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Abstract. We study the flow of an incompressible homogeneous fluid whose material
coefficients depend on the temperature and the shear-rate. For large class of models we
establish the existence of a suitable weak solution for two-dimensional flows of fluid in
a bounded domain. The proof relies on the reconstruction of the globally integrable pressure,
available due to considered Navier’s slip boundary conditions, and on the so-called L∞-
truncation method, used to obtain the strong convergence of the velocity gradient. The
important point of the approach consists in the choice of an appropriate form of the balance
of energy.
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1. Introduction

This paper focuses on the existence analysis for an unsteady flow of an incom-

pressible homogeneous heat-conducting non-Newtonian fluid in a bounded two-

dimensional Lipschitz domain Ω ⊂ R
2. Such a flow is governed by the following

system of partial differential equations (PDE’s):

div v = 0,(1.1)

v,t + div(v ⊗ v) − div S = −∇p+ f ,(1.2)

E,t + div(v(E + p)) − div(Sv − q) = f · v,(1.3)

*M. Bulíček thanks to Jindřich Nečas Center for Mathematical Modeling for its support
through project LC06052 financed by the Ministry of Education, Youth and Sports of
the Czech Republic (MŠMT).
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which is supposed to be satisfied in Q := (0, T )×Ω, where T > 0 denotes the length of

time interval. In (1.1)–(1.3), v : Q→ R
2 denotes the velocity of the fluid; p : Q→ R

is the pressure; S : Q → R
2×2
sym stands for the constitutively determined (deviatoric)

part of the Cauchy stress; E : Q → R denotes the density of the total energy;

q : Q → R
2 is the heat flux and finally f : Q → R

2 is the density of the external

body forces. For simplicity (but without any essential changes in the proof) we

assume that f ≡ 0 in what follows. Note that (1.1) represents the incompressibility

constraint that is, for the homogeneous fluid considered, equivalent to the balance

of mass, (1.2) is the balance of linear momentum and (1.3) expresses the balance of

energy.

To formulate an appropriate initial-boundary value problem relevant to (1.1)–(1.3)

we have to set up the initial and boundary conditions. For the initial data we assume

that

(1.4) v(0, x) = v0(x) and E(0, x) = E0(x) for x ∈ Ω.

For simplicity, we set Γ := (0, T ) × ∂Ω and assume that the boundary data for the

velocity field are given by the so-called Navier’s slip boundary conditions, i.e., we

assume that for some γ ∈ [0, 1)

(1.5) v · n = 0 and γvτ + (1 − γ)(Sn)τ = 0 on Γ.

Finally, we assume that there is no input or output of the energy through the bound-

ary. Thus

(1.6) (Sv − q) · n = 0 on Γ.

In (1.5)–(1.6), n denotes the unit outward normal vector to ∂Ω, and wτ is the

projection of any vectorw to the tangent line at the considered point of the boundary.

The boundary conditions (1.5) describe an internal flow (no outflow/inflow is allowed)

that slips along the boundary according to (1.5)2. In fact, (1.5)2 states that the

velocity of the fluid is proportional to the tangent component of the traction on the

boundary ∂Ω. Note that setting γ = 0 in (1.5)2 we obtain the no-stick (or slip)

boundary conditions and setting γ = 1 we obtain the no-slip boundary conditions

for the velocity. It should be mentioned at the very beginning that while the case

γ ∈ [0, 1) is included in our analysis, the case γ = 1 is not covered since we are

not able to construct the globally integrable pressure p, which seems to be natural

requirement in order to make an appropriate weak formuation of (1.3) meaningful.

To simplify further notation, we also define a slip parameter α > 0 as

α :=
γ

1 − γ
.
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Regarding the boundary condition relevant to the balance of energy we con-

sider (1.6), since it guarantees that the total energy is a conserved quantity. More-

over, such a condition is also the most natural one if one deals with steady problems,

as explained in [7]. On the other hand, from the point of view of the existence

analysis of unsteady flows, the condition (1.6) can be relaxed and we are also able to

treat the thermally isolated part of the boundary (q · n = 0) or Dirichlet boundary

conditions for the temperature, see [6] for details.

Next, using (1.5)–(1.6) we can deduce the boundary condition for q · n on Γ.

Indeed, using the symmetry of S and the fact that v · n = 0 on Γ, we observe that

(Sv) · n = (Sn)τ · v on Γ. Consequently, using (1.5)–(1.6) we find that

(1.7) q · n = −α|v|2 on Γ.

Further, we describe the constitutive relations for S, E, q we are interested in.

First of all, the density of the total energy E is given as the sum of the kinetic and

the internal energy

(1.8) E :=
1

2
|v|2 + e,

where e : Q → R+ is the density of the internal energy. For the heat flux q we

consider the generalized Fourier law

(1.9) q = q̂(θ,D(v),∇θ) = −κ̂(θ, |D(v)|)∇θ;

here κ̂ : R+ ×R+ → R denotes the heat conductivity of the fluid and θ : Q→ R+ is

the temperature. We also employ the notation for the symmetric part of the velocity

gradient D(v) := 1
2 (∇v + (∇v)T ). Note that the flux q is allowed to be dependent

on the shear rate |D(v)|, we refer to [6] for more details concerning the physical
importance of such a setting.

In order to cover a general class of fluids without making any other assumptions

on the heat capacity of the fluid, we prefer to reformulate (1.9) in such a way that

q is a function of the internal energy and its gradient rather than of the temperature

and the temperature gradient. To do so, we assume that the internal energy e is

a smooth function of θ with a smooth inverse,1 i.e.

e = ẽ(θ) and θ = θ̃(e),

1 The assumption that e is an invertible function of θ is valid for most fluids, since the
energy e is usually a strictly increasing function of the temperature.
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where θ̃ = (ẽ)−1. Using this assumption, we can view e as a primitive quantity. Then

(1.9) can be rewritten as

(1.10) q = q∗(e,D(v),∇e) = −κ∗(e, |D(v)|)∇e,

where we set

(1.11) κ∗(e, |D(v)|) := κ̂(θ̃(e), |D(v)|)θ̃′(e).

We will also assume that the constitutively determined part of the Cauchy stress S

depends on the internal energy (to be precise, on the temperature that is however

a function of the energy) and on the symmetric part of the velocity gradient:

(1.12) S = S
∗(e,D(v)).

Our main interest is to develop an existence theory for models where the rela-

tions (1.10) and (1.12) are of the form

S
∗(e,D) = ν0(e)(1 + ν1(e) + |D|2)(r−2)/2

D,(1.13)

q∗(e,D,∇e) = −κ0(e,D)eβ∇e,

whereas the model parameters r and β fulfil

(1.14) r ∈ (1, 2) and β 6 0,

and ν0, ν1, and κ0 are continuous bounded functions that are bounded from below

by a positive constant, say ε. There are three main reasons why we focus on the

range of model parameters fulfilling (1.14). First, if r and β fulfil (1.14) then v is

not an admissible test function in the weak formulation of (1.2) and consequently

the chosen form (1.3) of the balance of enery is essential for our analysis. We discuss

this point below in detail. Second, (1.13)–(1.14) covers models interesting from the

point of view of their applications in various areas of science such as geophysics,

bioengineering, material science, food industry, coloid mechanics, etc., see [6], [17],

[18] for details. Third, the model characterized by the constitutive equations (1.13)

satisfies the assumptions of the paper given in Section 2 and we are able to develop

large data existence theory for all r > 3
2 and β > − 1

2 , see assumptions of Theorem 2.1,

where the range for β can be even relaxed depending on r.

This paper extends the paper [6] where the authors establish similar analysis

to the same problem in three space dimensions. The results established here give
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a theoretical background to numerical analysis and computer experiments in two-

dimensional setting. We are interested in verifying the effect of the chosen form of the

energy balance on the stability of computer simulations. While such experiments,

for models described above, are very demanding in three-dimensional setting, the

two-dimensional case can be handled more easily. We aim at analyzing the relevant

numerical approaches for planar flows in a forthcoming study.

At this point, we discuss the chosen form of the balance of energy, the formulation

of the entropy inequality and its equivalence to the energy inequality, and we also

introduce the notion of the suitable weak solution to the generalized Navier-Stokes-

Fourier system (see [6], [5] for details). First, we take the scalar product of (1.2)

with v and subtract the result from (1.3) to obtain the balance of energy in the form

(1.15) et + div(ev) + div q = S · D(v).

However, as we only deal with weak solutions in general, such a procedure is rigorous

if v is an admissible test function in a weak formulation of (1.2). If this is not the

case, then the validity of (1.15) is open in general and one is forced to replace the

equality (1.15) by the inequality

(1.16) et + div(ev) + div q > S · D(v).

To justify the possible inequality sign in (1.16), we show and it is interesting

to show that any (weak) solution to (1.1)–(1.3) and (1.16) can be considered the

physical one. If the entropy S, the internal energy e and the temperature θ are

related through the condition
1

θ
:=

∂S

∂e
,

it is of interest to observe that (1.16) is in fact equivalent to the entropy inequality

provided the temperature is strictly positive. Indeed, multiplying (1.16) by a positive

quantity 1/θ and using (1.1) leads to

(1.17) S,t + div(Sv) + div
(q

θ

)

>
1

θ

(

S ·D(v) − q · ∇θ
θ

)

(> 0),

which is nothing else than the entropy inequality. Although this step was again

formal, it can be deduced rigorously since 1/θ will be always a possible test function

in (1.16) for the class of fluids we are interested in.

On the other hand, subtracting (1.16) from (1.3), we obtain the inequality

(1.18) (|v|2),t + div(v(|v|2 + 2p)) − 2 div(Sv) + 2S · D(v) 6 2f · v.
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Note that weak solutions to (1.1)–(1.2) satisfying also (1.18) are called suitable weak

solutions, as introduced in [9], where the inequality (1.18) plays the important role

in proving partial regularity results for suitable weak solutions to three-dimensional

Navier-Stokes equations. Thus, having the equivalence of (1.18) and (1.16), it is

natural to call a weak solution the suitable one if it solves (1.1)–(1.3) in a weak sense

and if it in addition satisfies in a weak sense the energy inequality (1.16) (that is

equivalent to the entropy inequality (1.17)). Therefore, our goal in this paper is to

find (v, p, e,S, q, E) that solve in a weak sense (1.1)–(1.6) and (1.16), and solve (1.8),

(1.10), and (1.12) pointwise in Q. Such (v, p, e,S, q, E) we call the suitable weak

solution.

The structure of the paper is the following. In Section 2 we introduce the structural

assumptions on S
∗ and κ∗ that are considered in the paper. Then we explain the

notation and formulate the main existence theorem of the paper. Next, in Section 3

we recall several important tools and auxiliary results used in the proof of the main

theorem. Then in Section 4 we formally derive a priori estimates on (v, p, e, q,S) and

show that the weak formulation introduced in the main theorem is really meaningful.

Finally, in Section 5 we prove the main theorem. We mainly follow the paper [6],

where the three-dimensional case is treated but with more restrictive assumptions

on S
∗ and q∗.

2. Assumptions on S
∗ and κ∗

In the paper we assume that S
∗ : R+ × R

2×2
sym → R

2×2
sym and κ

∗ : R+ × R+ → R+

are continuous mappings. Moreover, we assume that there are r ∈ (1,∞) and β ∈ R

such that for all e ∈ R+ and all B,D ∈ R
2×2
sym, B 6= D,

C1(|D|r − 1) 6 S
∗(e,D) · D, |S∗(e,D)| 6 C2(|D|r−1 + 1),(2.1)

[S∗(e,D) − S
∗(e,B)] · (D− B) > 0,(2.2)

C3e
β 6 κ∗(e, |D|) 6 C4e

β,(2.3)

i.e., we assume that S
∗ is r-coercive, has (r − 1)-growth and is strictly monotone

w.r.t. D. Since we will always have e > emin > 0, where emin is the minimum

(infimum) of the initial internal energy e0, we can relax the assumptions (2.1)–(2.3)

and consider them to be valid only for e > emin > 0. Note that the examples (1.13)

satisfy (2.1)–(2.3). We also refer to [6], [5], [12], [18], [17] for other models of S∗ and

q∗ satisfying (2.1)–(2.3).

Next, we introduce a notation of function spaces that is suitable for describing the

problem (1.1)–(1.3) and (1.16). We use the standard notation for Sobolev, Lebesgue,
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and Bochner spaces. For the vector-valued functions having zero normal part on the

boundary we employ the notation2

W 1,q
n

:= {v ∈W 1,q(Ω)2; v · n = 0 on ∂Ω}, W−1,q′

n
:= (W 1,q

n
)∗,

W 1,q
n,div := {v ∈W 1,q

n
; div v = 0}, W−1,q′

n,div := (W 1,q
n,div)

∗, Lq
n,div := {v ∈W 1,q

n,div}
‖·‖q

.

Note that the above spaces are separable for q ∈ [1,∞) and reflexive for q ∈ (1,∞).

In order to simplify the presentation we also denote for any r, q ∈ [1,+∞]

Xr,q := {u ∈ Lr(0, T ;W 1,r
n

) ∩ Lq(0, T ;Lq(Ω)2); u ∈ L2(0, T ;L2(∂Ω)2)},
Xr,q

div := {u ∈ Xr,q; div u = 0},

and also recall these spaces are separable for r, q ∈ [1,∞) and reflexive for r, q ∈
(1,∞). The Lebesgue spaces of functions having zero mean value are denoted by Lq

0,

i.e., we define Lq
0 := {p ∈ Lq(Ω);

∫

Ω
p dx = 0}. Finally, for f and g being scalar-,

vector- or tensor-valued functions we define (f, g)O :=
∫

O fg whenever fg ∈ L1(O).

Since the most frequent setting in the paper is O = Ω, we shorten the notation for Ω

as (f, g) := (f, g)Ω. Moreover, for any g ∈ X and f ∈ X∗ we set 〈f, g〉 := 〈f, g〉X∗,X

whenever it is clear from the context which duality pairing is taken into account.

The constant C in the whole paper depends only on the data, i.e., on v0, e0, Ω,

T , r, β and α. If there is any dependence on other quantities it is clearly marked in

the text.

Having the above definitions of function spaces, we can formulate the main theorem

of the paper.

Theorem 2.1. Let Ω ∈ C1,1 be an open bounded domain in R
2, let r > 3

2 and

β > max(−1, 1
2r/(r − 1) − 2) be arbitrary. Assume that the initial data satisfy

(2.4) v0 ∈ L2
n,div and e0 ∈ L1(Ω); e0(x) > emin > 0 in Ω,

S
∗ and q∗ satisfy (2.1)–(2.3) with r and β, and let mE > 1 be defined as

(2.5) mE :=



















































2(β + 2)

3
for β > r − 2 and β ∈

(

−1

2
, 1

)

,

2r(β + 1)

2r + β − 1
for β > r − 2 and β > 1,

2(β + 2)(r − 1)

2r − 1 + β
for β < r − 2 and r > 2,

2r(β + 2)

2β + r + 4
for β < r − 2 and

3

2
< r 6 2.

2 For simplicity we write v instead of trv whenever it is clear from the context that we
are restricted to ∂Ω.
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Then there exists (v, p, e,S, q, E) satisfying (1.8), (1.10), and (1.12) such that

v ∈ Cweak(0, T ;L2
n,div) ∩Xr,2r

div ,(2.6)

v,t ∈
(

X
r,2r/(2r−3)
div

)∗ ∩ Lmin(r,r′)(0, T ;W−1,min(r,r′)
n

),(2.7)

S ∈ Lr′

(0, T ;Lr′

(Ω)2×2),(2.8)

p ∈ Lmin(r,r′)(0, T ;L
min(r,r′)
0 ),(2.9)

e ∈ L∞(0, T ;L1(Ω)), e > emin in Q,(2.10)

e
1
2 (β+λ+1) ∈ L2(0, T ;W 1,2(Ω)) for all λ < 0,(2.11)

E ∈ Lq(0, T ;Lq(Ω)) ∩W 1,s′

(0, T ; (W 1,s)∗)(2.12)

for all q < min(2 + β, r) and all s′ < min(2
3r, 2r/(2r − 1),mE),

(2.13) q ∈ Lm(0, T ;Lm(Ω)2) for all 1 6 m <
4 + 2β

3 + 2β
,

such that they satisfy (1.8), (1.10), and (1.12) a.e. in Q, and such that they sat-

isfy (1.2)–(1.3) and (1.16) in the following sense:

〈v,t,ϕ〉 − (v ⊗ v,∇ϕ)Q + α(v,ϕ)Γ + (S,D(ϕ))Q = (p, div ϕ)Q(2.14)

for all ϕ ∈ Lmax(r,r′)(0, T ;W 1,max(r,r′)
n

),

〈E,t, ϕ〉 − ((E + p)v,∇ϕ)Q + (Sv − q,∇ϕ)Q = 0(2.15)

for all ϕ ∈ L∞(0, T ;W 1,∞(Ω)),

− (e, ψ,t)Q − (ve,∇ψ)Q − (q,∇ψ)Q > (S,D(v)ψ)Q + α(|v|2, ψ)Γ(2.16)

for all nonnegative ψ ∈ D(0, T ;W 1,∞(Ω)),

and the initial condition (1.4) is attained in the following sense:

(2.17) lim
t→0+

‖v(t) − v0‖2
2 + ‖e(t) − e0‖1 = 0.

In addition, we see that for r > 2 we can set ϕ := v in (2.14) and therefore,

following the argumentation in Section 1 and the procedure described in [6] we can

strengthen the statement of Theorem 2.1 in the following way.

Corollary 2.1. Let all assumptions of Theorem 2.1 be satisfied. Moreover, as-

sume that r > 2. Then there exists (v, p, e,S, q, E) satisfying (1.8), (1.10), (1.12),

and (2.6)–(2.17) and, in addition, also

(2.18) e ∈ C(0, T ;L1(Ω)) ∩W 1,1(0, T ; (W 1,q)∗) for sufficiently large q ≫ 1
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and

〈e,t, ψ〉 − (ve,∇ψ)Q − (q,∇ψ)Q = (S,D(v)ψ)Q + α(|v|2, ψ)Γ(2.19)

for all ψ ∈ L∞(0, T ;W 1,∞(Ω)).

The Navier-Stokes or Navier-Stokes-Fourier-like systems are ones of the most stud-

ied systems of PDE’s coming from mathematical physics. These systems of equations

can be split into two cases. The first, called subcritical, takes place for r > 2 in two

dimensions and r > 11
5 in dimension three, and in this case the velocity can be

used as a test function. In the second, called supercritical, the velocity cannot be

used as a test function. While the subcritical cases were studied by many authors,

we refer to [11], [10], and the existence theory can be established with help of the

Minty method, the supercritical cases have been solved very recently. First such

result for Newtonian fluid in spatially periodic setting was established in [12] and

then extended to Navier’s boundary conditions in [5]. The existence analysis for

the fully nonlinear model satisfying (2.1)–(2.3) was developed for r ∈ (9
5 , 2] and for

three dimensions in [6], where in addition the dependence of S∗ on the pressure p

is allowed. On the other hand, some uniform monotonicity is required there. This

paper uses the method developed in [6] for extending the existence theory to sub-

and supercritical cases in dimension two provided that (2.1)–(2.3) hold. The main

novelty consists in introducing the optimal function spaces that are natural for the

problem considered and follows from a priori estimates, and in establishing the ex-

istence of a weak solution whenever a priori estimates guarantee that (2.14)–(2.16)

are meaningful.

We would also like to emphasize that our result is nontrivial. It is well known

that for non-Newtonian fluids (without coupling with the energy) the regularity of

the solution can be established for any r > 1 at least in the spatially periodic setting

(see [16]) and therefore one could think that the same method works also for the full

Navier-Stokes-Fourier system. However, once the equations are coupled, i.e., once

S
∗ depends on e, the resulting system falls into the so-called class of PDE’s with

critical growth on the right-hand side, for which the regularity theory does not hold

in general and therefore the method developed in [16] cannot be used and one is

forced to use a different procedure.
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3. Auxiliary tools

In this section we recall several auxiliary results and important tools that will

be used in the proof of Theorem 2.1. First, we recall the theory for the Laplace

equation.

Lemma 3.1. Let Ω ∈ C1,1 be an open bounded domain and 1 < q < ∞. There
exists a continuous linear operator N−1 : Lq

0 →W 2,q(Ω) such that

(3.1) ∆N−1(z) = z in Ω, ∇N−1(z) · n = 0 on ∂Ω,

∫

Ω

N−1(z) dx = 0.

Moreover, if we define vdiv := v −∇N−1(div v) for any v ∈W 1,q
n

∩Ls(Ω)2 then the

following inequalities hold:

‖N−1(div v)‖2,q 6 C‖div v‖q, ‖vdiv‖1,q 6 C‖v‖1,q,(3.2)

‖N−1(div v)‖1,s 6 C‖v‖s, ‖vdiv‖s 6 C‖v‖s.(3.3)

Note that due to the definition of vdiv we have div vdiv = div v−∆N−1(div v) = 0

and vdiv ∈W 1,q
n,div.

P r o o f. The proof can be found in [15, Proposition 2.5.2.3, page 131]. �

Next, since S
∗ depends only on the symmetric part of the velocity gradient we

need to recall the Korn inequality.

Lemma 3.2 (Korn inequality). Let Ω ∈ C0,1 be an open bounded domain and

q ∈ (1,∞). Then for all v ∈W 1,q(Ω)2 ∩ L2(Ω)2 the following inequality holds:

(3.4) ‖v‖1,q 6 C(‖D(v)‖q + ‖v‖2).

P r o o f. We refer to [16] for a detailed proof. �

Since we deal with Navier’s boundary conditions, we need to control compactness

of the trace operator in a proper space. Therefore, we recall the following lemma.

Lemma 3.3. Let Ω ∈ C0,1 be an open bounded domain. For 1 < q1, q2 <∞ and
r > 3

2 let us define the set

S := {v; v ∈ L∞(0, T ;L2(Ω)2) ∩ Lr(0, T ;W 1,r
n,div), v,t ∈ Lq1(0, T ;W−1,q2

n,div )}.

Assume that {vi}∞i=1 is bounded in S. Then the sequence {vi|∂Ω}∞i=1 is precompact

in L2(0, T ;L2(∂Ω)2).
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P r o o f. We refer to [6, Lemma 1.4] for a detailed proof. �

Finally, we introduce two interpolation inequalities that are frequently used in the

proof of the main theorem.

Lemma 3.4. Let Ω ∈ C0,1 be an open bounded domain in R
2. Assume that

1 < r < ∞ and γ > 0 are fixed. Then for any s ∈ [2, 2r/(2 − r)] if r < 2, for any

s ∈ [2,∞) if r > 2, and for any q such that

1

q
+

1

s(r − 1)
=

1

2(r − 1)

the following interpolation holds:

(3.5) ‖f‖Lq(0,T ;Ls(Ω)) 6 C‖f‖β
L∞(0,T ;L2(Ω))‖f‖

1−β
Lr(0,T ;W 1,r(Ω))

with

β :=
r

s(r − 1)
+

r − 2

2(r − 1)
.

Moreover, for any 1 < s, q <∞ such that
2

q
+

1

sγ
=

1

γ

the following inequality holds:

(3.6) ‖f‖Lq(0,T ;Ls(Ω)) 6 C‖f‖1/s
L∞(0,T ;L1(Ω))‖fγ‖(s−1)/sγ

L2(0,T ;W 1,2(Ω)),

provided that f > 0.

P r o o f. The proof easily follows from the interpolation inequalities (see [1])

‖f‖s 6 C‖f‖β
2‖f‖1−β

1,r ,

‖f‖s 6 C‖f‖1/s
1 ‖fγ‖(s−1)/sγ

1,2 ,

and from the Hölder inequality. �

As a direct consequence of this lemma we obtain

Corollary 3.1. Let all assumptions of Lemma 3.4 be satisfied. Then

∫ T

0

‖v‖2r
2r dt 6 C‖v‖r

L∞(0,T ;L2(Ω)2)

∫ T

0

‖v‖r
1,r dt,(3.7)

∫ T

0

‖f‖2γ+1
2γ+1 dt 6 C‖f‖L∞(0,T ;L1(Ω))

∫ T

0

‖fγ‖2
1,2 dt.(3.8)
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4. A priori estimates

This section is devoted to obtaining formal a priori estimates for solutions

to (2.14)–(2.16). Thus, assuming that the velocity field is smooth enough, we can

set ϕ := v in (2.14) to obtain (note that the convective term as well as the term

with the pressure vanish, we refer to [6], [16] for details)

(4.1)
1

2

d

dt
‖v‖2

2 + α‖v‖2
L2(∂Ω) + (S,D(v)) = 0.

Consequently, using (1.12), (2.1) and (3.4), we find that

(4.2) sup
t∈(0,T )

‖v‖2
2 +

∫ T

0

‖v‖r
1,r + ‖v‖2

L2(∂Ω) dt 6 C‖v0‖2
2,

which gives the space introduced for the velocity field in Theorem 2.1, see (2.6).

Note that (2.8) is then a direct consequence of (2.6) and the assumption (2.1). Next,

we derive the corresponding estimates also for the internal energy e. Thus, setting

ϕ ≡ 1 in (2.15), we get (using the definition of E (1.8) and assuming that e > emin)

that

(4.3) sup
t∈(0,T )

‖e‖1 6 C(‖v0‖2
2 + ‖e0‖1),

which formally gives (2.10). Finally, setting ψ := eλ in (2.16) with arbitrary −1 <

λ < 0, after using the fact that div v = 0 and the nonnegativity of the right-hand

side of (2.16), we get that

(4.4)

∫ T

0

λ(eλ−1q,∇e)dt 6 C(emin, ‖e‖L∞(L1), ‖v0‖2
2).

Therefore, using (1.10) and (2.3), we find that

∫ T

0

‖∇e 1
2 (λ+1+β)‖2

2 dt 6
(λ+ 1 + β)2

4

∫ T

0

(eλ−1+β∇e,∇e)dt(4.5)

6 C(λ−1)λ

∫ T

0

(eλ−1q,∇e)dt 6 C(λ−1).

Thus, we have obtained the corresponding spaces for e as those introduced in Theo-

rem 2.1, see (2.10)–(2.11).

To obtain the desired estimate for the pressure, we first notice that using (2.6)

and (4.2), we get

(4.6)

∫ T

0

‖v‖2r
2r dt 6 C.
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Thus, setting ϕ := ∇N−1(|p|min (r,r′)−2p −
∫

Ω
|p|min (r,r′)−2p) in (2.14) (note that

ϕ · n = 0 on ∂Ω), we get

(4.7)

∫ T

0

‖p‖min(r,r′)
min(r,r′) dt =

∫ T

0

(v,t,ϕ) + α(v,ϕ)∂Ω + (S,∇ϕ) − (v ⊗ v,∇ϕ)dt.

Since div v = 0, the first term vanishes. Next, using Lemma 3.1 we have that

‖ϕ‖max(r,r′)
1,max (r,r′) 6 C‖p‖min (r,r′)

min (r,r′) and using the Young inequality and the fact that the

trace operator is continuous from W 1,2(Ω) to L2(∂Ω), we get that

(4.8)

∫ T

0

‖p‖min(r,r′)
min(r,r′) dt 6 C

(

1 +

∫ T

0

‖v‖2
L2(∂Ω) + ‖S‖r′

r′ + ‖v‖2r
2r dt

)

6 C,

where the last inequality follows from (2.6) and (2.8).

In the remaining part of this section we show that the relations (2.14)–(2.16)

are well defined for (v, e, p) belonging to the spaces introduced in (2.6), (2.10), and

(2.11). The fact that (2.14) is meaningful follows from (2.6), (2.7), (4.6), and (4.8).

The corresponding space for the time derivative introduced in (2.7) can be obtained

by standard interpolations (see [8], [5], [6] for details). Next, using (3.8), (4.3), and

(4.5), it is easy to observe for all λ < 0 that

(4.9)

∫ T

0

‖e‖λ+2+β
λ+2+β dt 6 C(λ−1).

Next, using (1.10) and (2.3), we get after using the Hölder inequality, (4.5), and (4.9)

that

∫ T

0

‖q‖1+ 2λ+1
3+2β

1+ 2λ+1
3+2β

dt 6 C

∫

Q

|∇e 1
2 (β+1+λ)|1+ 2λ+1

3+2β |e| 12 (1−λ+β)(1+ 2λ+1
3+2β ) dxdt(4.10)

6 C(λ−1)

and (2.13) follows. To obtain the first part of (2.12), it is enough to combine (4.6)

and (4.9). To obtain also the second part of (2.12), we first deduce by using the

Hölder inequality, (4.6), (4.8), and (2.8) that

(4.11)

∫

Q

(|v|3 + |p||v| + |S||v|))min(2r/3,2r/(2r−1)) dxdt 6 C.

Finally, we need to find mE > 1 such that
∫

Q |ve|q dxdt 6 C for all q < mE . Once

having such mE we can use (4.11) to obtain the second part of (2.12).
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The first natural choice how to find suchmE is to use homogeneous (homogeneous

means the same integrability w.r.t. x and t) estimates (4.6) and (4.9). Then mE is

given by the relation
1

mE
=

1

2r
+

1

β + 2
.

Consequently, to guarantee that mE > 1 we need to restrict ourselves to the case

β > −2
r − 1

2r − 1
.

However, in the rest of this section, we show that the use of homogeneous estimates

is not optimal and one can get a better relation for mE than that which is introduced

in (2.5) and, consequently, not so restrictive condition for β.

Thus, to find such optimal mE , we use (2.6), (2.10)–(2.11), and Lemma 3.4. For

simplicity, since λ in (2.11) can be arbitrarily close to zero, we do all estimates with

λ = 0 and finally replace the possible equality by the strict inequality as is done

in (2.12). Hence, using the Hölder inequality, we get that

‖ev‖LmE (Q) 6 ‖v‖La1(0,T ;Lb1(Ω)2)‖e‖La2(0,T ;Lb2(Ω)) 6 C,

provided that

1

mE
=

1

a1
+

1

a2
=

1

b1
+

1

b2
,(4.12)

1

a1
+

1

b1(r − 1)
=

1

2(r − 1)
,

1

a2
+

1

b2(β + 1)
=

1

β + 1
(4.13)

and that 1 < a1, a2, b1, b2 <∞. These identities are consequences of (3.5) and (3.6),
and the properties (2.6), (2.10)–(2.11). For the last constraint we need to guarantee

that

(4.14) a2 ∈ (max(1, β + 1),∞), a1 ∈ (r#,∞), b1 ∈ [2, r∗), b2 ∈ (1,∞),

where r∗ = 2r/(r − 2) and r# = r if r < 2 and r∗ = ∞ and r# = 2(r − 1) for r > 2.

Thus, solving the system of algebraic equations (4.12)–(4.13), we find that

1

a1
=

3

2r
− β + 2

a2r
,(4.15)

1

b1
=

1

2
− 3(r − 1)

2r
+

(r − 1)(β + 2)

a2r
,

1

b2
= 1 − β + 1

a2
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and therefore for mE we get

(4.16)
1

mE
=

3

2r
+
r − β − 2

a2r
.

Before we choose a2 such that mE is maximal, let us recall the possible ranges for a1,

b1, a2, b2 that follow from (4.15). First, using the restriction for a1 and (4.15) we

find for r < 2 that
2(β + 2)

3
6 a2 6 2(β + 2),

which implies

max
(

1, 1 + β,
2(β + 2)

3

)

6 a2 6 2(β + 2).

Similarly, for r > 2, we get the restriction

max
(

1, 1 + β,
2(β + 2)

3

)

6 a2 <
2(r − 1)(β + 2)

2r − 3
.

Having these ranges for a2, we now choose it such that mE is the largest possible.

Thus, going back to (4.16), we see that for r− 2 > β we need to choose a2 maximal.

So for r < 2 we set a2 := 2(β + 2), therefore (4.16) implies that

(4.17)
1

mE
=

1

r
+

1

2(β + 2)
⇐⇒ mE =

2r(β + 2)

2β + 4 + r

and we see that to get that mE > 1 we need to restrict β as

(4.18) β >
4 − 3r

2(r − 1)
.

Similarly for r > 2, setting the maximal a2 = 2(r − 1)(β + 2)/(2r − 3), we get

(4.19) mE =
2(r − 1)(β + 2)

2r + β − 1

which is always strictly greater than 1 since β > −1.

For β > r − 2 we choose a2 minimal, i.e., we choose a2 := max(β + 1, 2
3 (β + 2)).

This leads to

−1

2
6 β 6 1 =⇒ mE =

2(β + 2)

3
,

1 6 β =⇒ mE =
2r(β + 1)

2r + β − 1
.

Note that in all cases we obtain mE > 1.
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5. Proof of the main theorem

In order to prove the main theorem, we need several approximations in what

follows. First, since we do not know a priori that e > emin, we truncate S
∗ and q∗

as

S̃
∗(e,D) := S

∗(max(e, emin),D), q̃∗(e, |D|2,∇e) := q∗(max(e, emin), |D|2,∇e).

Note that once having the minimum principle for e, the above truncation is not

needed.

Further, to be able to use the monotone operator theory and to pass from the

Galerkin approximative scheme to the “continuous” problem we need to guarantee

that v is a possible test function in (2.14). To achieve it, we mollify the convective

term3. Thus, let z be a standard regularization kernel. For η > 0 we define zη(x) :=

z(x/η)/η2. Then we find some ωη ∈ D(Ω) such that dist(suppωη, ∂Ω) > η and

ωη(x) = 1 for all x ∈ Ω, dist(x, ∂Ω) > 2η. Finally, for arbitrary v ∈ W 1,r
n
we

define vη := ((vωη) ∗ zη)div. Note that a direct consequence of this definition is that

div vη = 0 in Ω, vη · n = 0 on ∂Ω. Moreover, using Lemma 3.1 it is not difficult to

observe that for all v ∈ Lr(0, T ;W 1,r
n

) ∩ Lq(Q)

vη
η→0→ v strongly in Lq(Q).

Finally, we replace the balance of the global energy (1.3) by the balance of the

internal energy (1.15) for which the standard theory for parabolic equations can be

easily used. Thus, our final approximative system takes the following form:

div v = 0,(5.1)

v,t + div(vη ⊗ v) − div S̃
∗(e,D(v)) = −∇p,(5.2)

e,t + div(vηe) + div q̃∗(e,D(v),∇e) = S̃
∗(e,D(v)) ·D(v),(5.3)

with the boundary conditions (1.5) and (1.7) and the initial conditions (1.4) where

E0 := 1
2 |v0|+e0. The existence of a solution to (5.1)–(5.3) is established by using the

“double” Galerkin approximation scheme and the monotone operator theory. Once

having a solution to the approximative system (5.1)–(5.3), we introduce the equation

for the global energy and let η → 0. In order to be able to identify the limits of

the nonlinear term we use the Aubin-Lions lemma, the Div-Curl lemma (see [19]),

and the compactness of the velocity gradient that is achieved by using the so-called

3 This mollification is not needed in case r > 2 since in this case one can use the velocity
field as a test function in (2.14).
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L∞ truncation method. For more details we refer an interested reader to [6], where

the three-dimensional case is treated.

5.1. Galerkin approximation

Let {wj}∞j=1 be a basis of W
1,r
n,div that is orthonormal in L

2(Ω)2 and such that

wj ∈ W 1,q
n,div for all j ∈ N and all q ∈ (1,∞). Assume that {wj}∞j=1 is a basis

of W 1,2(Ω) again orthonormal in L2(Ω). Then the Galerkin approximation to (5.1)–

(5.3) has the form:

For k, l ∈ N we look for the functions

vk,l :=

k
∑

i=1

ck,l
i (t)wi and ek,l :=

l
∑

i=1

dk,l
i (t)wi

that satisfy the system of ordinary differential equations

(5.4)
d

dt
(vk,l,wj) − (vk,l

η ⊗ vk,l,∇wj) + (Sk,l,∇wj) + α(vk,l,wj)∂Ω = 0

for j = 1, . . . , k and

d

dt
(ek,l, wj) − (vk,l

η ek,l,∇wj) − (qk,l,∇wj)(5.5)

= (Sk,l ·Dk,l, wj) + α(|vk,l|2, wj)∂Ω

for j = 1, . . . , l. Here, we set for simplicity

D
k,l := D(vk,l), S

k,l := S̃
∗(ek,l,Dk,l), qk,l := q̃∗(ek,l,Dk,l,∇ek,l).

The system (5.4)–(5.5) is completed by the initial conditions

vk,l(0) = v
k,l
0 :=

k
∑

j=1

ck,l
0j wj = P kv0,

ek,l(0) = ek,l
0 :=

l
∑

j=1

dk,l
0j wj = P l(r1/k ∗ e0),

where P k and P l denote the projections of the spaces L2
n,div, L

2(Ω) onto the

span{w1, . . . ,wk}, span{w1, . . . , wl}, respectively. Note that here we also mollify
the initial condition e0, since we want to use the standard L

2 theory for parabolic

equations for which the smooth initial data are needed, which is not our case since

we assume only that e0 ∈ L1(Ω).
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The assumptions on S
∗ and q∗ and the Carathéodory theory for ODE enable us

to establish the existence of solutions ck,l
i (t) (i = 1, . . . , k) and dk,l

j (t) (j = 1, . . . , l)

to (5.4)–(5.5) defined on [0, T0) for some T0 > 0, and by using the estimates estab-

lished in the next subsection we can extend the solution to the whole time interval

(0, T ).

5.1.1. Estimates uniform w.r.t. l and the limit for l → ∞. First, we derive
uniform estimates (that can however depend on k). Multiplying the jth equation

in (5.4) by ck,l
j , taking the sum over j = 1, . . . , k and integrating the result over (0, t)

for t ∈ (0, T ) (that is nothing else than testing by vk,l), we get

(5.6) ‖vk,l(t)‖2
2 + 2

∫ t

0

(Sk,l,Dk,l) + 2α‖vk,l‖2
L2(∂Ω)2 dτ = ‖vk,l

0 ‖2
2.

Here, we have used the fact that (vk,l
η ⊗ vk,l,∇vk,l) = 0 (see [6], [16] for details).

Therefore, using (2.1) and the Korn inequality we observe that

(5.7) sup
t∈(0,T )

‖vk,l(t)‖2
2 +

∫ T

0

‖vk,l‖r
1,r + ‖vk,l‖2

L2(∂Ω)2 dt 6 C,

where the constant C does not depend on k, l, η. Moreover, the same procedure as

in Section 4 gives that

(5.8)

∫ T

0

‖vk,l‖2r
2r dt 6 C.

It is also an easy consequence of (5.7) and the orthonormality of wj that

(5.9) ‖ck,l
i ‖∞ 6 C for all i = 1, . . . , k.

Moreover, using (5.4)–(5.9) we immediately get that

(5.10) ‖(ck,l
i ),t‖∞ 6 C(k) for all i = 1, . . . , k.

Having (5.9)–(5.10) and using the properties of the chosen basis, it is standard to

show that there is a not relabeled subsequence such that

ck,l ⇀∗ ck weakly∗ in W 1,∞(0, T ),(5.11)

vk,l → vk strongly in C(0, T ;W 1,q
n

) for all q ∈ (1,∞).(5.12)
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Next, using the convergence results (5.11)–(5.12) and the standard procedure for

parabolic equations applied to (5.5) (see [6]), we can find a not relabeled subsequence

such that

ek,l ⇀ ek weakly in L2(0, T ;W 1,2(Ω)),(5.13)

ek,l
,t ⇀ ek

,t weakly in L2(0, T ;W−1,2(Ω)),(5.14)

qk,l ⇀ qk weakly in L2(0, T ;L2(Ω)),(5.15)

ek,l → ek strongly in Lq(0, T ;Lq(Ω)) for all q < 4,(5.16)

and such that

(5.17)
d

dt
(vk,wj) − (vk

η ⊗ vk,∇wj) + (Sk,∇wj) + α(vk,wj)∂Ω = 0

for all j = 1, . . . , k and

(5.18) 〈ek
,t, ϕ〉 − (vk

ηe
k,∇ϕ)Q − (qk,∇ϕ)Q = (Sk,∇vkϕ)Q + α(|vk|2, ϕ)∂Ω

for all ϕ ∈ L2(0, T ;W 1,2(Ω)). Here we denoted S
k := S

∗(max(emin, e
k),D(vk)) and

qk = q∗(max(emin, e),D(vk),∇ek). The attainment of the initial condition, i.e, the

fact that vk(0) = P k(v0) and e
k(0) = r1/k ∗ e0 is standard and we refer to [6].

Moreover, having (5.12) we can deduce that

(5.19) ‖e‖L∞(Q) 6 C(k)

and then by using the minimum principle argument, it is also easy to observe that

since e0 > emin and therefore r1/k ∗e0 > emin as well, we have that e
k > emin a.e. in Q

we again refer to [6] for details.

5.1.2. Estimates independent of k. Similarly to the above, multiplying the

jth equation in (5.17) by ckj , taking the sum over j = 1, . . . , k and integrating the

result over (0, t) for t ∈ (0, T ), we get

(5.20) ‖vk(t)‖2
2 + 2

∫ t

0

(Sk,D(vk)) + 2α‖vk‖2
L2(∂Ω)2 dτ = ‖vk

0‖2
2.

Hence, using (2.1) and the Korn inequality we observe that

(5.21) sup
t∈(0,T )

‖vk(t)‖2
2 +

∫ T

0

‖vk‖r
1,r + ‖Sk‖r′

r′ + ‖vk‖2
L2(∂Ω)2 dt 6 C
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and

(5.22)

∫ T

0

‖vk‖2r
2r dt 6 C.

Next, we follow the procedure described in Section 4. First, setting ϕ ≡ 1 in (5.18),

we get (using that e > emin > 0)

(5.23) sup
t∈(0,T )

‖ek(t)‖1 6 C.

Next, taking ϕ = (ek)λ with −1 < λ < 0 in (5.18) (note that ϕ is bounded since

ek > emin > 0 and it can be deduced that it is a possible test function, see [6] for

detailed explanation) and using (5.21), we get similarly to (4.5) that

(5.24)

∫ T

0

‖(ek)
1
2 (β+λ+1)‖2

1,2 dt 6 C(λ−1).

Similarly, following (4.9), we obtain a uniform bound

(5.25)

∫ T

0

‖ek‖β+2+λ
β+2+λ + ‖qk‖1+ 2λ+1

3+2β

1+ 2λ+1
3+2β

dt 6 C(λ−1) for all − 1
2 < λ < 0.

It remains to deduce estimates for time derivatives. Thus, using (5.21) and the fact

that we have mollified the convective term, we can deduce that

(5.26) ‖vk
,t‖(Xr,2r

div )∗ 6 C(η−1).

Similarly, using (5.21) and (5.25) we can deduce that for sufficiently large m we have

(5.27) ‖ek
,t‖L1(0,T ;W−1,m′ (Ω)) 6 C.

5.1.3. Limit for k → ∞. Using (5.21) and (5.26), we see that we can find a not
relabeled subsequence such that

vk
,t ⇀ v,t weakly in (Xr,2r

div )∗,(5.28)

vk ⇀∗ v weakly∗ in L∞(0, T ;L2(Ω)2),(5.29)

vk ⇀ v weakly in Xr,2r
div ,(5.30)

S
k ⇀ S weakly in Lr′

(0, T ;Lr′

(Ω)2x2),(5.31)

and therefore after using the Aubin-Lions lemma and Lemma 3.3

vk → v strongly in Lq(0, T ;Lq(Ω)2) for all q ∈ [1, 2r),(5.32)

vk → v strongly in L2(0, T ;L2(∂Ω)2).(5.33)
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In the same way, using (5.24) and (5.25) we can find a subsequence that is again not

relabeled such that

ek ⇀ e weakly in Lq(0, T ;Lq(Ω)) for all q < 2 + β,(5.34)

qk ⇀ q weakly in Lq(0, T ;Lq(Ω)2) for q <
4 + 2β

3 + 2β
,(5.35)

(ek)
β+λ+1

2 ⇀ e
β+λ+1

2 weakly in L2(0, T ;W 1,2(Ω)).(5.36)

In order to show the strong convergence of ek, inspired by [13], we use the Div-Curl

Lemma4. Indeed, defining wk := (ek, ekvk
1 +qk

1 , e
kvk

2 +qk
2 ) and uk := ((ek)m, 0, 0) for

some 0 < m < min(1, 1
2 (β+2)), we see with help of (5.21) that divt,x wk is bounded

in L1(Q) and with help of (5.24) we have that Curlt,x uk is bounded in L2(Q).

Therefore, applying the Div-Curl Lemma we observe, after using the bound (5.25)

and the strong convergence result (5.32), that

wk · uk ⇀ w · u

with w := (e, ev1 + q1, e
kv2) + q2 and u := (em, 0, 0). Consequently, we get

(ek)m+1 ⇀ eem.

Thus, using the convexity of the (m + 1)st power, we have that em+1 6 eem and

consequently, since e is positive a.e. in Q we obtain em 6 em. On the other hand, we

have from the concavity (as m ∈ (0, 1)) that em > em and therefore em = em. Since

the mth power is strictly concave, this relation implies (for a subsequence) that5

(5.37) ek → e a.e. in Q.

Thus using (5.32), (5.34), the definition of mE (2.5), (5.37), and the estimates es-

tablished in Section 4 we observe that

ek → e strongly in Lq(0, T ;Lq(Ω)) for all q < 2 + β,(5.38)

ekvk → ev strongly in Lm(0, T ;Lm(Ω)2) for all m < mE .(5.39)

First, we identify the limit of (5.17). Having (5.28)–(5.33), it is easy to obtain (by

using the fact that wj is a basis of W
1,r
n
)

〈v,t,w〉 − (vη ⊗ v,∇w)Q + (S,∇w)Q + α(v,w)Γ = 0(5.40)

for all w ∈ Xr,2r
div .

4 In fact, if β is sufficiently large one could simply use the Aubin-Lions lemma.
5 See [19] for details.
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Moreover, it is standard to show that the initial condition is attained in the following

sense (we refer to [16] for details):

(5.41) lim
t→0+

‖v(t) − v0‖2
2 = 0,

and since v is a possible test function in (5.40), one can also obtain (by using (5.29))

that

v ∈ C(0, T ;L2(Ω)2).

Hence, to obtain the convergence result for (5.17), it remains to show that

(5.42) S = S
∗(e,D(v)) a.a. in Q.

However, this can be achieved by using the Minty method and the strong conver-

gence results (5.32)–(5.33) and (5.38), here we refer again to [6] for a detailed proof.

Moreover, since S∗ is strictly monotone, see (2.2), we immediately deduce from (5.42)

that (for a subsequence)

(5.43) D(vk) → D(v) a.e. in Q.

In addition, we can deduce that

[Sk − S
∗(ek,D(v))] · D(vk − v) → 0 strongly in L1(Q)

from which it follows that

(5.44) S
k · D(vk) ⇀ S · D(v) weakly in L1(0, T ;L1(Ω)).

Consequently, using (5.18) and (5.44), one can strengthen the information (5.27) and

deduce that for a subsequence

(5.45) ek
,t ⇀ e,t weakly in L1(0, T ;W−1,m′

(Ω))

for some sufficiently large m. Thus, using (5.34)–(5.39) and (5.44)–(5.45), we can let

k → ∞ in (5.18) to observe

〈e,t, ϕ〉 − (vηe,∇ϕ)Q − (q,∇ϕ)Q = (S,D(v)ϕ)Q + α(|v|2, ϕ)Γ(5.46)

for all ϕ ∈ L∞(0, T ;L∞(Ω)) ∩ Lm(0, T ;W 1,m(Ω)) for some m≫ 1.

Hence, to establish the convergence k → ∞ it remains to show that

(5.47) q = q∗(e,D(v),∇e) a.e. in Q.
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Using (1.10), we see that it is enough to show that

(5.48) κ∗(ek, |D(vk)|)∇ek ⇀ κ∗(e, |D(v)|)∇e weakly in L1(0, T ;L1(Ω)2).

Since we can rewrite this term as

κ∗(ek, |D(vk)|)∇ek =
2

β + λ+ 1
∇(ek)

1
2 (β+λ+1)κ∗(ek, |D(vk)|)(ek)

1
2 (1−β−λ),

we can use (5.36) and therefore to prove (5.48) it is enough to show that

(5.49) κ∗(ek, |D(vk)|)(ek)
1
2 (1−β−λ) → κ∗(e, |D(v)|)e 1

2 (1−β−λ) strongly in L2(Q).

Since we have already established pointwise convergence (at least for a subsequence)

of D(vk) and ek, see (5.38) and (5.43), it is enough to show that

(5.50)

∫

Q

|κ∗(ek, |D(vk)|)(ek)
1
2 (1−β−λ)|2+ε dxdt 6 C

for some ε > 0. Indeed, having (5.50) and the pointwise convergence, one can use the

Vitali theorem to deduce (5.49). Thus, using (2.3), assuming thatmax(− 1
2 ,−1−β) <

λ < 0 and setting ε := 2(2λ+ 1)/(1 + β − λ) > 0, we get

∫

Q

|κ∗(ek, |D(vk)|)(ek)
1
2 (1−β−λ)|2+ε dxdt

6 C

∫

Q

(ek)
1
2 (1+β−λ)(2+ε) dxdt = C

∫

Q

(ek)β+2+λ dxdt
(5.25)

6 C(λ−1).

Thus, the proof of (5.47) is complete. The proof of attainment of e0 is postponed to

the next subsection, where a more difficult case is treated.

5.1.4. Reconstruction of the pressure p. In this subsection we reconstruct

the pressure p corresponding to the equation (5.40). We recall the theory developed

in [8], [6] where the existence of the pressure p ∈ Lr′

(Q) is established and where

the following identity is shown:

〈v,t,w〉 − (vη ⊗ v,∇w)Q + (S,∇w)Q + α(v,w)Γ = (p, div w)Q(5.51)

for all w ∈ Xr,2r.

Moreover, the pressure p is given as p := p1 + p2 + p3 with
∫

Ω pi = 0 for i = 1, 2, 3

and the particular pressures solve for a.a. t ∈ (0, T ) and all ϕ ∈ W 2,r(Ω) such that

29



∇ϕ ∈W 1,r
n
the identities

(p1,△ϕ) = (S,∇2ϕ),(5.52)

(p2,△ϕ) = −(vη ⊗ v,∇2ϕ),(5.53)

(p3,△ϕ) = (v,∇ϕ)∂Ω.(5.54)

5.2. Limit η → 0

In this subsection we complete the proof of Theorem 2.1. To do so, we first denote

(vη, eη, pη,Sη, qη) a solution to (5.51) and (5.46).

5.2.1. Uniform estimates and weak convergence result. Using weak lower

semicontinuity of norms, the Fatou lemma, and the uniform estimates (5.21)–(5.25),

we have

sup
t∈(0,T )

(‖vη(t)‖2
2 + ‖eη‖1)(5.55)

+

∫ T

0

‖vη‖r
1,r + ‖vη‖2r

2r + ‖Sη‖r′

r′ + ‖vη‖2
L2(∂Ω)2 dt

+

∫ T

0

‖(eη)
1
2 (β+λ+1)‖2

1,2 + ‖qη‖1+ 2λ+1
3+2β

1+ 2λ+1
3+2β

+ ‖eη‖β+2+λ
β+2+λ dt

6 C(λ−1).

Next, we deduce a uniform bound also for the pressure. First, setting ϕ := N−1(pη
3)

in (5.54), we get with help of Lemma 3.1

‖pη
3‖2

2 = (vη,∇ϕ)∂Ω 6 C‖vη‖L2(∂Ω)2‖ϕ‖2,2 6 C‖vη‖L2(∂Ω)2‖pη
3‖2.

Consequently, using (5.55) we have that

(5.56)

∫ T

0

‖pη
3‖2

2 dt 6 C.

Similarly, setting ϕ := N−1(|pη
1 |r

′−2pη
1 −

∫

Ω
|pη

1 |r
′−2pη

1 dx), we get by using Lem-

ma 3.1

‖pη
1‖r′

r′ = (Sη,∇2ϕ) 6 ‖Sη‖r′‖∇2ϕ‖r 6 C‖Sη‖r′‖pη
1‖r′−1

r′

and by using (5.55) we deduce that

(5.57)

∫ T

0

‖pη
1‖r′

r′ dt 6 C.
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Finally, setting ϕ := N−1(|pη
2 |r−2pη

2 −
∫

Ω
|pη

2 |r−2pη
2 dx), we again obtain with help of

Lemma 3.1

‖pη
2‖r

r = −(vη
η ⊗ vη,∇2ϕ) 6 ‖vη

η ⊗ vη‖r‖∇2ϕ‖r′ 6 C‖vη‖2
2r‖pη

2‖r−1
r

and consequently (5.55) implies

(5.58)

∫ T

0

‖pη
2‖r

r dt 6 C.

Thus, combining (5.56)–(5.58) we see that the following uniform bound holds

(5.59)

∫ T

0

‖pη‖min(r,r′)
min(r,r′) dt 6 C.

Thus, using (5.55), (5.59), and the identity (5.51) we obtain

(5.60)

∫ T

0

‖vη
,t‖min(r,r′)

W
−1,min(r,r′)
n

dt 6 C,

and also using (5.55) we have that, see [8], [6] for details,

(5.61) ‖vη
,t‖(X

r,2r/(2r−3)
div )∗

6 C.

Moreover, we can observe that

(5.62) ‖eη
,t‖L1(0,T ;W−1,σ′ (Ω)) 6 C for sufficiently large σ.

Therefore, using (5.55), (5.59)–(5.61), Lemma 3.3, the Aubin-Lions lemma, and the

Div-Curl lemma, we can extract a not relabeled subsequence and find (v, p, e, q,S)

such that6

v
η
,t ⇀ v,t weakly in Lmin(r,r′)(0, T ;W−1,min(r,r′)

n
) ∩ (X

r,2r/(2r−3)
div )∗,(5.63)

vη ⇀∗ v weakly∗ in Lr(0, T ;W 1,r
n

) ∩ L∞(0, T ;L2(Ω)2),(5.64)

vη → v strongly in Lq(0, T ;Lq(Ω)2) for all q < 2r,(5.65)

vη → v strongly in L2(0, T ;L2(∂Ω)2),(5.66)

eη → e strongly in Ln(0, T ;Ln(Ω)) for all n < 2 + β,(5.67)

(eη)
β+λ+1

2 ⇀ e
β+λ+1

2 weakly in L2(0, T ;W 1,2(Ω))(5.68)

for all − 1 < λ < 0,

pη ⇀ p weakly in Lmin(r,r′)(0, T ;Lmin(r,r′)(Ω)),(5.69)

S
η ⇀ S weakly in Lr′

(0, T ;Lr′

(Ω)2×2),(5.70)

qη ⇀ q weakly in Lm(0, T ;Lm(Ω)2) for all m <
4 + 2β

3 + 2β
.(5.71)

6Here we use the same procedure as in the previous subsection to show pointwise conver-
gence of eη .

31



Having these convergence results, one can easily let η → 0 in (5.51) to obtain (2.14).

It is also standard to deduce the first part of (2.17). Moreover, defining Eη :=
1
2 |vη|2 +eη, setting w := vηϕ in (5.40), adding the result to (5.46) and letting η → 0

it is not difficult to obtain (2.15), we refer to [6] for details. Hence, to complete the

proof, it is enough to show the second part of (2.17), i.e., the attainment of e0, and

to show the pointwise convergence of D(vη). Indeed, once having this convergence

result, we can easily show that S = S
∗(e,D(v)) and, similarly to the preceding

subsection, that q = q∗(e,D(v),∇e) a.e. in Q. Moreover, one can also use the Fatou
lemma and to let η → 0 in (5.46) to obtain (2.10) and (2.16).

5.3. Pointwise convergence of D(vη)

In this subsection we use the so-called L∞ truncation method (applied first to the

scalar parabolic equation in [4], see also [3], [2], and generalized to the Navier-Stokes-

like system in [14]) to obtain the pointwise convergence of the velocity gradient. In

fact, we slightly improve the method in such a way that no diagonal procedure for

extracting a subsequence is needed. First, we define

(5.72) gη := |∇vη|r + |∇v|r + (|Sη| + |S∗(eη,D(v))|)(|D(vη)| + |D(v)|)

and from (2.1) and (5.55) it follows that

(5.73)

∫

Q

gη dxdt 6 C

independently of η. Next, we prove the essential observation that will be used in the

sequel.

Lemma 5.1. Let gη be defined through (5.72). Then for all j ∈ N and all η > 0

there exist a constant Lj,η ∈ (2−22j+1

, 2−22j

) and a set Ej,η ⊂ Q defined as

Ej,η := {(t, x) ∈ Q; L2
j,η 6 |vη(t, x) − v(t, x)| < Lj,η}

such that

(5.74)

∫

Ej,η

gη dxdt 6 2−j.

P r o o f. First, for fixed j, η we define recurrently for k = 0, . . . , 2j

L0 := 2−22j

,

Lk := L2
k−1 =⇒ Lk = 2−22j

2k
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and introduce the sets

Ek := {(t, x) ∈ Q; L2
k 6 |vη − v| < Lk}.

Since Ek are disjoint, we find by using (5.73) that

2j
∑

k=1

∫

Ek

gη dxdt =

∫

⋃
k Ek

gη dxdt 6

∫

Q

gη dxdt 6 C.

Therefore, there exists k∗ ∈ {1, . . . , 2j} such that

(5.75)

∫

Ek∗

gη dxdt 6 2−j.

Thus, we can finally define Lj,η := Lk∗ and we see that (5.74) is satisfied, so the

proof is complete. �

We use Lemma 5.1 in the following way. First, we fix an arbitrary j ∈ N. For

such fixed j we find {Lj,η}η>0 such that (5.74) holds. Further, we define uj,η and

sets Qj,η as

uj,η := (vη − v)
(

1 − min
{ |v − vη|

Lj,η
, 1

})

,(5.76)

Qj,η := {(t, x) ∈ Q; |v − vη| < Lj,η}.

Since |uj,η| 6 1 in Q, we deduce from (5.64)–(5.66) that

uj,η ⇀ 0 weakly in Lr(0, T ;W 1,r
n

),(5.77)

uj,η → 0 strongly in Ls(0, T ;Ls(Ω)2) for all s <∞,(5.78)

uj,η → 0 strongly in L2(0, T ;L2(∂Ω)2)(5.79)

as η → 0+. Next, we can observe that

∫

Q

| div uj,η|r dxdt(5.80)

=

∫

Qj,η

∣

∣

∣
(vη − v) · ∇|vη − v|

Lj,η

∣

∣

∣

r

dxdt

6 CLr
j,η

∫

Qj,η\Ej,η

gη dxdt+ C

∫

Ej,η

gη dxdt
(5.74)

6 C2−j .
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Consequently, using Lemma 3.1 we deduce

(5.81)

∫ T

0

‖uj,η − u
j,η
div‖r

1,r dt =

∫ T

0

‖∇N−1(div uj,η)‖r
1,r dt 6 C2−j .

Moreover, using (5.78) and (3.3), we get

(5.82) u
j,η
div → 0 strongly in Ls(0, T ;Ls(Ω)2) for all s <∞.

Finally, we set w := u
j,η
div in (5.51) and let η → 0+. First, we discuss the term with

the time derivative. Since div vη = div v = 0, we have

〈vη
,t,u

j,η
div〉 = 〈vη

,t − v,t,u
j,η〉 + 〈v,t,u

j,η
div〉.

Now, having (5.77)–(5.79) and (5.82) we obtain that

(5.83) u
j,η
div ⇀ 0 weakly in X

r,2r/(2r−3)
div

as η → 0. Consequently, (5.63) implies that

(5.84) lim
η→0+

〈v,t,u
j,η
div〉 = 0.

For the remaining term we can observe (defining wη := vη − v)

〈vη
,t − v,t,u

j,η〉 =
〈

w
η
,t,w

η
(

1 − min
( |wη|
Lj,η

, 1
))〉

= G(|wη(T )|) −G(|wη(0)|) > 0,

where the function G is defined as

G(x) :=















x2
(1

2
− x

3Lj,η

)

for x 6 Lj,η,

1

6
L2

j,η for x > Lj,η,

and where we have also used the fact that |wη(0)| = 0. Thus, we observe that

(5.85) lim inf
η→0+

〈vη
,t,u

j,η
div〉 > 0.

Similarly, using (5.64), (5.82), and integration by parts we find that

(5.86) lim
η→0+

−(vη
η ⊗ v,∇u

j,η
div)Q = lim

η→0+

(vη
η ⊗ u

j,η
div,∇v)Q = 0.
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Hence, (5.85)–(5.86) and (5.79) imply that

(5.87) lim sup
η→0+

(Sη,D(uj,η
div))Q 6 0,

and by using (5.81), (5.70) and the same procedure as in the preceding subsection

we derive

(5.88) lim sup
η→0+

(S∗(eη,D(vη)) − S
∗(eη,D(v)),D(uj,η))Q 6 2−j .

Therefore, using the definition of uj,η we can rewrite the last inequality as

0 6 lim sup
η→0+

(S∗(eη,D(vη)) − S
∗(eη,D(v)),D(vη − v))Qj,η(5.89)

6 2−j + C

∫

Qj,η

(|Sη| + |S∗(eη,D(v))|)(|∇vη | + |∇v|) |v
η − v|
Lj,η

dxdt

6 2−j + CLj,η

∫

Qj,η\Ej,η

gη dxdt+ C

∫

Ej,η

gη dxdt
(5.74)

6 C2−j .

Finally, using (5.65) we deduce that

|Q \Qj,η| → 0 as η → 0,

and therefore by using the Hölder inequality and (5.89), we have

lim sup
η→0+

∫

Q

|(S∗(eη,D(vη)) − S
∗(eη,D(v))) ·D(vη − v)|1/2 dxdt

= lim sup
η→0+

∫

Q\Qj,η

. . .+

∫

Qj,η

. . .

(5.73)

6 C(lim sup
η→0+

|Q \Qj,η| + (S∗(eη,D(vη))

− S
∗(eη,D(v)),D(vη − v))Qj,η )1/2

(5.89)

6 C2−j/2.

Since j can be chosen arbitrarily, we see that the last limit is zero and by using

the strict monotonicity of S∗, i.e., the assumption (2.2) and the strong convergence

of eη (5.67), we can conclude that

D(vη) → D(v) a.e. in Q.
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5.4. Initial conditions

This subsection is devoted to the proof of the second part of (2.17). Here we

assume that the first part of (2.17) holds (see [16] for a detailed proof). First, we set

ϕ := χ(0,t) in (5.18) and w := vηχ(0,t) and sum the resulting identities to obtain

(5.90)
1

2
‖vη(t)‖2

2 + ‖eη(t)‖1 =
1

2
‖v0‖2

2 + ‖e0‖1.

Thus, letting η → 0+ and using (5.65), (5.67), and the Fatou lemma we obtain for

a.a. t ∈ (0, T )

(5.91)
1

2
‖v(t)‖2

2 + ‖e(t)‖1 6
1

2
‖v0‖2

2 + ‖e0‖1.

Moreover, one can redefine v and e on the zero measure subset of (0, T ) so that

(5.91) holds for all t ∈ (0, T ). Therefore, using the first part of (2.17) and letting

t→ 0+ in (5.91) we deduce that

(5.92) lim sup
t→0+

‖e(t)‖1 6 ‖e0‖1.

Next, setting ϕ := χ(0,t)(ψ/
√
eη) in (5.46) with arbitrary ψ > 0 such that ψ ∈

W 1,∞(Ω) (this is possible since all terms are meaningful) we deduce (using the non-

negativity of ψ) that

(5.93)
1

2
(
√

eη(t), ψ) −
∫ t

0

(qη, (eη)−1/2∇ψ)dτ >
1

2
(
√
e0, ψ).

Hence, using (5.55), (5.67), and (5.71) we can let η → 0+ in (5.93) to deduce for

a.a. t ∈ (0, T )

(5.94)
1

2
(
√

e(t), ψ) −
∫ t

0

(q, e−1/2∇ψ)dτ >
1

2
(
√
e0, ψ),

which can be again extended to the whole time interval (0, T ). Thus letting t→ 0+,

we have

(5.95) lim inf
t→0+

(
√

e(t), ψ) > (
√
e0, ψ)

for all smooth nonnegative ψ by using the density argument and (2.10) for all non-

negative ψ ∈ L2(Ω). Therefore, we have

lim sup
t→0+

‖
√

e(t) −√
e0‖2

2 = lim sup
t→0+

‖e(t)‖1 + ‖e0‖1 − 2(
√

e(t),
√
e0)

(5.92), (5.95)

6 2‖e0‖1 − 2‖e0‖1 = 0
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and (2.17) follows. Thus the proof of Theorem 2.1 is complete. The proof of Corol-

lary 2.1 is then a consequence of the standard theory for the heat equation with

an L1-right-hand side and of the fact that for r > 2 the velocity is a possible test

function in (2.14).
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