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DUCS COPULAS

Radko Mesiar and Monika Pekárová

Based on a recent representation of copulas invariant under univariate conditioning, a
new class of copulas linked to a distortion of the identity function is introduced and studied.
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1. INTRODUCTION

Copulas [18] link univariate marginal distribution functions into a joint distribution
function of the corresponding random vector. In this paper we will deal with bivari-
ate copulas only. Recall that a function C : [0, 1]2 → [0, 1] is a (bivariate) copula
whenever it is grounded, C(x, y) = 0 whenever 0 ∈ {x, y}, it has neutral element 1,
C(x, y) = x∧y, whenever 1 ∈ {x, y} and it is 2-increasing, C(x+ ǫ, y + δ)−C(x, y +
δ) ≥ C(x+ǫ, y)−C(x, y) for all x, y, ǫ, δ ∈ [0, 1] such that x+ǫ, y+δ ∈ [0, 1]. Three ba-
sic copulas Π, M, W given by Π(x, y) = xy, M(x, y) = x∧y, W (x, y) = (x+y−1)∨0,
express the independence, total comonotone dependence (Y = ϕ(X) for an increas-
ing function ϕ) and total countermonotone dependence (Y = η(X) for a decreasing
function η) of the univariate random variables X and Y , respectively. For mod-
elling purposes, the knowledge of a large class of copulas is required. Thus several
parametric classes of copulas have been introduced. For an overview we recommend
monographs [8, 16]. It seems so that the most prominent class of copulas is the class
of Archimedean copulas together with their M -ordinal sums.

For more details we recommend [16, 19]. Note only that by Cf we denote an
Archimedean copula Cf : [0, 1]2 → [0, 1] given by

Cf (x, y) = f (−1)(f(x) + f(y)), (1)

where f : [0, 1] → [0,∞] is a continuous strictly decreasing convex function satis-
fying f(1) = 0 and f (−1) : [0,∞] → [0, 1] is the pseudo-inverse of f , f (−1)(u) =
f−1(min(u, f(0))). The function f is called a generator of copula Cf and we denote
by F the set of all generators.
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We introduce some well-known examples of parametric families of Archimedean
copulas, compare [8, 16]:

i) For real λ 6= 0, define fλ : [0, 1] → [0,∞] by fλ(x) = x−λ−1
λ

. Then fλ ∈ F
whenever λ ≥ −1. Adding f0 = fΠ, fΠ(x) = − logx, the Clayton family
(Cfλ

)λ≥−1 is recognized, with Cf−1 = W, Cf0 = Π and Cf1 = H (Ali-Mikhail-
Haq copula) given by H(x, y) = xy

x+y−xy
whenever xy 6= 0.

ii) The Gumbel family can be seen as (Cfλ
Π
)λ≥1.

iii) The Yager family can be seen as (Cfλ
W

)λ≥1.

The idea of a modification of formula (1) by means of a dependence function
known from the extreme value copulas (EV-copulas, in short), was proposed in [1]
as Archimax copulas. We give some more details on Archimax copulas in Section 3.
On the other side, a recent study of copulas invariant under univariate conditioning
initiated in [14] and [7] was completed by Durante and Jaworski in [4], providing
a complete description of copulas with the above mentioned property. In the next
section, we give more details on this result. The main aim of this paper is a general-
ization of construction provided by the results of Durante and Jaworski. Motivated
by Archimax copulas, we introduce a new class of DUCS (Distorted Univariate Con-
ditioning Stable) copulas in Section 3. In Section 4, several examples and properties
of DUCS copulas are discussed. Finally, some concluding remarks are added (see
Section 5).

2. COPULAS INVARIANT UNDER UNIVARIATE CONDITIONING

As already mentioned, each random vector (X, Y ) is characterized by a copula C.
This copula C is unique whenever X and Y have continuous distribution functions.
Conditional random vector ((X, Y )|X ≤ t), where FX(t) > 0, is then characterized
by a threshold copula C(FX (t)), see [14]. A copula C is called invariant under left
univariate truncation whenever C(FX (t)) = C for any t ∈ R, FX(t) > 0. Similarly,
copulas invariant under right univariate truncation can be introduced.

It is not difficult to check that a copula C is invariant under right univariate
truncation if and only if the copula D given by D(x, y) = C(y, x) is invariant under
left univariate trucnation. Therefore, we will consider copulas invariant under left
univariate truncation only, and we will call them briefly copulas invariant under
univariate conditioning. Similarly as M -ordinal sums of copulas play a key role in
the representation and construction of associative copulas, copulas invariant under
univariate conditioning are linked to g-ordinal sums based on the product copula and
introduced in [14]. Recall that a g-ordinal sum copula C = g − (〈ak, bk, Ck〉 |k ∈ K)
is defined for any disjoint system (]ak, bk[)k∈K of open subintervals of ]0, 1[ and any
system (Ck)k∈K of copulas by

C(x, y) =

{

aky + (bk − ak)Ck

(

x−ak

bk−ak
, y
)

if x ∈]ak, bk[,

xy elsewhere.
(2)

In [4] the next results were shown.
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Proposition 2.1. Let f ∈ F and let f̄ : [0, 1] → [0,∞] be given by f̄(x) = f(1−x).
Then the functions C(f), C(f̄) : [0, 1]2 → [0, 1] given by

C(f)(x, y) = xf (−1)

(

f(y)

x

)

(3)

whenever x ∈]0, 1], and

C(f̄)(x, y) = x

(

1 − f (−1)

(

f̄(y)

x

))

(4)

whenever x ∈]0, 1], are copulas, which are invariant under univariate conditioning.

Note that for any f ∈ F and c > 0, C(cf) = C(f). Moreover, C(f) ≤ Π and for
each x ∈]0, 1[ there is y ∈]0, 1[ so that C(f)(x, y) < xy. Similarly, C(f̄) ≥ Π and for
each x ∈]0, 1[ there is y ∈]0, 1[ such that C(f̄)(x, y) > xy. Observe also that for each

(x, y) ∈ [0, 1]2, C(f̄)(x, y) = x − C(f)(x, 1 − y), i. e., C(f̄) is a flipping of the copula
C(f), compare [3, 16].

Theorem 2.2. A copula C : [0, 1]2 → [0, 1] is invariant under univariate condition-
ing if and only if C is a g-ordinal sum where each summand Ck, k ∈ K, satisfies
Ck ∈ {C(fk), C(f̄k)} for some fk ∈ F .

The main aim of our paper is a generalization of copulas introduced in Proposition
2.1, and thus we give now some examples.

Example 2.3.

i) Let f = fW . Then C(fW ) = CfW
= W , and C(f̄W ) = M .

ii) For p ∈]0, 1], define hp : [0, 1] → [0,∞] by hp(x) = (1 − xp)
1
p . Then hp ∈ F

and C(hp) = Cf−p
is a Clayton copula with parameter −p ∈ [−1, 0[, (see

Introduction item (i)). Observe that Cf−p
≤ Π.

iii) For λ ∈]0,∞[, define gλ : [0, 1] → [0,∞] by gλ(x) = ((1 − x)−λ − 1)−
1
λ . Then

gλ ∈ F and C(ḡλ) = Cfλ
is a Clayton copula with parameter λ ∈]0,∞[. Note

that then Cfλ
≥ Π.

iv) Recall that f1 : [0, 1] → [0,∞] in Introduction item (i) is given by f1(x) = 1
x
−1.

Then C(f1)(x, y) = x2y
1−y+xy

, and C(f̄1)(x, y) = xy
x+y−xy

= Cf1(x, y).
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3. DUCS COPULAS

Based on the description of EV-copulas (extreme value copulas), see [20] or overview
chapter [6], Capéraà et al. [1] have introduced Archimax copulas as a common
generalization of Archimedean copulas and EV-copulas. Recall that for f ∈ F , an
Archimax copula Cf,D : [0, 1]2 → [0, 1] is given by

Cf,D(x, y) = f (−1)

(

(f(x) + f(y))D

(

f(x)

f(x) + f(y)

))

, (5)

with convention 0
0 = ∞

∞ = 1. Here D : [0, 1] → [0, 1] is a dependence function which
is convex and satisfies x ∨ (1 − x) ≤ D(x) ≤ 1 for all x ∈ [0, 1]. Evidently, for the
strongest dependence funtction D∗ : [0, 1] → [0, 1], D∗(x) = 1, the Archimax copula
Cf,D∗ is just the Archimedean copula Cf , Cf,D∗ = Cf . On the other side, for the
weakest dependence function D∗ : [0, 1] → [0, 1], D∗(x) = x ∨ (1 − x), for any f ∈ F
it holds Cf,D∗ = M . For D 6= D∗, Archimax copulas Cf,D can be seen as distorted
Archimedean copulas. Inspired by this observation, we propose to consider distorted
univariate conditioning stable copulas, briefly DUCS copula.

Proposition 3.1. Let f ∈ F and let d : [0, 1] → [0, 1] be a function. Define
C(f,d) : [0, 1]2 → [0, 1] by

C(f,d)(x, y) = xf (−1)

(

f(y)

d(x)

)

, (6)

with convention 0
0 = 0. Then:

i) C(f,d) is grounded.

ii) 1 is neutral element of C(f,d) if and only if d(1) = 1.

iii) C(f,d) is a copula for any f ∈ F if and only if there is a function d̃ : [0, 1] → [0, 1]

so that d(x)d̃(x) = x for all x ∈ [0, 1], and both d and d̃ are non-decreasing on
]0, 1].

P r o o f .

i) This result is evident due to the fact that f(0)
d(x) ≥ f(0) for each x ∈ [0, 1].

ii) C(f,d)(x, 1) = xf (−1)(0) = x for any x ∈ [0, 1] due to the convention 0
0 = 0.

Moreover, C(f,d)(1, y) = f (−1)
(

f(y)
d(1)

)

= y for all y ∈ [0, 1] if and only if

d(1) = 1.

iii) Suppose that d(x)d̃(x) = x for all x ∈ [0, 1].

Then C(f,d)(x, y) = d̃(x)C(f)(d(x), y) = Π(d̃(x), 1)C(f)(d(x), y).
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Due to i) and ii), it is enough to show the 2-increasigness of C(f,d). Suppose that
x, x′, y, y′ ∈ [0, 1], x ≤ x′ and y ≤ y′. Then

C(f,d)(x
′, y′) − C(f,d)(x

′, y) − C(f,d)(x, y′) + C(f,d)(x, y) = d̃(x′)(C(f)(d(x′), y′)

− C(f)(d(x′), y)) − d̃(x)(C(f)(d(x), y′) − C(f)(d(x), y)) ≥ 0

whenever both d̃ and d are non-decreasing, due to the fact that the 2-increasigness
of the copula C(f) ensures

C(f)(d(x′), y′) − C(f)(d(x′), y) ≥ C(f)(d(x), y′) − C(f)(d(x), y)) ≥ 0.

On the other side, considering fW ∈ F , we have C(fW ,d) = max(0, x+(y−1)d̃(x))

which is 2-increasing (supermodular) only if d̃ is non-decreasing.
Moreover, let h : [0, 1] → [0, 1] be given by h(x) = 1− d(x). Then C(f,d)(x, y) = 0

if and only if xy = 0 or y ≤ h(x). Suppose that d is not non-decreasing on
]0, 1], i. e., there are 0 < x1 < x2 ≤ 1 such that h(x1) < h(x2). However, then
C(f,d)(x1, h(x2)) > 0 = C(f,d)(x2, h(x2)), violating the non-decreasigness of C(f,d) in
the first coordinate, i. e., C(f,d) cannot be then a copula. Thus if C(f,d) is a copula,
d is necessarily non-decreasing on ]0, 1]. �

Remark 3.2.

An alternative proof is added.
Due to Liebscher [12], see also [9] and [11] if d̃ and d are non-decreasing then C(f,d)

is a copula (recall that C(x, y) = C1(f1(x), g1(y))C2(f2(x), g2(y)) defines a copula
C whenever C1, C2 are copulas and f1, f2, g1, g2 : [0, 1] → [0, 1] are non-decreasing
functions such that f1(x)f2(x) = g1(x)g2(x) = x for all x ∈ [0, 1]).

Note that given d : [0, 1] → [0, 1] such that there is a function d̃ : [0, 1] → [0, 1]
satisfying d(x)d̃(x) = x for all x ∈ [0, 1], necessarily d(x) ≥ x, d̃(x) ≥ x and both d

and d̃ are continuous and positive on ]0, 1]. If d(0) = 0, the value d̃(0) can be chosen
arbitrarily. However, in order to have the uniqueness of the relation of d and d̃, we

will consider continuous d and d̃ only. Evidently, then˜can be seen as duality, ˜̃
d = d.

Denote by D the set of all continuous non-decreasing functions d : [0, 1] → [0, 1]
such that there is a continuous non-decreasing function d̃ : [0, 1] → [0, 1] for which
d(x)d̃(x) = x for all x ∈ [0, 1]. Elements of D will be called distortions. Clearly
d ∈ D if and only if d̃ ∈ D. Now we are ready to define DUCS copulas.

Definition 3.3. A copula C : [0, 1]2 → [0, 1] is called a DUCS copula whenever
there is a generator f ∈ F and a distortion d ∈ D so that C = C(f,d).

Example 3.4.

i) The strongest distortion d∗ ∈ D is given by d∗(x) = 1. For any f ∈ F ,
C(f,d∗) = Π, i. e., the product copula is the strongest DUCS copula. Moreover,

d∗ = (d̃∗) the weakest distortion is given by d∗(x) = x, and C(f,d∗) = C(f)

for any generator f ∈ F (observe the striking similarity with the bounds of
Archimax copulas).
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ii) For any d ∈ D, the copula C(fW ,d) : [0, 1]2 → [0, 1] is given by C(fW ,d)(x, y) =

max(0, x + (y − 1)d̃(x)). Take a parametric family (d(α))α∈[0,1] of distortions,

d(α)(x) = x
α+(1−α)x . Then d̃(α)(x) = α + (1 − α)x, and C(fW ,d(α))(x, y) =

max(0, α(x + y − 1) + (1 − α)xy). Observe that the family (C(fW ,d(α)))α∈[0,1]

is a parametric family of Archimedean copulas continuous and decreasing in
parameter α, with extremal elements W = C(fW ,d(1)) and Π = C(fW ,d(0)).
Note that the generator f(α) of C(fW ,d(α)) for α < 1 is given by f(α)(x) =
− log(α + (1 − α)x).

iii) For α ∈]0, 1[, define d{α} : [0, 1] → [0, 1] by d{α}(x) = max(α, x). Then d{α} ∈
D, and the DUCS copula C(fW ,d{α}) : [0, 1]2 → [0, 1] is given by

C(fW ,d{α})(x, y) =

{

max(0, x
α
(y − 1 + α)) if x ∈ [0, α],

W (x, y) elsewhere.
(7)

Observe that this copula is a W -ordinal sum copula as introduced in [15], see
also [2, 5], C(fW ,d{α}) = W − (〈0, α, Π〉).

4. PROPERTIES AND EXAMPLES OF DUCS COPULAS

DUCS copulas are based on generators from F and distortions from D. The structure
of F , especially construction methods for generators, were deeply studied in [13].
Concerning the distortions set D, we have the next important result.

Proposition 4.1. Let A : [0, 1]n → [0,∞] be a continuous idempotent homogeneous
aggregation function. Then for any d1, · · · , dn ∈ D, also the function d : [0, 1] → [0, 1]
given by d(x) = A(d1(x), · · · , dn(x)) is a distortion.

P r o o f . Evidently, d is a non-decreasing continuous function satisfying d(x) ≥ x

for all x ∈ [0, 1]. Moreover,

d̃(x) =
x

A(d1(x), · · · , dn(x))
=

x

A
(

x

d̃1(x)
, · · · , x

d̃n(x)

) =
1

A
(

1
d̃1(x)

, · · · , 1
d̃n(x)

)

for all x ∈]0, 1] due to the homogenity of A (for more details on homogeneous
aggregation function see [17]). The non-decreasigness of d̃1, · · · , d̃n ensures the non-
decreasigness of d̃, and thus d ∈ D. �

As a corollary of Proposition 4.1, D is a convex class which is also a lattice with
top element d∗ and bottom element d∗. Note that a similar conclusion holds for the
class of DUCS copulas with a fixed generator f .

Corollary 4.2. Let f ∈ F and d1, d2 ∈ D. For DUCS copulas C(f,d1) and C(f,d2),
denote C = C(f,d1) ∨ C(f,d2) and D = C(f,d1) ∧ C(f,d2). Then both C and D are
DUCS copulas, C = C(f,d1∨d2) and D = C(f,d1∧d2).
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P r o o f . As already observed, d1 ∧ d2 and d1 ∨ d2 are distortion. Then

C(f,d1∨d2)(x, y) = xf (−1)

(

f(y)

d1(x) ∨ d2(x)

)

= xf (−1)

(

f(y)

d1(x)
∧

f(y)

d2(x)

)

= x

(

f (−1)

(

f(y)

d1(x)

)

∨ f (−1)

(

f(y)

d2(x)

))

= C(x, y) (8)

�

(recall that f (−1) is non-increasing). Similarly, the result for D can be shown.
For special distortions we can get interesting DUCS copulas.

Proposition 4.3. Let d(λ) ∈ D be given by d(λ)(x) = x
1
λ , λ ∈ [1,∞[. Then, for any

f ∈ F , C(f,d(λ)) = C(fλ).

P r o o f . For f ∈ F and λ ∈ [1,∞[, denote g = fλ. Then g−1(x) = f−1(x
1
λ ) for all

x ∈ Ran g, and thus

C(fλ)(x, y) = xf (−1)

(

(

fλ(y)

x

)

1
λ

)

= xf (−1)

(

f(y)

x
1
λ

)

= C(f,d(λ))(x, y). (9)

�

Proposition 4.4. Let d[α] ∈ D be given by d[α](x) = x
α
∧ 1, α ∈]0, 1]. Note that

d[α] = d̃{α}, (see Example 3.4 iii). Then, for any f ∈ F , C(f,d[α]) = g − (〈0, α, Cf 〉),
i. e., DUCS copula C(f,d[α]) is a g-ordinal sum.

P r o o f . It is enough to express both C(f,d[α])(x, y) and g − (
〈

0, α, C(f)

〉

)(x, y). �

Remark 4.5. For any distortion d ∈ D and constant α ∈]0, 1], the function

d〈α〉 : [0, 1] → [0, 1] given by d〈α〉(x) = d(αx)
d(α) is also a distortion (formally, condi-

tional distortion), and (d̃〈α〉)(x) = d̃(αx)

d̃(α)
, i. e., (d̃〈α〉) = (d̃)〈α〉. After some processing

concerning the univariate conditioning, see [14], it can be shown that the left condi-
tioning with threshold α of DUCS copula C(f,d) is just the DUCS copula C(f,d〈α〉),
i. e., (C(f,d))(α) = C(f,d〈α〉).

Moreover, d〈α〉 = d for all α ∈]0, 1] yields the Cauchy equation d(αx) = d(α)d(x),

with solution d(x) = x
1
λ , λ ∈ [1,∞[, i. e. d = d(λ), see Proposition 4.3. Thus the

only univariate conditioning invariant DUCS copulas are copulas C(f,d(λ)) = C(fλ).

5. CONCLUDING REMARKS

Based on convex generators from the class F (these functions are just generators
of Archimedean copulas) and distortions from the class D, we have introduced and
discussed a new class of DUCS copulas. Each DUCS copula C(f,d) can be seen as a
distorted copula C, which is invariant under univariate conditioning. However, there
is also another class of generated copulas invariant under univariate conditioning,
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namely copulas C(f̄) = C(g) related with C(f), by the flipping transformation. Recall

that for f ∈ F , f̄ , g : [0, 1] → [0,∞] is given by f̄(x) = g(x) = f(1 − x), and then

C(g)(x, y) = xg(−1)
(

g(y)
x

)

= x − C(f)(x, 1 − y), i. e., C(g) = flip(C(f)). Consider,

for any DUCS copula C(f,d), its flipped copula flip(C(f,d)). Then flip(C(f,d))(x, y) =

x − C(f,d)(x, 1 − y) = x − xf (−1)
(

f(1−y)
d(x)

)

= x(1 − f (−1)
(

f(1−y)
d(x)

)

= xg(−1)
(

g(y)
d(x)

)

,

i. e., flip(C(f,d)) = C(g,d).
Hence the concept of DUCS copulas can be straightforwardly extended consid-

ering arbitrary generator of a copula invariant under univariate conditioning, as
characterized in [4]. Finally note that the concept of DUCS copulas, based on two
univariate functions f ∈ F and d ∈ D, can be seen as a particular case of distortion
of general copulas. Namely, based on [9, 11, 12], see also alternative proof of iii) of
Proposition 3.1, for any copula C and distortion d, the function C{d} : [0, 1]2 → [0, 1]
given by

C{d}(x, y) = d̃(x) · C(d(x), y) = x ·
C(d(x), y)

d(x)
(10)

is a copula, and C{d∗} = Π, C{d∗} = C, i. e., the values of the distorted copula C{d}

are always between the values of the product copula Π, and of the original copula C.
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[3] B. De Baets, H. De Meyer, J. Kalická, and R. Mesiar: Flipping and cyclic shifting of
binary aggragation functions. Fuzzy Sets and Systems 160 (2009), 6, 752–765.

[4] F. Durante and P. Jaworski: Invariant dependence structure under univariate trunca-
tion. Statistics 2001, in press.

[5] F. Durante, S. Saminger-Platz, and P. Sarkoci: On patchwork techniques for 2-
increasing aggregation functions and copulas. In: Proc. SMPS, Toulouse 2008, pp. 349–
356.

[6] G. Gudendorf and J. Segers: Extreme-value copulas. In: Proc. Workshop on Copula
Theory and Its Applications (P. Jaworski, F. Durante, W. Haerdle, T. Rychlik, eds.),
Springer Media 2010, to appear.
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extrêmes bivariées. Ph.D. Thesis, Université Laval Québec 1995.

[10] E. P. Klement, R. Mesiar, and E. Pap: Quasi- and pseudo-inverses of monotone
functions, and the construction of t-norms. Fuzzy Sets and Systems 104 (1999), 1, 3–13.

[11] E. P. Klement, M. Manzi, and R. Mesiar: Ultramodular aggregation functions and a
new construction method for copulas. Submitted, 2010.

[12] E. Liebscher: Construction of asymmetric multivariate copulas. J. Multivariate Anal-
ysis 99 (2008), 2234–2250.
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