends
on random factors, and that the observer can describe the state of the population
only in linguistics, i. e. he is able to say that the population is, for example, “very
small”, “small”, “not big”, “big”, “large” etc. In this way we incorporate two types
of uncertainty to the population growth model. The first kind of uncertainty locates
in Probability Theory, while the second is well suited to Fuzzy Set Theory. At this
stage we could write the model with uncertainties as:

x(t, ω) = x0(ω) +

∫ t

0

ax(s, ω) ds, (11)

where ω symbolizes a random factor (a probability space (Ω,A, P ) is considered,
ω ∈ Ω), x0 is a fuzzy random variable, the integral is now a fuzzy integral, and the
solution x is now a fuzzy stochastic process x : [0, T ]×Ω → F(IR). Such problem (11)
has its differential counterpart, and exemplifies the random fuzzy integral equations
or, equivalently, random fuzzy differential equations (see [13]).

Assume further that some individuals emigrate from their territory and the alien
individuals immigrate to the population, and this happens in very chaotic manner.
Let the aggregated immigration process be modelled by the Brownian motion B.
Now the population dynamics could be modelled by the equation involving uncer-
tainties:

x(t, ω) = x0(ω) +

∫ t

0

ax(s, ω) ds + 〈B(t, ω)〉.

This equation can be rewritten as (in the sequel we do not write the argument ω):

x(t) = x0 +

∫ t

0

ax(s) ds +
〈

∫ t

0

dB(s)
〉

, (12)

or in symbolic, differential form as:

dx(t) = ax(t) dt +
〈

dB(t)
〉

, x(0) = x0. (13)
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So we arrived to the stochastic fuzzy differential equation of type (5), where f : [0, T ]×
Ω × F(IR) → F(IR) is defined by f(t, u) = a · u, and g : [0, T ] × Ω × F(IR) → IR
is defined by g(t, u) ≡ 1. Such the equation coefficients satisfy conditions (c1) –
(c3). So assuming that x0 : Ω → F(IR) is a fuzzy random variable such that
x0 ∈ L2(Ω,A, P ;F(IR)) and x0 is A0-measurable, the equation (13), or equivalently
equation (12), has a unique solution.

In the sequel we shall establish the explicit solution to (12) with a 6= 0. To this
end let us denote the α-levels (α ∈ [0, 1]) of the solution x : [0, T ]× Ω → F(IR) and
α-levels of initial value x0 : Ω → F(IR) as

[x(t)]α = [Lα(t), Uα(t)] and [x0]
α = [xα

0,L, xα
0,U ],

respectively. Obviously, Lα, Uα : [0, T ] × Ω → IR are the stochastic processes, also
xα

0,L, xα
0,U : Ω → IR are the random variables. If the fuzzy stochastic process x is a

solution to (12), then for every t ∈ [0, T ] the following property should hold

P
(

[x(t)]α = [x0]
α +

[
∫ t

0

ax(s) ds

]α

+

[

〈

∫ t

0

dB(s)
〉

]α

, ∀α ∈ [0, 1]
)

= 1.

Hence we are interested in solving the following systems of crisp stochastic integral
equations:
for a > 0















Lα(t) = xα
0,L + a

t
∫

0

Lα(s)ds +
t
∫

0

dB(s),

Uα(t) = xα
0,U + a

t
∫

0

Uα(s)ds +
t
∫

0

dB(s),

(14)

and for a < 0














Lα(t) = xα
0,L + a

t
∫

0

Uα(s)ds +
t
∫

0

dB(s),

Uα(t) = xα
0,U + a

t
∫

0

Lα(s)ds +
t
∫

0

dB(s).

(15)

Applying the Itô formula to the equations in (14) we obtain

Lα(t) = eat
(

xα
0,L +

∫ t

0

e−as dB(s)
)

and Uα(t) = eat
(

xα
0,U +

∫ t

0

e−as dB(s)
)

,

which implies that the solution x : [0, T ] × Ω → F(IR) to (12) with a > 0 is of the
form

x(t) = eat ·
(

x0 +
〈

∫ t

0

e−as dB(s)
〉)

.

To find a solution to (15) we use the classical method of fundamental matrix which
applies to the systems of linear stochastic differential equations, and we obtain

Lα(t) = cosh(at)xα
0,L + sinh(at)xα

0,U + eat

∫ t

0

e−as dB(s)
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and

Uα(t) = sinh(at)xα
0,L + cosh(at)xα

0,U + eat

∫ t

0

e−as dB(s).

Hence the solution x : [0, T ]×Ω → F(IR) to (12) with a < 0 should have the α-levels
as above, i. e.

x(t) = cosh(at) · x0 + sinh(at) · x0 +
〈

eat

∫ t

0

e−as dB(s)
〉

.

Since for a < 0 and t ∈ (0, T ] the expressions cosh(at), sinh(at) are of the oppo-
site sign, one cannot rewrite the above solution in the form of solution which was
established in the case a > 0.

(Received March 24, 2010)
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