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Boundedness of one-sided fractional integrals

in the one-sided Calderón-Hardy spaces

Alejandra Perini

Abstract. In this paper we study the mapping properties of the one-sided frac-

tional integrals in the Calderón-Hardy spaces Hp,+
q,α (ω) for 0 < p ≤ 1, 0 < α < ∞

and 1 < q < ∞. Specifically, we show that, for suitable values of p, q, γ, α and s,

if ω ∈ A+
s (Sawyer’s classes of weights) then the one-sided fractional integral I+γ

can be extended to a bounded operator from H
p,+
q,α (ω) to H

p,+

q,α+γ
(ω). The result

is a consequence of the pointwise inequality

N+

q,α+γ

(

I+
γ
F ;x

)

≤ Cα,γN
+
q,α

(F ;x) ,

where N+
q,α(F ;x) denotes the Calderón maximal function.

Keywords: fractional integral, maximal, one-sided Calderón-Hardy, one-sided
weights spaces

Classification: Primary 42B20; Secondary 42B35

1. Introduction

The purpose of this paper is to show that we can extend the fractional integral
to a bounded operator between Calderón-Hardy spaces. For 0 < γ < 1, we denote
by Iγf the fractional integral defined by

Iγf(x) =

∫

R

f(y)

|x− y|1−γ
dy

when this integral exists. The classical results of boundedness of the fractional
integral are well known. One of them ensures that if 0 < γ < n, 1 < q < r < ∞,
1
r = 1

q − γ and f ∈ Lq(Rn) then

(1.1) ‖Iγf‖Lr(Rn) ≤ Cr,q‖f‖Lq(Rn).

A proof can be found e.g. in [3] or [13]. Another classical result affirms that if
f ∈ Λα, 0 < α < 1, then Iγf ∈ Λβ, β = α + γ. A more general version of this
result can be seen in [4].

We will study the behaviour of the operator I+γ , 0 < γ < 1, defined by

I+γ f(x) =

∫ ∞

x

f(y)

(y − x)1−γ
dy,
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in the one-sided Calderón-Hardy spaces that we will define below. In 1982, Gatto,
Jiménez and Segovia studied in [2], the Calderón-Hardy spaces in order to cha-
racterize the solutions of ∆mF = f , m ∈ N, for distributions f in the Hardy
spaces Hp. They proved that the operator ∆m is a bijective mapping from the
Calderón-Hardy spaces to Hp. Later, in 2001, Ombrosi studied in [7] a more gene-
ral weighted version of these spaces. Ombrosi proved that the fractional integral
I+γ can be extended to a bounded operator from the one-sided Hardy spaces into
the Calderón-Hardy spaces. To generalize these spaces Ombrosi used a one-sided
version of the Calderón maximal function, denoted by N+

q,α(F, x). To obtain our

result, the key will be to prove a pointwise estimate for N+
q,α(I

+
γ F, x). Further-

more, this estimate will allow us to give another proof of the classical result of
boundedness of I+γ between Lipschitz spaces.

A weight ω is a measurable and non-negative function. If E ⊂ R is a Lebesgue
measurable set, we denote its ω-measure by ω(E) =

∫

E ω(t) dt. A function f(x)

belongs to Lp(ω), 0 < p < ∞, if ‖f‖Lp(ω) = (
∫∞

−∞
|f(x)|pω(x) dx)1/p is finite.

The classes A+
s , 1 ≤ s ≤ ∞, were defined by E. Sawyer in [12] (see also [6]).

A weight ω belongs to the class A+
s , 1 < s < ∞, if there exists a constant C such

that

(1.2)

(

1

h

∫ x

x−h

ω(t) dt

)

(

1

h

∫ x+h

x

ω(t)−
1

s−1 dt

)s−1

≤ C,

for almost all real numbers x.
In the limit case of s = 1 we say that ω belongs to the class A+

1 if M−ω(x) ≤
Cω(x) a.e. x ∈ R, where M−f(x) = suph>0

1
h

∫ x

x−h |f(t)| dt. In a similar way,

Sawyer defined that a weight ω belongs to the class A−
s , 1 < s < ∞, if there

exists a constant C such that

(1.3)

(

1

h

∫ x+h

x

ω(t) dt

)

(

1

h

∫ x

x−h

ω(t)−
1

s−1 dt

)s−1

≤ C,

for almost all numbers x. For s = 1 we say that ω belongs to the class A−
1 if

M+ω(x) ≤ Cω(x) a.e. x ∈ R, where M+f(x) = suph>0
1
h

∫ x+h

x
|f(t)| dt. The

properties of one-sided weights which we will use in this paper can be seen in [5],
[8] and [12].

Let us fix w ∈ A+
s . Then there exists x−∞ such that w(x) = 0 if x < x−∞

and w(x) > 0 if x > x−∞ (see [8] for details). We denote by Lq
loc(x−∞,∞), with

1 < q < ∞, the space of the real valued functions f(x) on R that belong locally to
Lq for compact subsets of (x−∞,∞). We endow Lq

loc(x−∞,∞) with the topology
generated by the seminorms

|f |q,I =

(

|I|−1

∫

I

|f(y)|q dy

)1/q

,
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where I = (a, b) is an interval in (x−∞,∞) and |I| = b − a.
Let f ∈ Lq

loc(x−∞,∞) and let α be a real positive number. We define the
maximal function n+

q,α(f ;x) by

n+
q,α(f ;x) = sup

ρ>0
ρ−α|f |q,[x,x+ρ].

Let N be a non-negative integer and PN the subspace of Lq
loc(x−∞,∞) formed

by all the polynomials of degree at most N . This subspace is of finite dimension
and therefore a closed subspace of Lq

loc(x−∞,∞). We denote by Eq
N the quotient

space of Lq
loc(x−∞,∞) by PN . If F ∈ Eq

N , we define the seminorms

‖F‖q,I = inf
f∈F

{|f |q,I} .

The family of all such seminorms induces on Eq
N the quotient topology.

Given a positive real number α, we can write it as α = N + β, where N is
a non-negative integer and 0 < β ≤ 1. We fix α > 0 and its decomposition
α = N + β in the previous conditions.

For F ∈ Eq
N , we define the maximal function N+

q,α(F ;x) as

N+
q,α(F ;x) = inf

f∈F

{

n+
q,α(f ;x)

}

.

This type of maximal function was introduced by Calderón in [1].
Now we are ready to present the one-sided Calderón-Hardy spaces, Hp,+

q,α (ω),
defined by S. Ombrosi in [7]. The case ω = 1 and α ∈ N has been studied by
A. Gatto, J. Jiménez and C. Segovia in [2]. If F ∈ Eq

N , we say that F belongs
to Hp,+

q,α (ω), 0 < p ≤ 1, 1 < q < ∞, if the maximal function N+
q,α(F ;x) ∈ Lp(ω).

This means
∫ ∞

x−∞

N+
q,α(F ;x)pω(x) dx < ∞.

The norm of F in Hp,+
q,α (ω) is given by ‖F‖Hp,+

q,α (ω) = ‖N+
q,α(F ;x)‖Lp(ω).

We say that a class A ∈ EN
q is a p-atom in Hp,+

q,α (ω) if there exists a represen-
tative a(y) of A and an interval I such that

(i) supp(a) ⊂ I ⊂ (x−∞,∞), ω(I) < ∞,

(ii) N+
q,α(A;x) ≤ ω(I)

−1

p for all x ∈ (x−∞,∞).

From the definition of a p-atom, the condition ω(I) < ∞, w ∈ A+
s does not

assure that I is bounded, nevertheless, given the properties of one-sided weights
(see Lemma 1.1.7 and page 9 in [8]), I cannot be of type (a,∞); thus, if I is not
bounded we have that x−∞ = −∞ and so I = (−∞, b), b < ∞.

As before, let α = N + β where 0 < β ≤ 1. The class F ∈ EN
q belongs to

Λα(x−∞,∞) if f ∈ F is such that f ∈ CN (x−∞,∞), and there exists a constant
C such that the derivative DNf satisfies for every x, x′ ∈ (x−∞,∞) the Lipschitz
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condition
∣

∣DNf(x)−DNf(x′)
∣

∣ ≤ C |x− x′|
β
.

We observe that to say F ∈ Λα(x−∞,∞) is equivalent to saying that all their
representatives belong to Λα(x−∞,∞). To simplify notation, we write Λα instead
of Λα(x−∞,∞).

With the notation and definitions given above we can state the main results of
this paper.

Theorem 1.1. Let 0 < p ≤ 1, 0 < β < 1, α = N + β with N an integer,
0 < γ + β < 1, 1 < q < 1

γ and w ∈ A+
s where (α+ 1

q )p ≥ s > 1 or (α+ 1
q )p > 1 if

s = 1. Let I+γ be the extension of the one-sided fractional integral given by (3.17).

Then I+γ can be extended to a bounded operator from Hp,+
q,α (ω) into Hp,+

q,α+γ(ω).

This theorem is a consequence of the following key result.

Theorem 1.2. Let F ∈ Λα, α = N + β with N an integer, 0 < β < 1,

0 < γ + β < 1 and 1 < q < 1
γ . Let I+γ be the extension of the one-sided

fractional integral given by (3.17). Then

N+
q,α+γ(I

+
γ F ;x) ≤ Cα,γN

+
q,α(F ;x), x ∈ (x−∞,∞),

where Cα,γ does not depend on F .

The paper is organized as follows. In Section 2 we will present some auxiliary
lemmas that we will need later in Section 3 and Section 4. In Section 3, we will
prove the existence of the extension of the one-sided fractional integral to the
classes Hp,+

q,α (ω) ∩ Λα. In Section 4, we will prove the main results of this work,
Theorem 1.1 and Theorem 1.2. In the last section we will give some remarks
about the extension defined in Section 3.

2. Auxiliary lemmas

The following results establish some properties of the maximal function
N+

q,α(F, x) and the spaces Hp,+
q,α (ω).

First we observe that if χI(x) is the characteristic function of the interval
I = (a, b) and we denote I− = (a− |I|, a), it is not difficult to prove that

(2.1) M+χI(x) ≥
1

2
, x ∈ I− ∪ I.

Lemma 2.1. Let F ∈ Eq
N .

(1) Let f1, f2 be two representatives of F and P = f1−f2. Then there exists
a constant ck such that for every x1, x2 and y in (x−∞,∞) the inequality

∣

∣

∣

∣

∣

(

d

dy

)k

P (y)

∣

∣

∣

∣

∣

≤ ck
(

n+
q,α(f1;x1) + n+

q,α(f2;x2)
)

(|x1 − y|+ |x2 − y|)
α−k
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holds.
(2) If N+

q,α(F, x0) is finite for some x0 then there exists a unique f ∈ F such

that n+
q,α(f ;x0) < ∞ and, therefore, N+

q,α(F ;x0) = n+
q,α(f ;x0).

(3) If N+
q,α(F ;x) is finite, f is a representative of F and we denote by

P (x, y) the unique polynomial of degree at most N such that n+
q,α(f(y)−

P (x, y);x) = N+
q,α(F ;x), then f(x) = P (x, x) for almost every x such

that N+
q,α(F ;x) is finite.

(4) Assume that N+
q,α(F, x) ≤ t for all x belonging to a set E ⊂ (x−∞,∞).

Let f be a representative of F and let P (x, y) be the unique polynomial
in PN , such that N+

q,α(F ;x) = n+
q,α(f(y)− P (y, x);x). Then there exists

c > 0 such that
∣

∣

∣

∣

Ak(x)−
∑ 1

i!
(x− x)iAk+i(x)

∣

∣

∣

∣

≤ c t |x− x|
α−k

,

for all x and x in E, where Ak(x) = Dk
yP (x, y)

∣

∣

y=x
.

(5) F belongs to Λα if and only if there exists a finite constant C such that
N+

q,α(F, x) ≤ C for all x ∈ (x−∞,∞).
(6) If F ∈ Λα, x1 ∈ (x−∞,∞) and f is the representative of F such that

N+
q,α(F, x1) = n+

q,α(f, x1), then

∣

∣Dif(y)
∣

∣ ≤ C ‖Nq,α(F ; .)‖∞ |y − x1|
α−i

holds for i = 0, 1, . . . , N and y ∈ (x−∞,∞).

The proof of (1) can be found in [7]. The proof of (2) is similar to the one of
Lemma 3 in [2]. The proof of (3) can be seen in [8]. Proceeding as in the proof
of Lemma 5 in [1] we obtain the proof of (4), also we can find a complete proof
in [8]. Part (5) is Lemma 3.10 in [7]. The details of the proof of (6) can be seen
in [8].

Remark 2.2. Given a representative f ∈ F , if for each x we have N+
q,α(F ;x) < ∞

by Lemma 2.1(2), there exists a unique representative of F that realizes the
maximal function N+

q,α(F ;x) < ∞. We denote this representative by f(y) −
P (x, y), where P (x, y) is a polynomial of degree less than or equal to N .

Lemma 2.3. Let 0 < p ≤ 1 and w ∈ A+
s where (α+ 1

q )p ≥ s > 1 or (α+ 1
q )p > 1

if s = 1. The space Hp,+
q,α (ω) is complete.

The proof of this result is similar to that of Corollary 2 in [2], see also [8].

The following result is fundamental for the proof of Theorem 1.1 in Section 4.

Theorem 2.4. Let 0 < p ≤ 1 and w ∈ A+
s where (α+ 1

q )p ≥ s > 1 or (α+ 1
q )p > 1

if s = 1. The set of classes Hp,+
q,α (ω) ∩ Λα is dense in Hp,+

q,α (ω).

The proof of this result is due to Ombrosi [8], who used to prove it a one-sided
version of the Calderón-Zygmund decomposition.
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3. Extension of the one-sided fractional integral to the classes

Hp,+
q,α (w) ∩ Λα

Let 0 < γ < 1. Given a measurable function in R, the one-sided fractional
integral of order γ is defined by

I+γ f(x) =

∫ ∞

x

f(y)

(y − x)1−γ
dy, x ∈ (x−∞,∞),

provided the integral exists.

Remark 3.1. If we consider the kernel K(x) = χ(−∞,0)|x|
γ−1, we can write the

one-sided fractional integral as a convolution product as follows

I+γ f(x) = (K ∗ f)(x).

It is simple to prove that K(x) ∈ L1
loc(R− {0}) and K satisfies for 1 ≤ i ≤ n,

(3.1) |DiK(x)| ≤ Cγ,i|x|
γ−1−i, x ∈ (−∞, 0).

From the definition it is trivial to prove that, for f ≥ 0,

(3.2) I+γ f(x) ≤ Iγf(x), x ∈ (x−∞,∞)

and

(3.3) I+γ1
◦ I+γ2

f(x) = I+γ1+γ2f(x), x ∈ (x−∞,∞).

In what follows we suppose that ω ∈ A+
s where (α+ 1

q )p ≥ s > 1 or (α+ 1
q )p > 1

if s = 1. Furthermore we consider the number x−∞ associated with ω ∈ A+
s such

that x−∞ < 0.
Let us fix a function φ ∈ C∞

0 , 0 ≤ φ(y) ≤ 1, supp(φ) ⊂ [−2, 2], and such that
φ(y) ≡ 1 in [−1, 1]. Let r > 0 and x1 ∈ R. We denote

(3.4) φx1,r(y) = φ

(

y − x1

r

)

.

Then the support of φx1,r(y) is contained in [x1 − 2r, x1 + 2r] and φ(y) ≡ 1 in
[x1 − r, x1 + r]. Moreover, we have that

(3.5)
∣

∣Di(φx1,r)(y)
∣

∣ ≤ Cir
−i,

for every non-negative integer i, where Ci is ‖D
iφ‖∞. If x1 = 0, we denote φ0,r(y)

by φr(y).
Unless we state something different, we consider α > 0, α /∈ N where α can be

represented by α = N + β with 0 < β < 1.
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Lemma 3.2. Let F ∈ Λα and let f(y) be the representative of F such that
n+
q,α(f ; 0) = N+

q,α(F ; 0). If we define

(3.6)

gj(x) =

∫ ∞

x

f(y)

(y − x)1−γ
φj(y) dy

−

N
∑

i=0

∫ ∞

x

Di

(

1

|.− y|1−γ

)

(0)f(y)(φj(y)− φ1(y)) dy
xi

i!
,

where φj(y) and φ1(y) are given as in (3.4), then there exists limj→∞ gj in
Lq
loc(x−∞,∞).

Proof: We fix I = [a, b] ⊂ R, and we consider a natural number l such that
I ⊂ [−l/2, l/2]. Then for all x ∈ I and j > l we can write gj(x) as

(3.7)
gj(x) = gl(x) +

∫ ∞

x

[

1

(y − x)1−γ
−

N
∑

i=0

Di

(

1

|.− y|1−γ

)

(0)
xi

i!

]

× f(y)(φj(y)− φl(y)) dy.

Now we prove that there exists the limit of the second term of (3.7) when j → ∞.
Since φj(y)− φl(y) ≤ 1− φl(y) and supp(1− φl) ⊂ {|y| ≥ l} it follows that

supp (φj − φl) ⊂ supp (1− φl) ⊂ {|y| ≥ l}

and so the second term of (3.7) can be estimated as

(3.8)

∫ ∞

x

∣

∣

∣

∣

∣

1

(y − x)1−γ
−

N
∑

i=0

Di

(

1

|.− y|1−γ

)

(0)
xi

i!

∣

∣

∣

∣

∣

|f(y)| |φj(y)− φl(y)| dy

≤

∫

{|y|>l}∩(x,∞)

∣

∣

∣

∣

∣

1

(y − x)1−γ
−

N
∑

i=0

Di

(

1

|.− y|1−γ

)

(0)
xi

i!

∣

∣

∣

∣

∣

× |f(y)| |1− φl(y))| dy.

We observe that if x ∈ I ⊂ [−l/2, l/2], and y ∈ A = {|y| ≥ l} ∩ (x,∞), for
0 < ξ < 1 we have |ξx− y‖ ≥ |y|/2. In effect,

|ξx− y| = |y − ξx| ≥ |y| − |ξx| ≥ |y| − |ξ|
l

2
≥ |y| −

l

2
≥ |y| −

|y|

2
=

|y|

2
.
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Then by the Taylor’s Formula and Lemma 2.1(6), we have

(3.9)

∫

{|y|>l}∩(x,∞)

∣

∣

∣

∣

∣

1

(y − x)1−γ
−

N
∑

i=0

Di

(

1

|.− y|1−γ

)

(0)
xi

i!

∣

∣

∣

∣

∣

× |f(y)|(1− φl(y)) dy

≤ Cγ,N

∫

{|y|>l}∩(x,∞)

|ξx− y|γ−(N+2)|f(y)| dy |x|N+1

≤ Cγ,N2(N+2)

∫

{|y|>l}∩(x,∞)

|y|γ−(N+2)|f(y)| dy |x|N+1

≤ Cγ,N2(N+2) ‖Nq,α(F ; .)‖∞

∫

{|y|>l}∩(x,∞)

|y|γ−(N+2)|y|N+β dy |x|N+1

and since the last integral is convergent for 0 < γ + β < 1, it follows

∫

{|y|>l}∩(x,∞)

∣

∣

∣

∣

∣

1

(y − x)1−γ
−

N
∑

i=0

Di

(

1

|.− y|1−γ

)

(0)
xi

i!

∣

∣

∣

∣

∣

|f(y)| (1− φl(y)) dy

≤ Cβ,γ,N,l ‖Nq,α(F ; .)‖∞ < ∞.

Therefore,

(

1

(y − x)1−γ
−

N
∑

i=0

Di

(

1

|.− y|1−γ

)

(0)
xi

i!

)

f(y)(1− φl(y)) ∈ L1((x−∞,∞))

and by the Dominated Convergence Theorem, the second term of (3.7) converges
to

∫ ∞

x

[

1

(y − x)1−γ
−

N
∑

i=0

Di

(

1

|.− y|1−γ

)

(0)
xi

i!

]

f(y)(1− φl(y)) dy.

Then there exists limj→∞ gj(x) in L∞
loc(x−∞,∞), and, consequently, pointwise

and in Lq
loc(x−∞,∞). �

Taking into account the notation of Lemma 3.2 we define

(3.10)

I+,0
γ f(x) = lim

j→∞
gj(x)

= lim
j→∞

∫ ∞

x

f(y)

(y − x)1−γ
φj(y) dy

−

N
∑

i=0

∫ ∞

x

Di

(

1

|.− y|1−γ

)

(0)f(y)(φj(y)− φ1(y)) dy
xi

i!

where the limit is taken in the sense of L∞
loc(x−∞,∞).
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In Lemma 3.2 we have proved that for x ∈ I = [a, b] ⊂ [−l/2, l/2],

(3.11)

I+,0
γ f(x) = lim

j→∞
gj(x)

= gl(x) +

∫ ∞

x

[

1

(y − x)1−γ
−

N
∑

i=0

Di

(

1

|.− y|1−γ

)

(0)
xi

i!

]

× f(y)(1− φl(y)) dy,

where

gl(x) =

∫ ∞

x

f(y)

(y − x)1−γ
φl(y) dy

−

N
∑

i=0

∫ ∞

x

Di

(

1

|.− y|1−γ

)

(0)f(y)(φl(y)− φ1(y)) dy
xi

i!
.

Summarizing, if F ∈ Λα we have chosen a representative f , in particular f is such
that n+

q,α(f ; 0) = N+
q,α(F ; 0), and for this f we define an extension of the fractional

integral operator I+γ , denoted by I+,0
γ , such that I+,0

γ f belongs to L∞
loc(x−∞,∞).

The following step is to prove that if f is a polynomial of degree less than or equal
to N then I+,0

γ f is also a polynomial of degree at most N , which shows that the
extension does not depend on the representative f .

Lemma 3.3. Let P (y) be a polynomial of degree at most N . Then I+,0
γ P (x)

(defined by (3.10)) coincides with a polynomial of degree at most N in (x−∞,∞).

Proof: Without loss of generality, we can assume that P (y) = yn where 0 ≤
n ≤ N . Let us fix l ∈ N and x ∈ [−l/2, l/2]. Then from (3.11), we have that

(3.12)

I+,0
γ P (x) =

∫ ∞

x

yn

(y − x)1−γ
φl(y) dy

+

∫ ∞

x

[

1

(y − x)1−γ
−

N
∑

i=0

Di

(

1

|.− y|1−γ

)

(0)
xi

i!

]

yn(1 − φl(y)) dy

−

N
∑

i=0

∫ ∞

x

Di

(

1

|.− y|1−γ

)

(0) yn(φl(y)− φ1(y)) dy
xi

i!

= P1(x) + P2(x) +Q(x).

It is enough to prove that DN+1(I+,0
γ P ) ≡ 0. Since Q(x) is a polynomial of degree

at most N , we have that DN+1(Q)(x) = 0.
Then, the only thing to prove is that

(3.13) DN+1 (P2) (x) = −DN+1 (P1) (x).
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We consider η(y) = ynφl(y). Since φl(y) ∈ C∞
0 (R), we have η(y) ∈ C∞

0 (R). By
the change of variable z = y − x we can write P1(x) as

P1(x) =

∫ ∞

0

(x + z)nφl(x + z)

z1−γ
dz =

∫ ∞

0

η(x + z)

z1−γ
dz.

Given that η and its derivatives are compactly supported, by the standard theorem
of derivation under the integral sign we have that P1(x) admits derivatives until
order N + 1 and

(3.14) DN+1(P1)(x) =

∫ ∞

0

1

z1−γ
DN+1η(x+ z) dz.

Now we want to differentiate P2(x) until order N + 1. For s = 0, 1, . . . , N + 1,
|y| > l and x ∈ [−l/2, l/2] using Taylor’s Formula and (3.1) we have

∣

∣

∣

∣

∣

Ds
x

[

1

(y − x)1−γ
−

N
∑

i=0

Di

(

1

|.− y|1−γ

)

(0)
xi

i!

]∣

∣

∣

∣

∣

≤ CDN+1

(

1

|.− y|1−γ

)

(ξx)|x|N+1−s ≤ Cl|y|
γ−N−2,

hence,

∫

∣

∣

∣

∣

∣

Ds
x

[

1

(y − x)1−γ
−

N
∑

i=0

Di

(

1

|.− y|1−γ

)

(0)
xi

i!

]∣

∣

∣

∣

∣

|yn (1− φl(y))| dy

≤ Cl

∫

|y|>l

|y|n+γ−N−2 dy < ∞

and so we obtain

(3.15)

DN+1 (P2) (x) =

∫ ∞

x

DN+1
x

(

1

(y − x)1−γ

)

yn(1 − φl(y)) dy

= (−1)N+1

∫ ∞

x

DN+1
y

(

1

(y − x)1−γ

)

yn(1− φl(y)) dy.

Applying integration by parts in (3.15) and changing variables y = x+ z we have
that

(3.16)

(−1)N+1

∫ ∞

x

DN+1
y

(

1

(y − x)1−γ

)

yn(1− φl(y)) dy

= (−1)2N+1

∫ ∞

x

1

(y − x)1−γ
DN+1

y (ynφl) (y) dy

= −

∫ ∞

0

1

z1−γ
DN+1

x η(x + z) dz

= −DN+1 (P1) (x).
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By (3.15) and (3.16), we have proved (3.13) which finishes the proof. �

Definition 3.4. Let F ∈ Λα and f(y) be a representative of F . We define I+γ F
as the class in Eq

N of the function in Lq
loc(x−∞,∞) given by

(3.17)

I+,0
γ f(x) = lim

j→∞

[
∫ ∞

x

f(y)

(y − x)1−γ
φj(y) dy

−

N
∑

i=0

∫ ∞

x

Di

(

1

|.− y|1−γ

)

(0)f(y)(φj − φ1)(y) dy
xi

i!

]

.

This definition makes sense, since by Lemma 3.2 we have that for each rep-
resentative of F the limit in (3.17) exists in the sense of Lq

loc(x−∞,∞) and by

Lemma 3.3 the class I+γ F does not depend on the representative f of F .
Furthermore, if we fix x0 ∈ (x−∞,∞), and define

I+,x0

γ f(x) = lim
j→∞

[
∫ ∞

x

f(y)

(y − x)1−γ
φx0,j(y) dy

−

N
∑

i=0

∫ ∞

x

Di

(

1

|.− y|1−γ

)

(x0)f(y) (φx0,j(y)− φx0,1(y)) dy
(x− x0)

i

i!

]

,

where f is a representative of F , similar computations show that I+,x0
γ f(x) differs

from I+,0
γ f(x) by a polynomial of degree at most N and therefore I+γ F is also the

class of I+,x0
γ f(x).

4. Proofs of the main results

Proof of Theorem 1.2: Let x0 ∈ (x−∞,∞) and let f(y) be the representative
of F such that n+

q,α(f ;x0) = N+
q,α(F ;x0).

We know that a representative of I+γ F is

I+,x0

γ f(x) = lim
j→∞

[
∫ ∞

x

f(y)

(y − x)1−γ
φx0,j(y) dy

−

N
∑

i=0

∫ ∞

x

Di

(

1

|.− y|1−γ

)

(x0)f(y)(φx0,j(y)−φx0,1(y)) dy
(x− x0)

i

i!

]

.

Let ρ > 0 and x ∈ [x0, x0 + ρ/4]. Our goal is to prove the following estimates

(4.1)
∣

∣I+,x0

γ (f(1− φx0,ρ)) (x)−Q(x0, x)
∣

∣ ≤ Cγ,αN
+
q,α(F ;x0)ρ

α+γ

and

(4.2)

(

∫ x0+ρ/4

x0

∣

∣I+,x0

γ (fφx0,ρ) (x)
∣

∣

q
dx

)
1
q

≤ Cγ,αN
+
q,α(F ;x0)ρ

(α+γ)+ 1
q ,
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where

Q(x0, x) =

N
∑

i=0

∫ ∞

x

Di

(

1

|.− y|1−γ

)

(x0)f(y)φx0,1(y) dy
(x − x0)

i

i!
.

Let us see first that, if (4.1) and (4.2) hold, then we obtain the desired estimate:

(

∫ x0+ρ/4

x0

∣

∣I+,x0

γ f(x)−Q(x0, x)
∣

∣

q
dx

)
1
q

=

(

∫ x0+ρ/4

x0

∣

∣I+,x0

γ f(x)−I+,x0

γ (fφx0,ρ)(x)+I+,x0

γ (fφx0,ρ)(x)−Q(x0, x)
∣

∣

q
dx

)
1
q

≤

(

∫ x0+ρ/4

x0

∣

∣I+,x0

γ f (1− φx0,ρ) (x) −Q(x0, x)
∣

∣

q
dx

)
1
q

+

(

∫ x0+ρ/4

x0

∣

∣I+,x0

γ (fφx0,ρ) (x)
∣

∣

q
dx

)
1
q

≤ Cγ,αN
+
q,α(F ;x0)ρ

α+γ
(ρ

4

)
1
q

+ Cγ,αN
+
q,α(F ;x0)ρ

α+γ+ 1
q

= Cγ,αN
+
q,α(F ;x0)ρ

α+γ+ 1
q .

Then for ρ > 0

1

ρα+γ

(

1

ρ

∫ x0+ρ/4

x0

∣

∣I+,x0

γ f(x)−Q(x0, x)
∣

∣

q
dx

)
1
q

≤ Cα,γN
+
q,α(F, x0),

and taking supremum for ρ > 0 we have

n+
q,α+γ

(

I+,x0

γ f(x)−Q(x0, x);x0

)

≤ Cα,γN
+
q,α(F ;x0).

Since I+,x0
γ f(x)−Q(x0, x) ∈ I+γ F , we have

N+
q,α+γ

(

Iγ
+F ;x0

)

≤ Cα,γN
+
q,α(F ;x0), x0 ∈ (x−∞,∞).

Now we prove (4.1) and (4.2).
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For (4.1) we have

(4.3)

I+,x0

γ (f (1− φx0,ρ)) (x) = lim
j→∞

[
∫ ∞

x

f(y)(1− φx0,ρ(y))φx0,j(y)

(y − x)1−γ
dy

−

N
∑

i=0

∫ ∞

x

Di

(

1

|.− y|1−γ

)

(x0)f(y)(1 − φx0,ρ(y))(φx0,j(y)− φx0,1(y)) dy

×
(x− x0)

i

i!

]

.

Subtracting and adding up f(y)
(y−x)1−γ (1−φx0,ρ(y))φx0,1(y) in the first integral and

associating we have

(4.4)

I+,x0

γ (f(1− φx0,ρ))(x) =

∫ ∞

x

f(y)

(y − x)1−γ
(1 − φx0,ρ(y))φx0,1(y) dy

+ lim
j→∞

∫ ∞

x

[

1

(x− y)1−γ
−

N
∑

i=0

Di

(

1

|.− y|1−γ

)

(x0)
(x− x0)

i

i!

]

× f(y)(1− φx0,ρ(y))(φx0,j(y)− φx0,1(y)) dy.

Writing

(4.5)

1

(x− y)1−γ
=

N
∑

i=0

Di

(

1

|.− y|1−γ

)

(x0)
(x− x0)

i

i!

+

[

1

(x− y)1−γ
−

N
∑

i=0

Di

(

1

|.− y|1−γ

)

(x0)
(x− x0)

i

i!

]

and replacing (4.5) in the first integral of (4.4), we have
(4.6)

I+,x0

γ (f(1− φx0,ρ))(x) =

N
∑

i=0

∫ ∞

x

f(y)Di

(

1

|.− y|1−γ

)

(x0)φx0,1(y) dy
(x− x0)

i

i!

−

N
∑

i=0

∫ ∞

x

f(y)Di

(

1

|.− y|1−γ

)

(x0)φx0,1(y)φx0,ρ(y) dy
(x− x0)

i

i!

+ lim
j→∞

∫ ∞

x

[

1

(y − x)1−γ
−

N
∑

i=0

Di

(

1

|.− y|1−γ

)

(x0)
(x− x0)

i

i!

]

× f(y)(1− φx0,ρ(y))φx0,j(y) dy

= I1(x) + I2(x) + I3(x).
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Let us estimate I1(x), I2(x) and I3(x). Since F ∈ Λα and f is a representative
such that n+

q,α(f ;x0) = N+
q,α(F ;x0) then by Lemma 2.1(6) for i = 0, we have

|f(y)| ≤ C
∥

∥N+
q,α(F ; .)

∥

∥

∞
|y − x0|

α
.

Then from the last estimate and (3.1) we obtain that each integral in I1 is bounded
by

∫ ∞

x

∣

∣

∣

∣

f(y)Di

(

1

|.− y|1−γ

)

(x0)

∣

∣

∣

∣

φx0,1(y) dy

≤ C
∥

∥N+
q,α(F ; .)

∥

∥

∞

∫ x0+2

x0

∣

∣

∣

∣

Di

(

1

|.− y|1−γ

)

(x0)

∣

∣

∣

∣

|y − x0|
α dy

≤ Cγ,i

∥

∥N+
q,α(F ; .)

∥

∥

∞

∫ x0+2

x0

|y − x0|
γ−i−1

|y − x0|
α
dy

= Cγ,i

∥

∥N+
q,α(F ; .)

∥

∥

∞

∫ x0+2

x0

|y − x0|
γ−i−1+α

dy < ∞,

since γ + α − i − 1 = γ + β + N − i − 1 > N − 1 − i ≥ −1 if 0 ≤ i ≤ N . Then
I1(x) is a polynomial of degree at most N , denoted by Q(x0, x), that is

(4.7) Q(x0, x) =

N
∑

i=0

∫ ∞

x

f(y)Di

(

1

|.− y|1−γ

)

(x0)φx0,1(y) dy
(x− x0)

i

i!
.

Now we estimate each term of I2. Since supp( 1
|x0−y|1−γ φx0,ρ(y)) ⊂ [x0, x0 + 2ρ]

and using the condition (3.1) we have

∣

∣

∣

∣

∫ ∞

x

f(y)Di

(

1

|.− y|1−γ

)

(x0)φx0,1(y)φx0,ρ(y) dy
(x− x0)

i

i!

∣

∣

∣

∣

≤ Cγ,i

∫ x0+2ρ

x0

|x0 − y|γ−1−i|f(y)| dy
|x− x0|

i

i!

≤ Cγ,i

∫ x0+2ρ

x0

|x0 − y|γ−1−i|f(y)| dy
ρi

i!

≤ Cγ,iρ
i

∞
∑

j=0

∫ x0+2−j+1ρ

x0+2−jρ

|x0 − y|γ−1−i|f(y)| dy

≤ Cγ,iρ
i

∞
∑

j=0

1

(2−jρ)1+i−γ

∫ x0+2−j+1ρ

x0+2−jρ

|f(y)| dy

≤ Cγ,iρ
i

∞
∑

j=0

1

(2−jρ)1+i−γ

∫ x0+2−j+1

x0

|f(y)| dy
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≤ Cγ,iρ
i

∞
∑

j=0

1

(2−jρ)
1+i−γ

(

∫ x0+2−j+1ρ

x0

|f(y)|q dy

)
1
q

(2−j+1ρ)
1

q′

= Cγ,iρ
i

∞
∑

j=0

(2−j+1ρ)
1
q

(2−jρ)1+i−γ

(

1

2−j+1ρ

∫ x0+2−j+1ρ

x0

|f(y)|q dy

)
1
q

(2−j+1ρ)
1

q′

≤ Cγ,iρ
i

∞
∑

j=0

(2−j+1ρ)

(2−jρ)1+i−γ
(2−j+1ρ)αN+

q,α(F ;x0)

≤ Cγ,i,αρ
α+γN+

q,α(F ;x0)

∞
∑

j=0

2−j(−i+α+γ).

Since −i + α + γ ≥ β + γ > 0, we have that the series
∑∞

j=0 2
−j(−i+α+γ) is

convergent and then each term of I2(x) is controlled by

∣

∣

∣

∣

∫ ∞

x

f(y)Di

(

1

|.− y|1−γ

)

(x0)φx0,1(y)φx0,ρ(y) dy
(x− x0)

i

i!

∣

∣

∣

∣

≤ Cγ,i,αN
+
q,α(F ;x0)ρ

α+γ .

Then for x ∈ [x0, x0 +
ρ
4 ],

(4.8) |I2(x)| ≤ Cγ,αN
+
q,α(F ;x0)ρ

α+γ .

We estimate I3(x). Supposing that x ∈ [x0, x0+ρ/4], y /∈ [x0, x0+ρ] and 0 < θ < 1
we have

|x0 + θ(x− x0)− y| ≥ |y − x0| − |x− x0| > |y − x0| −
ρ

4
>

3

4
|y − x0|.

By the Mean Value Theorem, the condition (3.1) and the Taylor’s Formula we
have that I3(x) is estimated by

∣

∣

∣

∣

∣

∫ ∞

x

[

1

(x − y)1−γ
−

N
∑

i=0

Di

(

1

|.− y|1−γ

)

(x0)
(x− x0)

i

i!

]

× f(y)(1− φx0,ρ(y))φx0,j dy|

≤

∣

∣

∣

∣

∫ ∞

x

DN+1

(

1

|x0 + θ(x − x0)− y|1−γ

)

f(y)(1− φx0,ρ(y))φx0j(y) dy

×
(x− x0)

N+1

(N + 1)!

∣

∣

∣

∣

∣

≤ Cγ,NρN+1

∫ ∞

x0+ρ

|x0 + θ(x − x0)− y|
γ−1−(N+1)

|f(y)| dy
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≤ Cγ,NρN+1

∫ ∞

x0+ρ

|f(y)|

|y − x0|−γ+N+2
dy

= Cγ,NρN+1
∞
∑

j=0

∫ x0+2j+1ρ

x0+2jρ

|f(y)|

|y − x0|−γ+N+2
dy

≤ Cγ,Nργ−1
∞
∑

j=0

1

(2j)−γ+N+2

(

∫ x0+2j+1ρ

x0+2jρ

|f(y)| dy

)

≤ Cγ,Nργ−1
∞
∑

j=0

(2jρ)
1
q

(2j)−γ+N+2

(

1

2jρ

∫ x0+2j+1ρ

x0+2jρ

|f(y)|q dy

)
1
q

(2jρ)
1

q′

= Cγ,Nργ−1
∞
∑

j=0

2jρ

(2j)−γ+N+2

(

1

2jρ

∫ x0+2j+1ρ

x0+2jρ

|f(y)|q dy

)
1
q

≤ Cγ,Nργ+αN+
q,α(F, x0)

∞
∑

j=0

2(j)(α+1)

(2j)−γ+N+2

= Cγ,Nργ+αN+
q,α(F, x0)

∞
∑

j=0

2j(γ−N−2+α+1).

Since γ −N − 2 + α+ 1 < 0, we have that the series is convergent and

(4.9) |I3(x)| ≤ Cγ,αN
+
q,α(F, x0)ρ

α+γ .

From the identity (4.6), the estimations (4.7), (4.8) and (4.9) give (4.1).
Now we have to prove (4.2):

(4.10)

I+,x0

γ (fφx0,ρ)(x) = lim
j→∞

∫ ∞

x

f(y)

(y − x)1−γ
φx0,ρ(y)φx0,j(y) dy

−

N
∑

i=0

∫ ∞

x

Di

(

1

|.− y|1−γ

)

(x0)f(y)φx0,ρ(y)(φx0,j(y)− φx0,1(y)) dy
(x− x0)

i

i!

=

∫ ∞

x

f(y)

(y − x)1−γ
φx0,ρ(y) dy

−

N
∑

i=0

∫ ∞

x

Di

(

1

|.− y|1−γ

)

(x0)f(y)φx0,ρ(y)(1 − φx0,1(y)) dy
(x − x0)

i

i!

= J1(x) + J2(x).

Arguing as in the proof of (4.8), we have

(4.11) |J2(x)| ≤ Cγ,αN
+
q,α(F ;x0)ρ

α+γ for all x ∈ (x0, x0 + ρ/4).
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In order to estimate the Lq norm of J1, we use Hölder inequality and (1.1). In
effect, if r = q

1−qγ , we have

∫ x0+ρ/4

x0

∣

∣

∣

∣

∫ ∞

x

f(y)φx0,ρ(y)

(y − x)1−γ
dy

∣

∣

∣

∣

q

dx

=

∫ x0+ρ/4

x0

∣

∣I+γ (fφx0,ρ) (x)
∣

∣

q
dx

≤

[

∫ x0+ρ/4

x0

(∣

∣I+γ (fφx0,ρ) (x)
∣

∣

q) r
q dx

]

q

r
[

∫ x0+ρ/4

x0

1
r

r−q dx

]

r−q

r

= C‖I+γ (fφx0,ρ)‖
q
rρ

1− q

r

≤ Cq
r,q‖fφx0,ρ‖

q
qρ

1− q

r

= Cq
r,qρ

2− q

r

(

1

ρ

∫ x0+ρ/4

x0

|fφx0,ρ(x)|
q dx

)

≤ Cq
r,q[N

+
q,α(F, x0)]

qρ(α+γ)q+1.

Then from the estimations of J1(x) and J2(x) we have proved (4.2). �

Proof of Theorem 1.1: From Theorem 1.2 and by a standard argument we
obtain Theorem 1.1. Anyway, for the sake of completeness we will do the proof.
In effect, for F ∈ Hp,+

q,α (ω) we want to prove that there exists a constant Cγ,α such
that

(4.12)
∥

∥

∥
I+γ F

∥

∥

∥

Hp,+

q,α+γ
(ω)

≤ Cγ,α‖F‖Hp,+
q,α (ω).

By Lemma 2.4 we have that there exists a sequence Fj ∈ Hp,+
q,α (ω)∩Λα such that

Fj → F in Hp,+
q,α (ω).

Since Fj ∈ Hp,+
q,α (ω) ∩ Λα ⊂ Λα, by Theorem 1.2 we have

(4.13)
∥

∥

∥
I+γ Fj

∥

∥

∥

Hp,+

q,α+γ
(ω)

≤ Cγ,α ‖Fj‖Hp,+
q,α (ω) .

Using that the operator I+γ is linear and (4.13) we have that for each j, k ∈ N

(4.14)

∥

∥

∥
I+γ Fj − I+γ Fk

∥

∥

∥

Hp,+

q,α+γ
(ω)

=
∥

∥

∥
I+γ (Fj − Fk)

∥

∥

∥

Hp,+

q,α+γ
(ω)

≤ Cγ,α ‖Fj − Fk‖Hp,+
q,α (ω) .

Since Fj is a Cauchy sequence in Hp,+
q,α (ω), by (4.14) we have that I+γ Fj is a

Cauchy sequence in Hp,+
q,α+γ(ω). By Lemma 2.3 Hp,+

q,α+γ(ω) is complete, thus I+γ Fj

has a limit in Hp,+
q,α+γ(ω) that we define by I+γ F and so we have that I+γ Fj → I+γ F
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in Hp,+
q,α+γ(ω). Then by this last conclusion and (4.13) we have (4.12) as follows

‖I+γ F‖Hp,+

q,α+γ
(ω) = lim

j→∞

∥

∥

∥
I+γ Fj

∥

∥

∥

Hp,+

q,α+γ
(ω)

≤ Cγ,α lim
j→∞

‖Fj‖Hp,+
q,α (ω) = Cγ,α‖F‖Hp,+

q,α (ω).

�

5. Final remarks

Remark 5.1. By the characterization given in Lemma 2.1(5) we can observe
that Theorem 1.2 gives another proof of the classical result which ensures that

I+γ map Λα into Λα+γ for α = N+ β with 0 < β + γ < 1.

Remark 5.2. It is not hard to see that as a consequence of Ombrosi’s results,
see Theorems 4.1.5 and 4.2.2 in [8], we can say that the previous result is also
true for the case α ∈ N.

Remark 5.3. Nevertheless, Theorem 1.1 is false for β + γ = 1, 0 < β < 1. We
will see that by an example. We suppose ω ≡ 1. Let φ be a in C∞

0 , 0 ≤ φ(y) ≤ 1,
with support contained in [−8, 8], and with φ(y) ≡ 1 in [−4, 4]. For 0 < α < 1,
we define

(5.1) a(x) = φ(x)

(

∞
∑

n=1

1

2αn
cos 2nx

)

.

The previous series defines a function Lipschitz-α (see [14]), and since φ(x) ∈ C∞
0 ,

a(x) also belongs to Lipschitz-α. Then if we denote the class of a(x) in Eq
0 by

A, we have that N+
q,α(A, x) is bounded, and therefore since a(x) has compact

support contained in a bounded interval, A is a multiple of a p-atom in Hp,+
q,α (1).

Then the class of a(x) in Eq
0 belongs to Hp,+

q,α (1). If we consider, in particular, the

case α = N + β, N = 0 and β + γ = 1. If we suppose that I+1−α is a bounded

extension from Hp,+
q,α (1) into Hp,+

q,1 (1), then we have that the class in Eq
0 of the

function I+1−αa(x) ∈ Hp,+
q,1 (1) and this is false. If we suppose that it is true, by

Theorem 4.2.2 in [8] we have that DI+1−αa(x) ∈ Hp, where Hp is the classical
Hardy space, and this is false. A proof of this fact is given in [8].
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