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KYBERNETIKA — VOLUME 47 (2011), NUMBER 1, PAGES 38-49

BINARY SEGMENTATION AND BONFERRONI-TYPE
BOUNDS

MicuAL CERNY

We introduce the function Z(z;&,v) := [*_ o(t — &) - ®(vt) dt, where ¢ and ® are the
pdf and cdf of N(0, 1), respectively. We derive two recurrence formulas for the effective
computation of its values. We show that with an algorithm for this function, we can effi-
ciently compute the second-order terms of Bonferroni-type inequalities yielding the upper
and lower bounds for the distribution of a max-type binary segmentation statistic in the
case of small samples (where asymptotic results do not work), and in general for max-type
random variables of a certain type. We show three applications of the method — (a) cal-
culation of critical values of the segmentation statistic, (b) evaluation of its efficiency and
(c) evaluation of an estimator of a point of change in the mean of time series.
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1. INTRODUCTION

It is a traditional problem to determine the distribution of the random variable
T = maxi<k<n Iy for a fized n > 2, where T1,...,T,, are dependent random
variables. If T1, ..., T, are independent, the problem is easy, while in the dependent
case the distribution may be complicated and it is usually impossible to describe
it by a ‘nice’ formula. Extremal theory often allows us to study the behavior of
T when n — co (under further assumptions on Ti,...,T,); however, asymptotic
results are not always suitable if n is small, which is the case we are interested in.

A natural tool to approximate the distribution of 7' is the Bonferroni inequality.
In this text we introduce a method which allows us to use second-order inequalities of
the Bonferroni type for a special class of max-type random variables. As a prominent
example of this class, we study the so-called binary segmentation statistic, a max-
type statistic designed for testing the hypothesis that there is no change in the mean
of time series against the hypothesis that the change exists (in Section 4 we shall be
more precise). This statistic is important in quality control, in analysis of financial
data and in econometrics. Other max-type random variables, for which our method
is also applicable, occur variously, for example in the analysis of interval regression
models.

We present three applications of the method:
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e we show how to derive critical values for the segmentation statistic, which are
easily computable and less conservative than the asymptotic values and the
traditional approximations obtained by the first-order Bonferroni inequality;

e we show how to estimate the efficiency of the statistic;
e we derive a bound on an estimator of the point of change.

The main tool in the analysis is the Z function introduced in the next section.

2. THE Z FUNCTION

Let ¢(z) = (2m)"Y/2 exp(—22?) and ®(z) = J7 . o(t) dt. We show some properties
of the function N
Z(w;&,v) =/ ot — &) - (vt) dt. (1)

— 00

We assume that values of ®(z) are easily computable with suitable software.

Numerical integration. The Z function has the following useful property: given
computation precision, it is sufficient to integrate numerically over an interval of
fized length, regardless of the values of x, &, v. Indeed, if we numerically evaluate

/ ot —€) - D(wt) dt,
(—o0,z)N(E—AE+A)

then the error of computation caused by the truncation of the integration range is
bounded by 2®(—A) which is, say for A = 5, sufficiently small.

We can also truncate ®(vz) in a similar way: assume v > 0 and replace ®(vz)
with the function

0 for x < —%,
d*(va) = P(vz) forze[-2, 2]
1 for z > %;

now the total error from truncation of ¢ and ® is bounded by
20(—A) + 2AP(—A) =20(—-A)(1 + A).

The assumption v > 0 is without loss of generality, as for negative values of v it is
possible to use the identity

Z(z;&,v) = @(x — &) — Z(x;€, —v).

Expansions. It is possible to write Z(z; &, v) in the form

Ao = =3 (g) g [ -9 et @)
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and

Z(w:6.0) = 3(x )

(LAY T )
+\/ﬂz;< 2> (2i+1)-i!/_oot2+1 p(t—¢)dt.

=:Kait1(x)

These expressions follow from the Taylor series

pla) = (2m) /2 fjl, <—§x)

in case (@) applied to the term (t — £) and in case (@) applied to the term ®(vt).
For computation of the initial segments of the series, the following recurrences are
useful.

Proposition 2.1.
1
Lo(x) = 2®(vz) + > p(va),

L) = (5 - €)  Lola) — 53 ®(0a),
((37 —&)'Lo(x) —i€Li1(x) + i(il/; 1)Li—2($)

- L - e() fori >

Ko(z) = ®(z - §),
Ki(z) = {Ko(x) — p(z — §),
Ki(z) = €K, 1 (z) — 2" to(z — &) + (i — 1) K;_o(x) fori> 2.

Proof. All of the expressions are derived from @) and @) by integration. Let us,
for example, look at the equation for L;(z). Using the integration per-partes, from

@) we get

x

Li(z) = (z — €)' Lo(z) — z/ (t — &)1 Lo(t) dt.

— 00

An easy manipulation gives
Li(z) = (x — §)'Lo(x) — i(Li(x) + Li-1())
— (= &) @ (va) — (i — 1) Li ().

v

The expression for L;(z) follows. O

Observe that evaluation of each of the recurrences () and @) requires only one
computation of ®(-).
The following lemma shows an important property of the Z function.
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Lemma 2.2. Let a,b,c,d,e € R, ¢ # ad. Then

dA+e aA+cC+b
/ / / B)p(C)p(A) dB dCdA

( +6\/1+a2—|—02 e\/1+a2+02 c—ad ) ()
/—1+a2+02 c—ad c—ad " /14 (a+cd)? + d?

Proof. The left-hand side of @) may be written down as

1 0 o0 1 9 9
+(C+dA+ 6)2])dAdCdB.

There exist quadratic functions Q1(A), Q2(B,C) and a constant v such that the
integral may be transformed into the form

/ / exp(—s5Q2(B,C)) /00 exp(—3Q1(A)) dAdCdB.

— 00

The inner integral equals v/27. Then there are quadratic functions Q3(B) and Q4(C)
such that the integral may be written as

0 0
v [ ew(-3QuB) [ exp(-3u()dcan

— 00 — 00

with some constant 7. Linear substitutions transform it into the Z-form (). O

3. SECOND-ORDER BONFERRONI-TYPE INEQUALITIES

Bonferroni-type inequalities are inequalities obtained as initial segments of the inclusion-
exclusion principle

Pr [Ql Ak:| :kZ;PI‘[Ak] - Z Pr [Akl N A]Q}

kl <k2
n
+ Z Pr[Ag, N A, N Ag] — -+ (— ”HPr[ﬂ }
k1<ka<ks L
where Ay,..., A, are events. The first-order Bonferroni inequality is

k=1 k=1
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and second-order inequalities are inequalities involving second-order terms of the
type Pr[Ag, N Ag,]. There is a rich combinatorial theory on such inequalities, see

for instance [, 8, [0, [[1]. Two important examples are
n n
Pr |: U Ak:| > ZPI‘[Ak] - Z PI‘[Akl N Ak2]
k=1 k=1 k1<ka
and )
Pr [ U Ak} < Z PI‘[Ak] — Z PI‘[Ak N Ak+1]. (6)
k=1 k=1 k=1

Recall that (@) has been successfully used in [T4], yielding a big gain of precision.
The class of second-order inequalities also includes inequalities derived from higher-
order inequalities where higher-order terms are estimated by second-order terms as,
for instance,

n—1 n—1 n—2
Pr [ U Ak:| < Z Pl"[Ak] — Z Pl"[Ak n Ak+1]
k=1 k=1 k=1
n—2 n—2
=Y PrlAp N Ay ]+ D Pr{Ai 0 Agi 0 A, 4],
k=1 k=1

where we estimate
Pl"[Ak N Ak+1 n Anfl] < mln{Ak n Ak+1, ArNA, 1, Ak+1 n Anfl}.

Such inequalities are useful in the derivation of bounds on max-type random
variables where we need to estimate the maximum of dependent random variables.
Let T4, ...,T, be random variables and define T = maxi<g<n Lk. Then

Pr[T™ < 2] = Pr[T}, <z for all k € {1,...,n}]
=1—Pr[T}, > x for some k € {1,...,n}]

:1—Pr[0 Ak(x)},
k=1

where Ay () denotes the event “TIy > z”. Now we can use the Bonferroni-type
inequalities to get lower or upper bounds on Pr({J;_; Ax(z)], and hence upper or
lower bounds on Pr[T" < z].

4. APPLICATIONS

The binary segmentation statistic. Let y1,...,y, be independent normal vari-
ables with common variance 2. Let us ask the question whether the data are
homogenous in the sense that E(y;) = E(y2) = -+ = E(yn), or whether there is a

change in their mean. So, consider two hypotheses:

H: yy=upu+e foralli=1, ... n,
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and

i _ o ute fori=1,...,k,
A: 3red{l..,n-1}, 36 £0: yz_{u—i—é—i—ei fori=r+1,...,n,

where 11,0 and x are unknown parameters and €1, ...,&, are independent N(0,02)
error terms. The binary segmentation statistic

k
1 n
[n] . - T o
L 1;1?231(—1 o \/ k(n—k) ;(yz 9): @)
]

—.7ln
=1

where J = L 3% | y;, is (a form of) the max-likelihood statistic for testing the null
hypothesis H against the alternative A.

For derivation of the statistic, its applications and further discussion on the topic
see [2, @, B, 9, T3, T4]. By extremal theory, the asymptotic distribution of 7"}, when
n — 00, is known; however, for small-sized samples, the exact distribution is very
complicated. The asymptotic result will be stated later.

Remark 1. We assume that o2 is known. If 0% is unknown, then o in (@) has
to be replaced by an estimate. In that case, the reduction to evaluation of the Z
function, described later in this section, is an open problem. However, our bounds
are applicable if known upper/lower bounds on ¢? are available.

We shall present the usage of the Z function for derivation of bounds on the
statistic 71", However observe that our method is useful in a more general context,
. k n
e.g. for max-type random variables of the type maxi<g<p wi ijl Yi+Xk Zj=k+1 Yj
where wy,...,Wn;X1,-- -, Xn are constants. Such max-type random variables occur
for instance in the analysis of interval regression models (see [B], [[2]).

Example 1. Critical values for 71", When testing the hypothesis H against
A, we need to derive critical values for T under H. Assume that H holds, i.e.
Yi = i +&;. Then T,£"] ~ N(0,1): indeed, the fact E(Té"]) = 0 is clear and

) S e B S

i=1 i=k+1

The classical approach to the approximation of the distribution of ([d) uses the
first-order Bonferroni inequality (). This approach yields the estimate

Pr[T1 > 2] < (n —1)(1 - (x)),

leading to very conservative a-critical values

(67

i¢—1(1— m) (8)
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We shall show how to improve this bound with any type of the second-order
Bonferroni-type inequality. We must derive an expression for
F,£"l] () =Pr [T,L"] >z & Tl[n] > z].
Assume that 1 < k <l <n — 1. By the definition of T,£n] we can write
T = 01 A —aaB —asC, T = 81 A+ BB — BsC,

where A, B,C are N(0, 1) independent and

n—k k(1 — k) _ k(=)
a= n o 2T n(n—k)’ a8 = n(n —k)’ ©)
e A Y (10)

We need to evaluate

Fllz) =Pr2B+20<A-L & ~2B+ 50 <A 2]

- elBe(c) ABAC| p(4) A

where
Q4 = {[B,C]: “p+foca- L g —%B+%C<A—%},
The region 24 may be described as
=i0(4)
24 ={1B.0): Ce (oo, BEIRRA- SElER)

/61 B T « (o3 xT
& Be(-Ba+ &0+ 2, a—;A—;zC—a—Q)}.

=:B(A,C) =B(A,0)

Thus we can write
(] 00 6(14) E(A,C)
By () = / / / ¢(B)p(C)p(A) dBACAA

oo rC(A) (B(AC)
- /, 1 [ ©(B)p(C)p(A) dBICAA.

Now we apply LemmaZ2 Simplifying the resulting expressions, we get the following
result.
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Proposition 4.1. Let 1 < k <! <n —1 and define

ol \/(n—k)l.\/ k ] \/(n—kz)l.\/n—l. )

kil —

Now we are able to compute the second-order terms in any second-order inequal-
ity.

Using the second-order inequality (), we get the following improved (compared
to the classical approach ([H)) 5%-critical values for the segmentation statistic:

Table 1. Approximate 5% critical values for the segmentation statistic under H.

n 20 30 40 60 80 100 198 3020
asymptotic 3.60 3.60 3.61 3.62 3.63 3.64 3.66 3.74
using (@) 3.01 3.13 3.22 3.34 3.42 3.48 3.66 4.30

using (B) 2.86 296 3.02 3.10 3.16 3.20 3.32 3.74
simulated 2.81 2.89 2.93 3.00 3.03 3.07 3.14 3.33

The asymptotic values have been derived from the following extremal-type theo-
rem: if yi,...yn follow H (in fact, much less suffices), then, with n — oo,

x

Pr [\/21nlnn-T["] ga:+21n1nn+%(1nlnlnn—ln7r)} — e (12)

see [2]. Table 1 illustrates that for small values of n appearing in practice, asymptotic
results are too conservative. The value n = 198 is the lowest n such that the
critical value obtained with (B) exceeds the asymptotic critical value: for n > 198,
the expression (B) is useless. The improved critical value “catches up” with the
asymptotic critical value at n = 3020.

Remark 2. Further results are available; for instance, by [3], the critical values
are also useful if y;’s follow the AR(1) process with parameter ¢ € (—1,1). In that

case, we shall use T,£n] in the form =2 ) Zle(yi —7) instead of [@) and the

critical values derived for 7™ remain preserved.
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Remark 3. Table 1 compares several methods for estimation of critical values. In
order the comparison be complete, it is necessary to mention one more important
method for derivation of critical values: the permutation principle. Let II,, be the

set of all permutations of {1,...,n}. For = € II,, denote
1 n u
Ty, o yn) = Sy L N — 7).
# - yn) = | max o =) ;(yﬂz) v)
If y1,...,yn are fixed and w € Il,, is random, then T7[Tn] (y1,...,Yn) is a discrete

random variable. The function

n 1 n
P@L],yﬂ(x) = H : |{7T ell,: T7£- ](yla' ;yn) < l’}‘

is called the permutation distribution function (conditioned by given y1, ..., yn).

It is interesting that if H holds, then in the limit n — oo the random variable
T7[r"] (y1,-..,yn) has the same asymptotic behavior as T, Indeed, the following
remarkable theorem holds [1: if y1,...,yn follow H (in fact, much less suffices),
then, with n — oo,

Pr \/21nlnn-T,[r"](y1,---7yn)

well,
< z+2mlnlnn+ i(Inlnlnn —Inn) |y1,...,yn} — e
almost surely. This theorem suggests that for fixed n and y1,...,y,, the permu-

tation distribution function ng?]y (z) could be a good approximation of the true
distribution of T, In practice, given yi,...,y, and z, it is not computationally
feasible to evaluate Py[?]y (x) exactly. However, simulations show that if we want
to derive usual quantiles, taking about 20,000 permutations at random provides a
reasonable approximation of Pé?]y ().

For each n € {20, 30,40, 60,80, 100} we simulated the values of y1,...,y, under
H for 5,000 times. Denote them yi,...,4%, i = 1,...,5000. Then, for every n

and ¢+ = 1,...,5000, we calculated P;Zbﬂox, the approximation of P@E?] s

s dm

using

20, 000 random permutations from II,,. Then we derived the empirical 5%-critical

values p,; from ngi,ﬂox. Table 2 summarizes the average values (i.e. the values

5000
qn ‘= Wloo Ei=1 pn,i)'

Table 2. The permutation method — simulations.

n 20 30 40 60 80 100
gn | 258 2.75 283 292 296 3.03

Table 2 shows that for small-sized samples, the permutation method on average
underestimates the true critical value significantly (see the simulated values in the
last row of Table 1) and hence is likely to “detect” changepoints excessively. More-
over, the deviation from the true critical value might be quite high (for example, in
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the simulation it was min; pag ; = 1.39 and max; pag; = 4.39). We can conclude that
though the permutation method is a popular and often used data-driven method,
it does not provide a very exact approximation to the true critical values under H.
As we can see in Table 1, the method (6) is more exact (and also computationally
easier).

Example 2 — efficiency of the statistic. =~ Assume that A holds and let k €
{1,...,n—1} and § # 0 be fixed. We want to quantify how successful the test is in
detection of the existing change. In other words, we want to estimate Pr[T["] > Tal,
where x,, is an «-critical value.

If kK <k, then
n —k
TIL]:—/@(S nkn
+“ (Zyl Z _6 __<Zyz Z 1_6)>>a
i=k+1 1=Kk+1

~N(0,1)

and similarly, if kK > k, then T,En] = —(n— n)(s,/ﬁ + N(0,1), so we get an
expression for the first-order Bonferroni term

n—1 &

ZPer>xa]—n—1—Z<I>(xa+/<;5 = )

Now let 1 <k <1 <n—1 and let us evaluate the second-order terms
Gl (@a) = Pr[Ty > 20 & Ti > ).

)

The idea of decomposition of T}, and T} as linear functions of independent N(0,1)
variables A, B, C, shown in Example 1, also applies under the alternative A:

T = 0" 4 0y A — auB —asC, T =M\ 4 3 A+ 8B — 50, (13)
where A, B, C are N(0,1) independent, a1, as, as, 81, f2 and (5 are given by (@) and

@) and
o7 =0k ot if k£ <k,
o —§n—/<;1/n(n o) if k> &,

)\En]: ,/n(n ) if I <&,

—6,%\/:; if Il > k.
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Simplifying the resulting expressions, we get the following analogy of Proposition
ETl valid under the hypothesis A.

Proposition 4.2.

Gll@) = Z(= (" = o) + @ = A" =@ — 0" + ¢l @ = A,

’ n
n n—1
VIRV Tk )
AT — ) + 07" — ),

k
V)

l

n

n_l n n n
—Z(—(x—AE h4nltor - o),

n

where C,[cnl] and n,[cnl] are given by (). O

Now we can compute any second-order Bonferroni bound.

Example 3 — estimator of the location of a change. The usual estimator of the
location of an existing change (i.e. if H has been rejected) is

E[n] = argmaxl§k§n71 T]£n].

Its asymptotic distribution is known, see [2]. We show an estimate on its success-
fulness in correct detection of the point of change. Observe that

Pria = k] = Pr[T{" — T/ > 0 for all 1 # k]
=1- Pr[T,Ln] - Tl[n] < 0 for some [ # k]

>1-Y pefr -1 < 0.
1#k

With (@) we have

gl _ il _ [ O =N + (01 = B1)A — (00— B2) B — (a3 + B)C ik <1,
’ l N =6 — (a1 = B1)A + (a2 — B2) B + (a3 + B3)C if k > 1,

and we can easily evaluate Pr[Tl[n] - T,£"] < 0]. For instance, if 02 = 1, n = 10,
§ = —3 and k = 8, then Pr[&l" = k] > 0.7. Although it is clear that in this set-up
the changepoint is very significant, it is not obvious that #" identifies the true value
& exactly with high probability. Another example: if 02 = 1, n = 30, x = 15 and
§ = —3, then the probability that #[" misses & is smaller than 0.2.
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