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Abstract

Linear error propagation law (LEPL) has been using frequently also for
nonlinear functions. It can be adequate for an actual situation however it
need not be so. It is useful to use some rule in order to recognize whether
LEPL is admissible. The aim of the paper is to find such rule.
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1 Introduction

Error propagation law, mainly in its linear version (LEPL) is frequently used in
practice; sometimes in serious situations. For example let us mention measure-
ment of temperature in nuclear power station.

Effectiveness of the power station is growing with the growing temperature
of the reactor. However it cannot overcome some value, since a terrible disaster
can occur. The temperature is estimated as a nonlinear function of several
measured quantities and the variance of estimated temperature is a starting
point for a control of the temperature of the reactor. Can be used LEPL in this
situation?

A practical rule for the utization of LEPL is given in the paper.
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70 Lubomir KUBACEK, Eva TESARIKOVA

2 Notation

Let f(-): R® — R®, where R™ is n-dimensional linear vector space and f(-)
be a known vector function, which can be developed in the Taylor series. Let
& ~, (u,X) be an n-dimensional random vector with the mean value E(€) =
and Wlth the covariance matrix Var(§) = 3.

In the following text it is assumed that the support of the probability measure
of the vector £ is imbedded into the sphere with the radius of convergence of
the function f(-) (in more detail cf. [3]), or at least that the supporrt can be
trimmed in such a way that it is imbedded into the convergence sphere and at
the same time the needed statistical moments of the trimmed distribution differ
only non-essentially from the original moments.

The notation

/
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is used in the following text. The notation
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Let
Af1 (1) Af1(M)
poo Ofw) o om Toe )
O A 0. ()
Our 7 ""°7  Oun
F, — 52fi(li)’ —1,....s,
ouop’
Pr = F(F'F) F/,
F~ ... g-inverse of the matrix F, i.e. FF"F =F
(in more detail cf. [5]),
Mp = 1-Pp,
I, ... identical s X s matrix,
AT ... the MoorePenrose g-inverse of the matrix A, i.e.,

AATA=A, ATAAT = AT AAT = (AAT),
ATA =(ATAY,
& ~ N,(u,X) the vector £ is normally distributed with the
mean value F(€) = p and with the covariance matrix
Var(§) = X,
A <; B ... means that B — A is positive semidefinite.

3 Criterion for LEPL
The quadratic version of the Taylor series is
1
£(€) = £(p) + Fe + 5n(e), 1)

where

A function f(+) in the following text is assumed to be approximated by (1).
If such approximation is not sufficient for our purposes, then the rules given in
the following text must be replaced by procedures given in [3].

Lemma 3.1 The mean value of £(€) from (1) is

Tr(F12)

Te(F,3)
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and its covariance matriz is

Var [f(f)] =
. E(e'Fiee'F) )
=FXF + 3 +3 [E(e'F1e€'F'),..., E(e'Fsee'F')]
E(e'Fsee’'F)
1 Var(e'Fi€), cov(e’'Fie,e'Fae), ..., cov(e'Fie,e'Fge)
e e [
cov(e'Fse,e'Fqe), cov(e'Fee,e'Fae), ..., Var(e'F;e)

Proof is obvious.

Corollary 3.2 Ife ~ N,(0,X), then the covariance matriz of £(&) from (1) is
Var [f(¢)] =

Tr(F,SF, %), Tt(F,IF,%), ..., Tr(F,SF,X)

Here the relationship cov(e’'Ae,e’Be) = 2Tr(AXBY) is used (cf. e.g., [2]). In
the following text the second term on the right hand side is neglected. A non-
linearity of a function f(-) is in the first step expressed by the term

Tr(F1 3)

Tv(F,5)

what is approzimately the bias E(&)—f(p). The bias of the estimator can be tol-
erated if it is small with a comparison with a standard deviation of the estimator
(cf. some analogy in definition of the intrinsic and parametric curvatures of a
regression model [1] and also the nonlinearity measures in [4].) The covariance
matriz of the estimator is approximately FXF'. Thus the following definition
can be used in order to obtain a criterion for a utilization of LEPL.

Definition 3.3 Let h € R*. Then
Tr(F,X)
b
Tr(F.3X)
cn(p) =
vh'FXF'h

is a criterion function for the random variable h'f(¢).

Its meaning is obvious. If ¢,(p) < &, then the approximate bias of the
estimator h'f(£€) from Lemma 2.1 of the quantity h'f(g) is less than e-multiple
of its approximate standard deviation. A sufficient small € > 0 enables us to
use Var [h'f(£)] = hW'FXF'h instead of the precise formula (cf. [3]), since the

nonlineareity is manifested non-essentially.
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Theorem 3.4 (i) Let FXF >, 0. If

Te(F, )
%(Tr(Flil),...,Tr(FSE))(FEF’)_l : <e?,
Tr(F,X)
then
Te(F, )
v{h € R} %h’ : < -VWFSFh.
Tr(F,X)

(ii) Let FXF’ be not positive definite, i.e. its spectral decomposition is
FXF =57 \igig., 7 < s. Let Apax = max{\1,..., A\ }. If

3

Tr(F,X)
i(Tr(F12)7...,Tr(FSE))(FEF’+)\maXMp)_1 : < €2,
Tr(F,X)
then
Tr(F,X)
v{h € R} %h’ : < e/W(FXF + \paxMp)h.
Tr(F,X)

Proof The Scheffé inequality [6] is used, i.e. if b € R® is given vector and W
is a s X s positive definite matrix, then

V{h € R°*}|h'b| < evVh’'Wh < b’'W'b < &2

Now it is sufficient to consider

()
b=-
Ti(F,X)
and W = FXF’ and FXF’ + \,..Mp, respectively. O

Definition 3.5 The linearization region for a function f(-) is
(i) in the case FXF’ > 0

1 TI'(F12)
£o={u o (T(ED), .. Te(F,2)) (FSF) : <&
Te(F,X)
(ii) In the case FXF’ is not positive definite, it is
L. =
1 Tr(F12)
—p 1(T1~(F12), L TH(FLS)) (FEF + Aoy Mp) ™! : < &2

Tr(F,X)
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Thus for a given ¥ and if we know that g € L., we can use the approximate
relation Var [f(¢)] ~ FXF’.

The (1 — «)-confidence region for p, with sufficiently small oz must be used
for a check of p € L..

Corollary 3.6 If s =1, then

4 Numerical examples

o~

In the following examples estimators of the variance Var[f(8)] for frequently
occurring functions are given. Actual values of 3 are in the regions £. The true
values of variances and biases are obtained from the simulations (n = 10000)

and o = /Var [f(£)] is given in the form 0.025 & 0.000056. Here 0.00056 is
an estimator of the standard error of the estimator of the standard error, i.e.
0.7070/+/n — 1 in more detail cf. [7]. This enables us to compare LEPL with
simulation.
1) Let
1 .
f(B)= B’ B#0, ie, L.={B:0<c¢|f]}.
If £ = 0.1, B~ (4,(0.4)2), then
10000
1 1 1 1 1
b=FE|=|— =" =— | — —=10.002703,
(3) 8 10000 Z <5(i)) 4

i=1

10000 2 10000 2
1 1 1 1 1
ar(@) 9999 ; <g<i>> [10000 2 (5@)1

i=1

= 0.000 634 186,

Var (%) =0.025183 4+ 0.000 18,

LEPL = 0.025,
|b/o| = 0.107(s = 0.1).
2) Let
cos f3
£(5) = (sinﬂ) ’

ie. £, = {5; i [Te(FL), Te(Fo )] [FEF' + Apax M| ™" (Ti(F 12;) < 52} .
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Since
[ —sing 9 _
F—< cosﬁ)’ =0, F,=—cosf, Iy
we have
) . .
;o sin® 8, —sinfBcosfB\ o sin 3
FXF =0 (Sinﬂcosﬂ7 cos26>_g (—cosﬁ

i.e. Apax = 02. Further

My — < cos? f3, sinﬁcosﬁ>'

sin BcosB, sin?f

Thus FXF/ + M\paxMp = 021 and

1
L. = {B: 102 < 52} = R'.

= —sin g,

[

If
B ~1 (0.174533(= 10°), [0.4(= 22.9°)]?), &=0.2,
and
(1, 1(8) = cos § + sin 5,
then
| 10000
- s394 sin B9) - 1.158456 = —0.
b 10000 2 (cos B9 + sin 5'*) 58 456 0.086 950,
Var(cos E + sin B\)
10000 10000 2
_ - 20 B2 _ - .30 4 gin B
= 9999 ; (cos ' + sin 8')* — 10000 10000 ; (cos ') + sin B\V)
— 0.103 795,
\/Var(cos5+ sin B) = 0.322172 = 0.002 28,
LEPL = 0.324 47,
Ib|/o = 0.269(c = 0.2).
3) Let
1
f(B) =exp(B), ie., L.= {B: 50 < 6} = RM
If

=02, B~ (10,(2x02)?),

75
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then
1 10000

= B — exp(10) = 1415.
10000 2 exp(B'Y) — exp(10) 5.35,

0000 1000 2
1
Var[exp(}3) = 5599 { ; exp(3%¥]? — 10000 llOOO 22: 1 }
=8.16414 x 107,

Varfexp(3)] = 9035.56 + 63.89,
LEPL = 8811,
|b/o| = 0.157(¢ = 0.2).

4) Let
f(B)=Ing, ie, L.={B:8>0,0<el}.
If
e=02, B~ (10,22,
we have
1 10000
1 — 2.302585 = —0.022 242,
~ 10000 Z n B
1 10000 | 10000 2
npB)=—— In )2 — 1 — N I p®
Var(In ) = oo ; (In 32 — 10000 lmooo ; nf
=0.043 151,
Var(In 3) = 0.207 729 + 0.001 5,
LEPL = 0.200,
|b/o| = 0.100(¢ = 0.2).
5) Let
f(ﬁ):ﬁkv 1e., ‘CE:{ }
If
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then

1 10000
- BY3 10000 = 110.475
b 10000 4 (5 ’

1=

Var(B%) = ! > (BD)5 — 10000

10000 10000
"~ 9999 l

i=1 i=

= 370 896,
Var[(B®)3] = 609.012 + 4.307,
LEPL = 600,
b/o| = 0.181(c = 0.2).
6) Let

2
10 = v en Lo={pio< 2},

10000

2
1 .
— (ﬁ(”)?)}
10000 2

1

2
1
(gm)e) — 10000 [10000 Z

=1
=1.19377 x 1077,

1
Var (E) = 0.000 34551 £ 0.000 002 4,

LEPL = 0.000 300,
/o] = 0.206(z = 0.2).
7) Let f(B1,B2) = B1Pe. If

)-1:) )
52 2 52 ’ 07 U% ’

then £. = R2, since F; = ((1)’ (1)) If

B 10\ [0.12, 0
3, ) 2 |\1w0)\ o 012)]

10000 1 1
b= : — =7.10679 x 107°
10000 2 {35 )~ 1000 SR

g

B

7))
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then £. = R?,
| 10000 A
b= Tooos > (B By — 1000 = —0.007,
R 1 10000 A | 10000 A 2
Ver(Bu) = gogg | 3 117547 — 10000 [10000 > BP3, >]
— 96.9169,
\/ Var (51 B2) = 9.844 + 0.070,
LEPL = 10.05,
Ib/o| = 0.0007.
8) Let

B\, 031 tan (2 .-

C.— ( )
& \/Ofsin262005262+0555

f(B1,82) = BitanBa, e,

The values of the function

o3 tan o

\/0% sin? By cos? By + 0353

9(B1, B2) =

for 02 = (0.1 m)? and 0% = (48.48 x 10=% = 10”)? are given in the following
table

Table
Values of the function g(-, ) x 106
25° || 1.143 | 1.712 | 2.277 | 2.839 | 3.395
20° || 1.063 | 1.591 | 2.114 | 2.632 | 3.143
15° || 1.005 | 1.501 | 1.991 | 2.473 | 2.944
10° || 0.963 | 1.433 | 1.891 | 2.332 | 2.753
5% || 0.924 | 1.347 | 1.730 | 2.068 | 2.361
0° 0.000 | 0.000 | 0.000 | 0.000 | 0.000
40m | 60m | 80m | 100 m | 120 m

B 80 m o2, 0
By ) 7\ 0.349066(=20°) )"\ 0, o3 )|

If
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then
b= ﬁ 1§0:0 B tan(BSY) — 29.118 m = —0.000 5 m,
i=1
Var(Bl tan(BQ))
0 s 10000 Rk
= 5999 ; (5%) tanﬁgz))2 — 10000 lm ; 3@ tanﬁé”

=0.0009754 m?,

\/ Var(B; tan B2) = (0.031 23 + 0.000 22) m,

LEPL = 0.036 7 m,
b/o| = 0.0160.

9) Let 2D coordinates x, y of the point P be transformed into another coor-
dinate system &, 7 by the transformation

3 B cos B3, sinfis \ (@
()= () (25 23) ()
(frequent problem in cartography and geodesy). Let
(B1, B2, B3, z,y) = (100 m, 100 m, 0.785 397(= 45%), 300 m, 400 m).

The uncertainty of this vector is given by the covariance matrix

¥ = Diag [(0.1m)?, (—0.1m)?, (0.017453 = 1°)*, (0.1 m)?, (0.1 m)?]
(the uncertainties are extremaly large in order to show how the rule works).
The aim is to determine Var <§) The utilization of LEPL is possible if the

value

i [Tr(F.2), Tr(FoX) | (FEF) < %gﬁ? )

is sufficiently small. In our case

F - 1, 0, —zsin B3 + ycos B3, cos Pz, sin 3
~\ 0,1, —xcosf3 — ysin f3, —sin f3, cos B3

1,0, 70.710700, 0.707107, 0.707 107
0, 1, —494.974900, —0.707 107, 0.707 107 )’

0, 0, 0, 0, 0
0, 0, 0, 0, 0
F, = 0,0, —xcosfs — ysin 3, —sin fF3, cosfB3 |,
0, 0, — sin f33, 0, 0
0, 0, cos 33,0, 0
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0, 0, 0, 0, 0
0, 0, 0, 0, 0
F, =10,0, xcosf3 —ysinf3, —cosf3, —sinfPs |,
0, 0, — cos (3, 0, 0
0, 0, —sin 3, 0, 0

;o 1.543 038, —10.661 264
FEF = (—10.661264, 74.648851)’
1 n—1 Tr(Flz) —
Z[T1~(1?1§:),Tr(]_«“Qz:)](FzF) <Tr( F,y) ) = 0.289 950.

The value € = v/0.289 950 = 0.538 472 indicates that LEPL for a determination

of Var (g is not suitable in this case. The reason is too large uncertainty of

the values 517 62a 637 z,y.
Let the covariance matrix be

> =

1 :
== Diag [(0.1m)?, (~0.1m)?, (0.017453)2, (0.1 m)”, (0.1 m)?]

= Diag [(0.019 m)?, (0.019 m)?, (0.003241 = 11.142),(0.019 m)?, (0.019 m)?],

where 5.38472 = (10+/0.289950)2. In this case

Tr(F12)

%[Tr(FlE),Tr(FQE)] (FXF)~! <Tr< Py ) ) = 0.01(= £2),

what is sufficiently small value €2 for a utilization of LEPL. The approximate

Var(§> is
n

£\ _ , ( 0.053217, —0.367693
Var(n = FuF = —0.367693, 2.574542

and
Var(§) = 0.231 m, Var(n) = 1.605 m.

The values obtained by simulation are
Lo L R €W (594975 _ (~0.00329
10000 & n® 170.711 ) — \ 0.00476 )’
1 1oooo 0 e 1%0 0
9999 <= |\ n® ) 10000 & \ 5"

/
NI AN 'R e@N\T [/ 00502, —0.343 8
n® 10000 & n® )1 — \ —0.3438, 23807 )’
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and

Var(¢) = (0.223 +£0.002) m, +/Var(y) = (1.543 4 0.010) m,
|be/oe| = 0.0148,  |b, /0| = 0.0031.

10) Let in the plane the coordinates of two points P;, P> be known. At the
point P; the horizontal angle ©; between the directions to the point P, and to
the point A with unknown coordinates is measured with the standard deviation
0e. Analogously at the point P, the angle ©5 is measured. Let the distance
between the points P;, P> be s and the direction from P, to P; be given by the
angle . Then the x coordinate x4 of the point A is given by the relationship

sin ©1 cos(a — ©3)
Sil’l(@l + @2)

TA=2xp, + S

Since the measurement of the angles ©1, ©s is stochastically independent, LEPL
for x4 is

ora\> —~ ora\> ~
Var(Z4) = (ﬁ) Var(©;) + (ﬁ) Var(0,),
1 2

where

0 cos(a — ©) sin O Jxa  00;cos(a—0Oq)

00, ~ 7 sin2(©,+02) | 90, sin?(0, +0) |

Since Var (gl > = U%I, we shall need in the expression
2

) N
Tr 5 07z Var (gl>
a( 1)6(@1,@2) 2

O3
the second derivatives ‘?g?, ‘rggg‘ only, i.e.
Pra _28cos(a — 03) cos(©1 + O3) sin O
89% N sin3(@1 + @2) ’
Pxa _ZSsin ©1 cos(a — O1) cos(O1 + O3)
6@3 sin3(®1 + @2) .

For the sake of simplicity let ©; = ©2 = 7. Then

X .

Tr ®3xA Var(%l) =0,
8<@1)8(@1,92) 2

2
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thus £ = R? and

LEPL = Var(Z.) = 055> {cos2 (a - %) sin? % + sin? % cos? (a - ZH .

2, . .
Let a — 7 =7, s =1000m and 03 = (500:) , i.e. 06 = 10’ (in sexagesimal

degrees). Then
LEPL = /Var(Z4) = 0esv0.5 = 2.057 m.

Values of y/Var(Z4) given by simulation (n = 10000) are between (2.022 +
0.014) m and (2.075 + 0.015) m, what means very good agreement LEPL with
simulation.

References

(1] Bates, D. M., Watts, D. G.: Relative curvature measures of nonlinearity. J. Roy. Stat.
Soc. B 42 (1980), 1-25.

[2] Kubacek, L.: Foundations of Estimation Theory. Elsevier, Amsterdam-Oxford—New
York—Tokyo, 1988.

[3] Kubacek, L.: Nonlinear error propagation law. Applications of Mathematics 41 (1996),
329-345.

[4] Kubacek, L., Tesafikova, E.: Weakly Nonlinear Regression Models. Vyd. Univerzity
Palackého, Olomouc, 2008.

[5] Rao, C. R., Mitra, S. K.: Generalized Inverse of Matrices and its Applications. Wiley,
New York-London—Sydney—Toronto, 1971.

(6] Scheffé, H.: The Analysis of Variance. Wiley, New York-London—Sydney, 1967, (fifth
printing).

[7] Tesatrikova, E., Kubacek, L.: Linear error propagation law and nonlinear function. De-
partment of algebra and geometry, Faculty of Science, Palacky University, Olomouc,
2010, (demoprogram).



		webmaster@dml.cz
	2013-09-18T15:02:18+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




