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Steady compressible Navier–Stokes–Fourier

system in two space dimensions

Petra Pecharová, Milan Pokorný

Abstract. We study steady flow of a compressible heat conducting viscous fluid
in a bounded two-dimensional domain, described by the Navier–Stokes–Fourier
system. We assume that the pressure is given by the constitutive equation
p(ρ, θ) ∼ ργ +ρθ, where ρ is the density and θ is the temperature. For γ > 2, we
prove existence of a weak solution to these equations without any assumption on
the smallness of the data. The proof uses special approximation of the original
problem, which guarantees the pointwise boundedness of the density. Thus we
get a solution with density in L∞(Ω) and temperature and velocity in W 1,q(Ω)
for any q < ∞.

Keywords: steady compressible Navier–Stokes–Fourier equations, slip boundary
condition, weak solutions, large data

Classification: 35Q30, 76N10

1. Introduction

The compressible Navier–Stokes–Fourier system of PDEs (a.k.a. the full Navier-
Stokes system) describes flow of a compressible heat conducting newtonian fluid
in a bounded domain Ω, and has therefore many applications in natural sciences
and engineering (such as meteorology, geophysics, astrophysics, heat transfer in
multi-phase flows in engineer models etc.). The effort to prove existence results
for the problem comes from the need to justify the models as well as to ensure
physical and thermodynamical properties of studied models.

We consider the steady flow of a newtonian compressible heat conducting fluid
in a bounded domain Ω ⊂ R

2. It is described by

div(ρv) = 0(1.1)

div(ρv ⊗ v) − div S(v) + ∇p(ρ, θ) = ρF(1.2)

div(ρe(ρ, θ)v) − div(κ(θ)∇θ) = S(v) : ∇v − p(ρ, θ) div v,(1.3)

where

ρ : Ω → R
+
0 . . . density of the fluid (sought)

v : Ω → R
2 . . . velocity field (sought)

θ : Ω → R
+ . . . temperature (sought)
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p(·, ·) : R
+
0 × R

+ → R
+
0 . . . pressure (given)

F : Ω → R
2 . . . external force (given)

e(·, ·) : R
+
0 × R

+ → R
+
0 . . . internal energy (given)

S(v) = 2µD(v) + λ(div v)I . . . the viscous part of the stress tensor

D(v) =
1

2
(∇v + ∇vT ) . . . the symmetric part of the velocity gradient,

µ, λ are viscosity coefficients (constants) and κ(θ) is heat conductivity.
Note that in full generality equation (1.3) (conservation of internal energy)

should be replaced by the conservation of total energy — but for the solution we
are about to construct we have balance of kinetic energy as a consequence of the
momentum equation1.

We assume that the constitutive equation for the pressure takes form

(1.4) p(ρ, θ) = a1ρ
γ + a2ρθ, a1, a2 > 0,

i.e. the pressure has one part corresponding to the ideal fluid and a so called
elastic part. The internal energy takes form

(1.5) e(ρ, θ) = a3θ + a1
ργ−1

γ − 1
, a3 > 0.

Next we specify the viscosity coefficients and heat conductivity. We assume µ, λ
to be constants satisfying

(1.6) µ > 0, λ+ µ > 0

and κ such that

(1.7) κ(θ) = a4(1 + θm), a4,m > 0.

In what follows, to simplify the notation, we set a1 = a2 = a3 = a4 = 1.
Our solution will be such that ρ ∈ L∞(Ω) and v ∈W 1,p(Ω) for p <∞. Hence

we get (div(ρv) = 0 in the weak sense)

div
( 1

γ − 1
ργv

)
= −ργ div v

in the weak sense — so we are allowed to write

(1.8) div(ρθv) − div(κ(θ)∇θ) = S(v) : ∇v − ρθ div v

instead of equation (1.3).

1To be more specific, we will be able to test the momentum equation by v, which gives us
also conservation of kinetic energy.
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Note that our choice of constitutive equations is compatible with the second
law of thermodynamics, i.e. the pressure and the temperature fulfill the relation

(1.9)
1

ρ2

(
p− θ

∂p

∂θ

)
=
∂e

∂ρ
,

which is a straight consequence of the Maxwell relation and it guarantees the
existence of entropy; the interested reader should consult the book [10].

Let the domain we are working with be sufficiently smooth, i.e. Ω ∈ C2. For
the velocity we consider slip boundary conditions

(1.10) v · n = 0, τ · (T(p,v)n) + fv · τ = 0 at ∂Ω,

where τ stands for the tangent vector to ∂Ω, n is the outer normal vector,
T(p,v) = −pI + S(v) is the stress tensor and coefficient f is a nonnegative con-
stant. (In case f = 0 — perfect slip — we need to assume that Ω is not axially
symmetric.2)

For the temperature we assume

(1.11) κ(θ)
∂θ

∂n
+ L(θ)(θ − θ0) = 0 at ∂Ω,

where θ0 : ∂Ω → R
+ is a strictly positive sufficiently smooth given function (say

θ0 ∈ C2), 0 < θ∗ ≤ θ0 ≤ θ∗ <∞ with θ∗, θ
∗ ∈ R

+ and

(1.12) L(θ) = a5(1 + θl), l ∈ R
+
0 .

We also prescribe the total mass of the fluid

(1.13)

∫

Ω

ρ dx = M > 0.

2. Main result

Definition 2.1. The triple (ρ,v, θ) is called a weak solution to problem (1.1)–
(1.13) if ρ ≥ 0 a.e. in Ω, ρ ∈ Lmax{3,γ}(Ω), v ∈ W 1,2(Ω), θ > 0 a.e. in Ω,
θ ∈W 1,2(Ω) and θm∇θ ∈ L1(Ω), v · n = 0 at ∂Ω in a trace sense, and

(2.1)

∫

Ω

ρv · ∇η = 0 ∀ η ∈ C1(Ω)

∫

Ω

(
− ρv ⊗ v : ∇ϕ + 2µD(v) : D(ϕ) + λdiv v div ϕ − p(ρ, θ) div ϕ

)
dx

+ f

∫

∂Ω

v · ϕ dσ =

∫

Ω

ρF · ϕ dx ∀ϕ ∈ C1(Ω); ϕ · n = 0 at ∂Ω

(2.2)

2We need this condition to be fulfilled because of use of Korn’s lemma at several moments
of the proof; the Korn inequality requires also (1.6).
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∫

Ω

(κ(θ)∇θ · ∇ψ − ρθv · ∇ψ) dx+

∫

∂Ω

L(θ)(θ − θ0)ψ dσ

=

∫

Ω

(2µ|D(v)|2ψ + λ(div v)2ψ − ρθ div vψ) dx ∀ψ ∈ C1(Ω).

(2.3)

Now we are ready to state our main result:

Theorem 2.1. Let Ω ∈ C2 be a bounded domain, Ω ⊂ R
2. Let F ∈ L∞(Ω),

m = l + 1 and

γ > 2, m >
γ − 1

γ − 2
.

Then there exists a weak solution to (1.1)–(1.13) such that ρ ∈ L∞(Ω), v ∈
W 1,q(Ω) and θ ∈W 1,q(Ω) for all 1 ≤ q <∞.

Note that Theorem 2.1 could be proved also for m 6= l + 1 and F ∈ Lp(Ω)
for p < ∞ (under suitable assumptions on the relations between m, l, p and γ);
however, the details of the proof would be much more complicated than in our
“simple” case. More details can be found in [11].

The aim of this paper is to prove Theorem 2.1. We will continue in work
of Mucha and Pokorný ([6] and [13] — 2D and 3D Navier–Stokes equations in
barotropic regime, no temperature or internal energy is considered here; [7] and [8]
— 3D Navier–Stokes–Fourier equations, temperature and equation for internal or
total energy included). The authors were able to prove the existence for γ > 3 and
m > 3γ−1

3γ−7 in [7] and γ > 7
3 and m > 3γ−1

3γ−7 in [8] (in both m = l+1); as announced

above, we get the existence for γ > 2 and m > γ−1
γ−2 , which is, in some way, better

result than in 3D, but far from the case in 2D without temperature ([6]).
One of the possible approaches to problem (1.1)–(1.13) was introduced in [4];

however, to overcome the difficulties with the lack of a priori estimates, the author
considered

∫
Ω
ρp = Mp for sufficiently large p instead of (1.13), which is not really

acceptable from the physical point of view. Concerning the barotropic case, the
first existence result for large data is due to P.L. Lions. The existence of a weak
solution was proved in [4] for γ > 1 (2D) and γ > 5

3 (3D). Novo and Novotný

in [9] improved the result by getting γ > 3
2 , but only for potential force with

small nonpotential perturbation. Recently (see [2], [3]) it was shown that the
solution exists also for γ = 1 in 2D and for γ > 4

3 in 3D. The main idea of
the improvement goes back to [12], however, therein, the authors were not able
to work with the Navier–Stokes equations and considered only its modification.
Although the results in [2] and [3] are for the Dirichlet boundary conditions, it
can be easily modified also for the slip boundary conditions.

To prove Theorem 2.1, we have to construct an approximation of the original
problem which we implement in Section 3. We prove a priori estimates for the
approximative system from which we conclude the existence of a solution to the
approximative system (Section 4).
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In the next sections we have to show that the solution to the approximative
problem we constructed in the previous section converges to the solution of the
original system. To this purpose, we prove that the temperature and the velocity
cause no problems for convergence. Then we introduce quantity known as effective
viscous flux, which plays key role in the proof of strong convergence of density. The
last difficulty remains velocity gradient, but once the density converges strongly,
we may pass to the limit also in the internal energy balance.

3. Approximation

We are going to construct the approximation of the original problem in the
same way as in [7]. For k > 0 we consider a function K(y) ∈ C∞(R) with

(3.1) K(y) =





1 for y ≤ k

∈ (0, 1) for k < y < k + 1

0 for y ≥ k + 1,

k > 0. Moreover, we assume that K ′(y) < 0 for t ∈ (k, k + 1).
We take ε > 0 and consider in Ω

(3.2) ερ+ div(K(ρ)ρv) − ε∆ρ = εhK(ρ)

(3.3)
1

2
div(K(ρ)ρv ⊗ v) +

1

2
K(ρ)ρv · ∇v − div S(v) + ∇P (ρ, θ) = K(ρ)ρF

− div

(
(1 + θm)

ε+ θ

θ
∇θ
)

+ div

(
v

∫ ρ

0

K(y) dy

)
θ + div (K(ρ)ρv) θ

+K(ρ)ρv · ∇θ − θK(ρ)v · ∇ρ = S(v) : ∇v,

(3.4)

where

(3.5) P (ρ, θ) =

∫ ρ

0

γyγ−1K(y) dy + θ

∫ ρ

0

K(y) dy = Pb(ρ) + θ

∫ ρ

0

K(y) dy,

and h = M
|Ω| .

Note that when we pass with ε → 0+ we will have to show that for the limit
density K(ρ) ≡ 1. This causes additional difficulties; on the other hand, the
positive features of our approximation are more significant.

We also define quantity s as

s = ln θ.

Even though the physical entropy for our problem is η = ln θ− ln ρ, the quantity
s is more useful for us. If we consider θ sufficiently smooth and positive, we may
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rewrite equation (3.4) as

− div

(
(1 + esm)

ε+ es

es
∇s
)

+K(ρ)ρv · ∇s−K(ρ)v · ∇ρ

+ div

(
v

∫ ρ

0

K(y) dy

)
+ div (K(ρ)ρv)

=
S(v) : ∇v

es
+

(1 + esm)(ε+ es)

es
|∇s|2

(3.6)

in Ω. We will appreciate this form of internal energy equation (or rather entropy
equation) later — we will need to control the positiveness of temperature, which
does not work very well with equation (3.4).

At ∂Ω we consider the following boundary conditions (see Section 1 for the
original ones)

(1 + θm)(ε+ θ)
∂s

∂n
+ L(θ)(θ − θ0) + εs = 0(3.7)

v · n = 0, τ · (T(p,v)n) + fv · τ = 0(3.8)

∂ρ

∂n
= 0.(3.9)

4. Existence for the approximative system

Theorem 4.1. Let the assumptions of Theorem 2.1 be satisfied. Let ε > 0 and

k > 0. Then there exists a strong solution (ρ,v, s) to (3.2)–(3.4) such that

(4.1) ρ ∈ W 2,p(Ω), v ∈ W 2,p(Ω) and θ ∈ W 2,p(Ω) for 1 ≤ p <∞.

Moreover 0 ≤ ρ ≤ k + 1 in Ω,
∫
Ω
ρ dx ≤M , θ > 0 and

‖v‖1,q + ‖
∫ ρ

0

K(y) dy‖2γ + ‖K(ρ)ρ‖2γ + ‖∇θ‖r + ‖θ‖q ≤ C(k),

‖v‖1,2 + ‖
∫ ρ

0

K(y) dy‖2γ + ‖K(ρ)ρ‖2γ + ‖∇θ‖r + ‖θ‖q ≤ C,

(4.2)

where r = 2 if m ≥ 2 and r = 1 + δ, 0 ≤ δ < 1 is arbitrary for m < 2, 1 ≤ q <∞
arbitrary.

The proof of this theorem will be split into several lemmae.
Let us denote (for p ∈ [1,∞])

Mp = {u ∈ W 1,p(Ω); u · n = 0 at ∂Ω}

and define operator

S : Mp → W 2,p(Ω) for 1 ≤ p <∞
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such that ρ = S(v), where ρ solves the following problem

ερ− ε∆ρ = εhK(ρ) − div(K(ρ)ρv) in Ω

∂ρ

∂n
= 0 at ∂Ω

(4.3)

(see the continuity equation). With this notation we have

Lemma 4.1. Operator S, defined by (4.3), is a well-defined compact continuous

operator from Mp to W 2,p(Ω), 1 ≤ p < ∞; in particular, the solution to (4.3) is

unique and satisfies 0 ≤ ρ ≤ k + 1. Moreover, for p > 2, we have

(4.4) ‖ρ‖2,p ≤ C(k, ε)(‖v‖2
1,p + 1).

Proof: See [6, Proposition 3.1], and [10, Proposition 4.22]; the only difference
in our case is the estimate on ‖ρ‖2,p. We state the idea of the proof here: we
take the definition of operator S (4.3) and estimate ‖∇ρ‖p from there. The worst
term is div(K(ρ)ρv), so using standard elliptic regularity we get

ε‖ρ‖1,p ≤ C(1 + ‖K(ρ)ρv‖p) ≤ C(k)(1 + ‖v‖p)

and therefore, due to the same argument,

ε‖∇2ρ‖p ≤ C(1 + ‖∇ρ · v‖p + ‖ρ div v‖p)

≤ C(1 + ‖v‖∞‖∇ρ‖p + (k + 1)‖ div v‖p) ≤ C(k)(1 + ‖v‖2
1,p)

for p > 2. �

Now we define another operator, this time connected with the momentum and
energy equations:

T : Mp ×W 2,p(Ω) →Mp ×W 2,p(Ω) s.t. T (v, s) = (w, z),

where (w, z) is given as a solution to

− div S(w) = −1

2
div(K(ρ)ρv ⊗ v) − 1

2
K(ρ)ρv · ∇v

−∇P (ρ, es) +K(ρ)ρF in Ω,

− div((1 + ems)(ε+ es)∇z) = S(v) : ∇v − div

(
v

∫ ρ

0

K(y) dy

)
es

− div(K(ρ)ρv)∇s− esK(ρ)ρv · ∇s+ esK(ρ)v · ∇ρ in Ω,

w · n = 0, n · S(w) · τ + fw · τ = 0 at ∂Ω,

(1 + ems)(ε+ es)∇z + εz = −L(es)(es − θ0) at ∂Ω,

(4.5)

where ρ = S(v) is given by (4.3) and Lemma 4.1. Note that (4.5)2 is just (3.4)
rewritten for our “entropy” s.
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To apply the Schaeffer fixed point theorem (see e.g. [1]) we need to verify that
T is a continuous and compact mapping from Mp ×W 2,p(Ω) to Mp ×W 2,p(Ω)
and that all solutions satisfying

(4.6) tT (w, z) = (w, z), t ∈ [0, 1]

are bounded in Mp ×W 2,p(Ω).

Lemma 4.2. Let p > 2; let all assumptions of Theorem 4.1 be satisfied. Then T

is a continuous and compact operator from Mp ×W 2,p(Ω) to Mp ×W 2,p(Ω).

Proof: We are going to use two facts: first, ∀ ε > 0 system (4.5) is strictly ellip-
tic; second, for p > 2 the W 1,p(Ω) space is an algebra. Due to the second fact the
RHS of (4.5) belongs to Lp(Ω) and the boundary terms belong to W 1−1/p,p(∂Ω).

The coefficients on the LHS of the second equation of (4.5) are of C1+α(Ω).
The standard elliptic theory gives us information about existence of solution to
(4.5) in Mp ×W 2,p(Ω) with the following bound

‖w‖2,p + ‖z‖2,p ≤ C(‖es‖C1+α(Ω))(‖RHS of (4.5)1‖p

+ ‖RHS of (4.5)2‖p + ‖RHS of (4.5)4‖W 1−1/p,p(∂Ω)).

Moreover, this also implies uniqueness of the solution and continuous dependence
on the data.

The RHS of (4.5) is at most of the first order of sought functions, which implies
the compactness of the operator T . �

Lemma 4.3. All solutions to (4.6) in Mp×W 2,p(Ω) satisfy the following bounds

(4.7)

0 ≤ ρ ≤ k + 1

‖w‖1,2 + ‖θ‖q + ‖∇θ‖1+δ +
√
ε‖∇ρ‖2 + ‖K(ρ)ρ‖2γ

+ ‖
∫ ρ

0

K(y) dy‖2γ ≤ C(F ,M, q),

where θ = ez, δ = 1 for m ≥ 2 and 0 ≤ δ < 1, arbitrary, for m < 2, and

C(F ,M, q) is independent of ε, k and t ∈ [0, 1]. Moreover,

‖w‖1,q ≤ C(k, q), 2 < q <∞.

Proof: We need to get a priori estimate for system (4.6) independent of t.
First of all we multiply the first equation from (4.5)3 by w and integrate over

Ω to get
∫

Ω

S(w) : ∇w dx+

∫

∂Ω

f |w|2 dσ = t
(
−
∫

Ω

w · ∇Pb(ρ, θ) dx

+

∫

Ω

K(ρ)ρw · F dx+

∫

Ω

( ∫ ρ

0

K(y) dy
)
θ div w dx

)
.

(4.8)

3The terms on the RHS are multiplied by t and (v, s) is replaced by (w, z).
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To get the information about the second term on the RHS of this equation we use
the approximative continuity equation — i.e. equation (4.3)1

∫

Ω

w · ∇Pb(ρ) dx =
γ

γ − 1

∫

Ω

K(ρ)ρw · ∇ργ−1 dx

= − γ

γ − 1

∫

Ω

(ε∆ρ+ εhK(ρ) − ερ) ργ−1 dx

=
εγ

γ − 1

∫

Ω

(ρ− hK(ρ))ργ−1 dx+ εγ

∫

Ω

ργ−2|∇ρ|2 dx.

Using this fact we get

∫

Ω

S(w) : ∇w dx+

∫

∂Ω

f |w|2 dσ + tεγ

∫

Ω

ργ−2|∇ρ|2 dx+ t
εγ

γ − 1

∫

Ω

ργ dx

− t

∫

Ω

( ∫ ρ

0

K(y) dy
)
θ div w dx ≤ Ct

(
1 +

∫

Ω

|K(ρ)ρw · F | dx
)
.

(4.9)

Next we integrate the second equation in (4.5) and using the boundary condition
we get

(4.10)

∫

∂Ω

(
tL(θ)(θ−θ0)+εz

)
dσ = t

∫

Ω

(
S(w) : ∇w−

( ∫ ρ

0

K(y) dy
)
θ div w

)
dx,

since the integration by parts gives the following identity

∫

Ω

(
K(ρ)ρw · ∇θ − θK(ρ)w · ∇ρ+ div

(
w

∫ ρ

0

K(y) dy
)
θ

+ div
(
K(ρ)ρw

)
θ
)
dx =

∫

Ω

( ∫ ρ

0

K(y) dy
)
θ div w dx.

(4.11)

Summing up (4.9) and (4.10) we get

∫

∂Ω

(
tL(θ)(θ − θ0) + εz+

)
dσ +

∫

∂Ω

f |w|2 dσ + tεγ

∫

Ω

ργ−2|∇ρ|2 dx

+ (1 − t)

∫

Ω

S(w) : ∇w dx+ t
εγ

γ − 1

∫

Ω

ργ dx

≤ Ct
(
1 +

∫

Ω

|K(ρ)ρv · F | dx
)

+ Cε

∫

∂Ω

z− dσ,

(4.12)

where z+ and z− are the positive and negative parts of the entropy (z = z+−z−).
Now we take care of the first term of the RHS of (4.12). Note that the control of
the negative part of entropy z is not immediate.
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We integrate the entropy equation (3.6) over Ω getting

∫

∂Ω

(
tL(θ)(θ − θ0)

θ
+ tεze−z

)
dσ + t

∫

Ω

(
K(ρ)ρ

v · ∇θ
θ

−K(ρ)v · ∇ρ
)
dx

= t

∫

Ω

(
S(w) : ∇w

θ
+

(1 + θm)(ε+ θ)

θ
|∇z|2

)
dx.

(4.13)

So

(1 − t)

∫

Ω

S(w) : ∇w dx+

∫

∂Ω

f |w|2 dσ + t

∫

Ω

(1 + θm)(ε+ θ)

θ
|∇z|2 dx

+ t

∫

Ω

(S(w) : ∇w

θ
+ εγργ−2|∇ρ|2 +

εγ

γ − 1
ργ
)
dx

+ ε

∫

∂Ω

(
z+(1 − e−z+) + |z−|(e|z−| − 1)

)
dσ

+ t

∫

∂Ω

(
L(θ)θ − L(θ)θ0 +

L(θ)θ0
θ

− L(θ)
)
dσ

≤ t

∫

Ω

(
K(ρ)ρw · ∇z −K(ρ)w · ∇ρ

)
dx+ tC

(
1 +

∫

Ω

|K(ρ)ρw · F | dx
)
,

(4.14)

where ρ = S(w). From the first term in the RHS of (4.14) we have

(4.15)

∫

Ω

K(ρ)ρw ·∇(z− ln ρ) dx = −
∫

Ω

K(ρ)ρw ·∇ ln ρ dx+

∫

Ω

K(ρ)ρw ·∇z dx

and with help of (4.3) we get for the first integral in (4.15)

−
∫

Ω

K(ρ)ρw · ∇ ln ρ dx =

∫

Ω

div(K(ρ)ρw) ln ρ dx

= −
∫

Ω

(
− ε∆ρ+ ερ− εhK(ρ)

)
ln ρ dx

= −
∫

Ω

(
ε
|∇ρ|2
ρ

− εhK(ρ) ln ρ+ ερ ln ρ
)
dx.

(4.16)

The first term has a good sign (considered on the LHS), the second term has a
good sign for ρ ≤ 1, too, and for ρ ≥ 1 is easily bounded by εhρ. Similarly, the
last term can be controlled by the term ε

∫
Ω
ργ dx. The proof was rather formal,

as we do not know whether ρ > 0 in Ω. However, we may write K(ρ)v · ∇(ρ+ δ)
in (4.15) with δ > 0 and find an analogue of (4.16) with ln(ρ+ δ). Finally we pass
with δ → 0+ and get precisely the same information as above.
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Next, for the second integral in (4.15)

∫

Ω

K(ρ)ρw · ∇z dx = −
∫

Ω

(
ε∆ρ− ερ+ εhK(ρ)

)
z dx

=

∫

Ω

(
ε∇ρ · ∇z + ερ ln θ − εhK(ρ) ln θ

)
dx.

(4.17)

Considering the RHS of (4.17), we have

∣∣∣∣ε
∫

Ω

∇ρ · ∇z dx
∣∣∣∣ ≤ ε‖∇ρ‖2‖∇z‖2

≤ 1

4
ε
(∫

Ω

|∇ρ|2
ρ

dx+

∫

Ω

|∇ρ|2ργ−2dx
)

+
1

4
‖∇z‖2

2.

(4.18)

Moreover, −
∫
Ω ερ ln θ dx has a good sign for θ ≤ 1 (again, considered on the

LHS); for θ > 1 we have

∫

Ω

ερ(ln θ)+ dx ≤ ε‖ρ‖2‖z+‖2

≤ ε

4

(
‖(ln θ)+‖L1(∂Ω) + ‖∇z‖2

)2
+
ε

4
‖ργ‖1 + C

≤ ε

4

∫

∂Ω

L(θ)θ dσ +
ε

4
‖∇z‖2

2 +
ε

4
‖ργ‖1 + C.

(4.19)

The last term of (4.17) can be treated as follows (one part has again a good sign)

∫

Ω

εhK(ρ)|(ln θ)−| dx ≤ Cε

∫

Ω

|z−| dx

≤ C +
1

2

∫

∂Ω

ε|z−|e|z−| dσ +
1

4
||∇z||L2(Ω).

(4.20)

Then combining (4.14) with inequality (4.12) and with (4.16)–(4.20) we obtain

t

∫

Ω

(
S(w) : ∇w

θ
+

1 + θm

θ2
|∇θ|2

)
dx

+

∫

∂Ω

(
tL(θ)θ + t

L(θ)θ0
θ

+ ε|z|
)
dσ ≤ tH,

(4.21)

where

H = C
(
1 +

∫

Ω

|K(ρ)ρw · F | dx
)
.

From the growth conditions we deduce

(∫

∂Ω

θl+1 dσ

)1/(l+1)

≤ H1/(l+1),

(∫

Ω

|∇
(
θm/2

)
|2
)1/m

≤ tH1/m.
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To get bounds for the temperature we use the following Poincaré type inequality

‖θm/2‖2 ≤ C(Ω)
(
‖∇
(
θm/2

)
‖2 + ‖θ‖m/2

l+1,∂Ω

)
.

The imbedding theorem leads to the bound

(4.22) ‖θ‖q ≤ C
(
tH1/m +H1/(l+1)

)

for any q < ∞; note that C = C(q) and C(q) → ∞ for q → ∞. In this very
moment we set (for the sake of simplicity) m = l + 1. It is possible to consider
m 6= l + 1 or even F ∈ Lp(Ω) for p < ∞ but all related calculations become too
technical.

We now return to (4.9). Hölder’s inequality with help of Korn’s inequality4

yields

‖w‖2
1,2 + tεγ

∫

Ω

|∇ρ|2ργ−2 dx+ t
εγ

γ − 1

∫

Ω

ργ dx

≤ Ct

(
1 +

∫

Ω

|K(ρ)ρw · F | dx+

∫

Ω

|θ
∫ ρ

0

K(y) dy|2 dx
)
.

(4.23)

In what follows we use the imbedding W 1,2(Ω) →֒ Lq(Ω) for any q ∈ [1,∞); in
the following q is always this number taken from the imbedding. (Note that our
aim is to use q as large as possible.)

The first term on the RHS of this equation is relatively simple; assuming q
q−1 ∈

(1, 2γ) we have

∫

Ω

|K(ρ)ρw · F | dx ≤ C‖K(ρ)ρ‖ q
q−1

‖w‖q‖F ‖∞

≤ C‖K(ρ)ρ‖
2γ

q(2γ−1)

2γ ‖w‖1,2.

(4.24)

However, to proceed, we need to get a bound of Pb(ρ). To find it we use the
so-called Bogovskii operator. We introduce Φ : Ω → R

2 defined as a special
solution to the problem

div Φ = Pb(ρ) −
1

|Ω|

∫

Ω

Pb(ρ) dx in Ω

Φ = 0 at ∂Ω,
(4.25)

satisfying

(4.26) ‖Φ‖1,2 ≤ C‖Pb(ρ)‖2,

4i.e. for f = 0 we require that Ω is not rotationally symmetric, for more details see [10].
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see e.g. [10]. Using structure of Pb(ρ), the fact that
∫
Ω ρ dx ≤M and interpolation

inequality, we have

∫

Ω

Pb(ρ) dx ≤ δ‖Pb(ρ)‖2 + C(δ,M) for all δ > 0.

Now, we are ready to multiply the momentum equation (first equation in (4.5))
by Φ, use (4.23) and (4.26) together with standard estimates on the RHS to (4.5),
and get

t‖Pb(ρ)‖2
2

≤ C

(
t+ ‖∇w‖2

2 + t

∫

Ω

|K(ρ)ρw ⊗ w|2 dx+ t

∫

Ω

|θ
∫ ρ

0

K(y) dy|2 dx
)
.

(4.27)

We have

(4.28) ‖Pb(ρ)‖2
2 ≥ C

(∫

Ω

(K(ρ)ρ)2γ dx+

∫

Ω

(∫ ρ

0

K(y) dy
)2γ)

;

therefore we estimate the first integral in the RHS of (4.27) as

∫

Ω

|K(ρ)ρw ⊗ w|2 dx ≤ C‖K(ρ)ρ‖2
2q

q−4

‖w‖4
q ≤ C‖K(ρ)ρ‖

2γ(q+4)
q(2γ−1)

2γ ‖w‖4
q(4.29)

for any sufficiently large q < ∞. We now take care of the second integral in
(4.27) with the help of Hölder’s inequality; we get ‖

∫ ρ

0
K(t) dt‖ 2q

q−2
and then we

use interpolation between L1 and L2γ

(4.30) ‖θ
∫ ρ

0

K(t) dt‖2
2 ≤ ‖θ‖2

q‖
∫ ρ

0

K(y) dy‖2
2q

q−2

≤ ‖θ‖2
q‖
∫ ρ

0

K(y) dy‖
2γ(q+2)
q(2γ−1)

2γ .

Apart from that, we have (4.22) and (4.24), which gives us the following bound

(4.31) ‖θ‖q ≤ Ct
(
‖K(ρ)ρ‖

2γ
q(2γ−1)

2γ ‖w‖1,2

) 1
m .

Therefore we get

(4.32) ‖θ
∫ ρ

0

K(y) dy‖2
2 ≤ Ct2‖

∫ ρ

0

K(y) dy‖
2γ(q+2)
q(2γ−1)

2γ

(
‖K(ρ)ρ‖

2γ
q(2γ−1)

2γ ‖w‖1,2

) 2
m .

From the inequalities above we see that

t‖K(ρ)ρ‖2γ
2γ ≤ C

(
t‖K(ρ)ρ‖

2γ(q+4)
q(2γ−1)

2γ ‖w‖4
1,2

+ t‖K(ρ)ρ‖2γ( q+2
q(2γ−1)

+ 2
m

1
q(2γ−1) )

2γ ‖w‖
2
m
1,2 + ‖∇w‖2

2 + t
)
.

(4.33)
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Young’s inequality yields

(4.34) t‖K(ρ)ρ‖2γ
2γ ≤ Ct

(
‖w‖

2q(2γ−1)
q(γ−1)−2

1,2 + ‖w‖
q(2γ−1)

mq(γ−1)−m−1

1,2

)
+ C‖w‖2

1,2

which, together with (4.21) and a little help of Young’s inequality, leads us to the
final bound

‖w‖2
1,2 ≤ Ct

(
‖w‖1+ 1

q(2γ−1)
2q(2γ−1)
q(γ−1)−2

1,2 + ‖w‖1+ 1
q(2γ−1)

q(2γ−1)
mq(γ−1)−m−1

1,2

+ ‖w‖
2q(2γ−1)
q(γ−1)−2 ( q+2

q(2γ−1)
+ 2

m
1

q(2γ−1) )+
2
m

1,2

+ ‖w‖
q(2γ−1)

mq(γ−1)−m−1 ( q+2
q(2γ−1)

+ 2
m

1
q(2γ−1) )+

2
m

1,2

)
+ C.

(4.35)

To get a reasonable bound on ‖w‖1,2 we need all the exponents in (4.35) to be
less than 2. After some algebra we get

γ > 2

γ >
4 + q

q

m >
2

q(γ − 1) − 1

m >
q(2γ − 1)

2q(γ − 1)

m >
q(γ − 1)

q(γ − 2) − 4
;

(4.36)

hence, recalling that q can be arbitrarily large,

(4.37) γ > 2 & m >
γ − 1

γ − 2
.

Now we are almost done: we have

(4.38) ‖w‖2
1,2 ≤ C(‖F ‖∞,M).

This fact together with estimates for temperature ((4.12) and (4.22)) gives us
(4.7), except for one term.

To finish the proof we multiply the approximative momentum equation (3.3)
by ρ and integrate by parts to get

ε

∫

Ω

(|∇ρ2| + ρ2) dx ≤ ε

∫

Ω

hK(ρ)ρ dx+

∫

Ω

( ∫ ρ

0

K(y)y dy
)
| div w| dx,

from where we extract the bound for
√
ε‖∇ρ‖2. �

At last we want to verify the bounds on w and z, i.e. to make sure our operator
T maps Mp ×W 2,p(Ω) to Mp ×W 2,p(Ω). We apply the bootstrap method to the
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system

− divS(w) = t
(
− 1

2
div(K(ρ)ρw ⊗ w) − 1

2
K(ρ)ρw · ∇w

−∇P (ρ, ez) +K(ρ)ρF
)

in Ω
(4.39)

− div
(
(1 + emz)(ε+ ez)∇z

)
= t
(
S(w) : ∇w − div

(
w

∫ ρ

0

K(y) dy
)
ez

− div
(
K(ρ)ρw

)
ez − ezK(ρ)ρw · ∇z + ezK(ρ)w · ∇ρ

)
in Ω

(4.40)

with ρ = S(v); the boundary conditions are as follows

w · n = 0, n · S(w) · τ + fw · τ = 0

(1 + emz)(ε+ ez)∇z + εz = −tL(ez)(ez − θ0).
(4.41)

First knowledge (and the one we have for free) is that w ∈ W 1,2(Ω) →֒ Lq(Ω)
for any q ∈ [1,∞). Thus, when deducing bounds to the RHS of (4.39), the
most restrictive term is ∇P (ρ, ez) — but we have θ ∈ Lq(Ω) and ρ ∈ L∞(Ω)

and therefore we have also (RHS of (4.39)) ∈ (W 1,q′

(Ω))∗ ⇒ w ∈ W 1,q(Ω). As
a consequence, from the continuity equation (3.2) we get ρ ∈ W 2,q(Ω). Note,
however, that ‖w‖1,q ≤ C(k).

Next step is to rewrite equation (4.40):

−∆Φ(z) = t
(
S(w) : ∇w − ezK(ρ)ρw · ∇z + ezK(ρ)w · ∇ρ

− div
(
w

∫ ρ

0

K(y) dy
)
ez − div

(
K(ρ)ρw

)
ez
)

in Ω,

∂Φ(z)

∂n
= −εz − tL(ez)(ez − θ0) at ∂Ω,

(4.42)

where

Φ(z) =

∫ z

0

(1 + emτ )(ε+ eτ ) dτ.

We need to verify that Φ is bounded. We multiply (4.39) by Φ and integrate
over Ω. It leads to

‖∇Φ‖2
2 +

∫

∂Ω

(tL(ez)(ez − θ0)Φ + εzΦ)dσ ≤ C‖RHS of (4.39)‖ q
q−1

‖Φ‖q.

Now we realize that Φ(s) ∼ εs for s→ −∞ and Φ(s) ∼ e(m+1)s for s→ ∞; from
this fact we deduce that

∫

∂Ω

(tL(ez)(θ − θ0)Φ(z) + εzΦ(z))1{Φ≤0} dσ ≥ ε2‖Φ(z)‖2
2 − C

∫

∂Ω

(tL(ez)(θ − θ0)Φ(z) + εzΦ(z))1{Φ≥0} dσ ≥ ε‖Φ(z)‖1 − C,
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where 1A is the characteristic function of a set A; thus ‖Φ(z)‖1,2 ≤ C with C

independent of t. This fact implies

∇θ = ez∇z ∈ L2(Ω).

Consequently we have (using imbedding theorems) Φ ∈ W 1,eq(Ω) for arbitrary
q̃ < ∞. Now, we are ready to show that Φ ∈ W 2,eq(Ω) (the method is just the
same as in previous case, we use standard elliptic theory) and from this fact we
conclude that

z ∈W 2,eq(Ω) →֒ L∞(Ω), ∇z ∈W 1,eq(Ω) →֒ L∞(Ω).

Using all these facts and equation (4.39) we also get

w ∈ W 2,q(Ω).

This finishes the proof of Theorem 4.1, as

‖w‖2,r + ‖z‖2,r + ‖θ‖2,r ≤ C, 1 ≤ r <∞,

where the constant C does not depend on t. Moreover, θ = ez, z ∈ L∞(Ω),
therefore we have θ ≥ c(ε) > 0.

5. Convergence

Using estimates from Theorem 4.1 we know that there exists a subsequence
εn → 0+ such that:

(5.1)

vεn ⇀ v in W 1,q(Ω),

vεn → v in L∞(Ω),

ρεn ⇀
∗ ρ in L∞(Ω),

Pb(ρεn) ⇀∗ Pb(ρ) in L∞(Ω),

K(ρεn)ρεn ⇀
∗ K(ρ)ρ in L∞(Ω),

K(ρεn) ⇀∗ K(ρ) in L∞(Ω),
∫ ρεn

0

K(y) dy ⇀∗

∫ ρ

0

K(y) dy in L∞(Ω),

θεn ⇀ θ in W 1,1+δ(Ω), 0 < δ < 1 arbitrary,

θεn → θ in Lq(Ω),

where the bar over a quantity denotes its weak limit for εn → 0+. From now on,
we denote the sequences again (vε, ρε, θε).

With this knowledge the limit of our problem looks as follows

(5.2) div(K(ρ)ρv) = 0
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− div
(
2µD(v) + ν(div v)I − Pb(ρ)I − θ

(∫ ρ

0

K(y) dy
)
I
)

+K(ρ)ρv · ∇v = K(ρ)ρF

(5.3)

div((1 + θm)∇θ) + θ
(
div v

∫ ρ

0

K(y) dy
)

+ div(K(ρ)ρθv)

= 2µ|D(v)|2 + ν(div v)2
(5.4)

together with the boundary conditions (1.10) and (1.11); all the equations are
fulfilled in the weak sense. We will comment the less trivial limit passage in the
internal energy balance, including the boundary terms, at the end of this paper.

Note that in equation (5.3), especially in the last term on the LHS, we used

the fact that div(K(ρ)ρv) = 0.

Lemma 5.1. Under the assumptions of Theorem 2.1 and Theorem 4.1, we have

for q > 2

(5.5) ‖ρε‖∞ ≤ k + 1 and ‖vε‖1,q ≤ C(1 + kγ q−2
q ).

Proof: The bound on the density follows directly from Theorem 4.1 — therefore
we are going to estimate the velocity. If we write the approximative momentum
equation (3.3) in the form

− divS(v) = −∇
(
Pb(ρε) + θε(

∫ ρε

0

K(t) dt)

)
+K(ρε)ρεF

− 1

2
div
(
K(ρε)ρεvε ⊗ vε

)
− 1

2
K(ρε)ρεvε · ∇vε,

we can notice that

‖vε‖1,q ≤ C

(
‖K(ρε)ρεvε ⊗ vε‖q + ‖K(ρε)ρεvε · ∇vε‖ 2q

q+2

+ ‖Pb(ρε)‖q + ‖θε(

∫ ρε

0

K(t) dt)‖q + ‖K(ρε)ρεF ‖ 2q
q+2

)
.

(5.6)

The bounds on the density and temperature yield for q sufficiently large

(5.7) ‖Pb(ρε)‖q ≤ ‖Pb(ρε)‖
2
q

2 ‖Pb(ρε)‖
q−2

q
∞ ≤ C(1 + kγ q−2

q )

and for q ≥ 2γ

(5.8) ‖θε(

∫ ρε

0

K(y) dy)‖q ≤ C‖ρ‖q+δ‖θ‖p(q,δ) ≤ C(1 + k1− 2γ
q+δ ).

The only thing that remains is to estimate the convective term

‖K(ρε)ρεvε ⊗ vε‖q + ‖K(ρε)ρεvε · ∇vε‖ 2q
q+2

≤ C‖v‖2
1,2‖Pb(ρ)‖

1
γ

q+δ′

γ

,
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from where we directly deduce (using equations (5.6), (5.7) and (5.8) and also the
fact that γ > 2) the bound for q > 1

‖vε‖1,q ≤ C(1 + kγ q−2
q ). �

6. Convergence of the temperature

Lemma 6.1. There exists a subsequence {sε} such that

sε → s in L2(Ω).

Consequently

θε → θ in Lq(Ω) for q <∞,

where θ > 0 a.e. in Ω.

Proof: From the previous sections we have
∫

Ω

|∇sε|2 dx+

∫

∂Ω

(esε + e−sε) dσ < C,

especially
∫

Ω

|∇sε|2dx+

∫

∂Ω

|sε|2 dσ < C.

Thus there exists a subsequence sε → s in L2(Ω). Recall that θε = esε and θε → θ

in Lq(Ω), see the last line of (5.1). Now we use Vitali’s theorem to get

esε → es in Lq(Ω)

and

θ = es with s ∈ L2(Ω).

Hence θ > 0 a.e. in Ω as s > −∞ a.e. in Ω. �

7. Effective viscous flux

To prove the strong convergence of the density we need an interesting quantity
called effective viscous flux. To define it, we use the Helmholtz decomposition of
the velocity

(7.1) vε = ∇⊥Aε + ∇φε,

where ∇⊥ = (− ∂
∂x2

, ∂
∂x1

), the scalar function φε is given by the system

∆φε = div vε in Ω

∂φε

∂n
= 0 at ∂Ω,

(7.2)
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and the field Aε is given by

∆Aε = rotvε = ωε in Ω

n · ∇⊥Aε = 0 at ∂Ω,
(7.3)

with rotvε = ∂(vε)2
∂x1

− ∂(vε)1
∂x2

(as we consider the two-dimensional case; note that

in 2D rotvε is scalar function). The basic estimates (following from the standard
elliptic estimates) for Aε and φε are

‖∇∇⊥Aε‖q ≤ C‖ωε‖q ‖∇2∇⊥Aε‖q ≤ C‖ωε‖1,q

‖∇2φε‖q ≤ C‖ div vε‖q ‖∇3φε‖q ≤ C‖ div vε‖1,q.
(7.4)

We have (in the weak sense)

−µ∆ωε = −1

2
rot div(K(ρε)ρεvε ⊗ vε) −

1

2
rot(K(ρε)ρεvε · ∇vε)

+ rot(K(ρε)ρεF ) in Ω

ωε =

(
2χ− f

µ

)
vε · τ at ∂Ω,

(7.5)

where χ is the curvature of ∂Ω, cf. [5].
The form of system (7.5) enables to formulate the following two problems for

ωε = ω1
ε + ω2

ε :

−µ∆ω1
ε = −1

2
rot (div(K(ρε)ρεv)v) in Ω

ω1
ε = 0 at ∂Ω,

(7.6)

and

−µ∆ω2
ε = − rot(K(ρε)ρεvε · ∇vε) + rot(K(ρε)ρεF ) in Ω

ω2
ε =

(
2χ− f

µ

)
vε · τ at ∂Ω.

(7.7)

From these equations we get

‖ω1
ε‖2 ≤ C(1 + C(k)

√
ε),(7.8)

‖ω2
ε‖1,q ≤ C(1 + k1+γ q−2

q +δ),(7.9)

δ > 0, arbitrarily small. In the first relation we used the approximative continuity
equation (3.2):

rot(div(K(ρε)ρεvε)vε) = rot(vε(εh+ ε∆ρε − ερε))
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and when estimating the term with ∆ρε, we use the fact that
√
ε‖∇ρε‖2 ≤ C. In

the second estimate we have

‖ω2
ε‖1,q ≤ C(‖vε‖1− 1

q ,q,∂Ω + ‖K(ρε)ρεvε · ∇vε‖q + 1),

and we use estimates from Lemma 5.1.
At last we are ready to introduce the fundamental quantity which is in fact the

potential part of the momentum equation: the effective viscous flux. Using the
Helmholtz decomposition in the approximative momentum equation we have

∇(−(2µ+ ν)∆φε + P (ρε, θε)) = µ∆∇⊥Aε +K(ρε)ρεF

−K(ρε)ρεvε · ∇vε −
1

2
εhK(ρε)vε +

1

2
ερεvε −

1

2
ε∆ρεvε.

(7.10)

We define

(7.11) Gε = −(2µ+ ν)∆φε + P (ρε, θε) = −(2µ+ ν) div vε + P (ρε, θε)

and its limit version

(7.12) G = −(2µ+ ν) div v + P (ρ, θ).

In the following lemmae we prove fundamental properties of the effective vis-
cous flux.

Lemma 7.1.

(7.13) ‖G‖∞ ≤ C(1 + k1+η) with η > 0 arbitrarily small, ‖G‖2 ≤ C,

C independent of k and ε.

Proof: We pass to the limit in (7.10), getting

∇((−2µ+ ν)∆φ + P (ρ, θ)) = µ∆∇⊥A+K(ρ)ρF −K(ρ)ρv · ∇v;

from this equation we estimate ‖∇G‖q (q > 2)

‖∇G‖q ≤ C(‖∆∇⊥A‖q + ‖K(ρ)ρF ‖q + ‖K(ρ)ρv · ∇v‖q).

We still remember the results from Lemma 5.1 and so

‖K(ρ)ρv · ∇v‖q ≤ C‖v‖2
1,q‖K(ρ)ρ‖∞ ≤ Ck1+η,

with η arbitrarily small for q → 2 (the second term from the second inequality
form (5.5) is very small for q → 2). Next, we have in the weak sense

−µ∆ω = − rot(K(ρ)ρv · ∇v) − rot(K(ρ)ρF ) in Ω

ω =

(
2χ− f

µ

)
v · τ at ∂Ω,
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thus

‖ω‖1,q ≤ C(‖v‖1,q + ‖K(ρ)ρv · ∇v‖q + ‖K(ρ)ρF ‖q) ≤ C(1 + k1+η).

We also have (see (7.4))

‖∆∇⊥A‖q ≤ C‖∇ω‖q;

all this, together with control of mean value of G (in fact, the mean value of G

is the mean value of P (ρ, θ)) and Sobolev imbeddings finish the proof of the first
inequality. The second inequality we get immediately due to the fact that

‖G‖2 ≤ C(‖∇v‖2 + ‖P (ρ, θ)‖2). �

Lemma 7.2. Up to a subsequence, we have for ε→ 0+

(7.14) Gε → G strongly in L2(Ω).

Proof:

∇(Gε −G) = (K(ρε)ρε −K(ρ)ρ)F − 1

2
K(ρε)ρεvε · ∇vε

− 1

2
div(K(ρε)ρεvε ⊗ vε) +K(ρ)ρv · ∇v + µ∆∇⊥(Aε −A).

(7.15)

For the first term we have

(K(ρε)ρε −K(ρ)ρ)F ⇀ 0 in Lq(Ω) ∀ q <∞,

so the first term gives us strong convergence. The second “part” is

− 1

2
K(ρε)ρεvε · ∇vε −

1

2
div(K(ρε)ρεvε ⊗ vε) +K(ρ)ρv · ∇v

= −1

2
div(K(ρε)ρεvε)vε −K(ρε)ρεvε · ∇vε +K(ρ)ρv · ∇v,

(7.16)

and for the first term it holds

−1

2
div(K(ρε)ρεvε)vε = −1

2
ε∆ρεvε +

1

2
ερεvε −

1

2
εhK(ρ)vε,

in which the first term converges to zero strongly in W−1,2 (this determines the
space of convergence) and the other two terms converge to zero weakly in Lq(Ω),
q < ∞. The other two terms in (7.16) converge to zero weakly in Lq due to the

fact that div(K(ρ)ρv) = 0.
Finally we have to look at the last term of (7.15). First we show that

∇(ωε − ω) = B1
ε +B2

ε ,
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where B1
ε ⇀ 0 in L2(Ω) and B2

ε → 0 in W−1,2(Ω). We have

∆(ωε − ω) = −1

2
rot(K(ρε)ρεvε · ∇vε) −

1

2
rot div(K(ρε)ρεvε ⊗ vε)

+ rot(K(ρ)ρv · ∇v) + rot((K(ρε)ρε −K(ρ)ρ)F ) in L2(Ω)

ωε − ω =

(
2χ− f

µ

)
(vε − v) · τ at ∂Ω.

Now, as above, we can estimate the difference ωε − ω by B1
ε +B2

ε , where B1
ε → 0

strongly in W−1,2(Ω) and B2
ε ⇀ 0 weakly in L2(Ω). Recalling

‖∆∇⊥(Aε −A)‖−1,2 ≤ ‖∇(ωε − ω)‖−1,2,

we conclude that

∆∇⊥(Aε −A) = B1
ε +B2

ε ,

where B1
ε → 0 in W−1,2(Ω) and B2

ε ⇀ 0 in L2(Ω). Therefore Gε −G→ const. in
L2(Ω). But we notice that

∫

Ω

(Gε −G) dx =

∫

Ω

∆(φε − φ) dx +

∫

Ω

(P (ρε, θε) − P (ρ, θ)) dx→ 0,

as
∫

∂Ω

∂φ

∂n
dS =

∫

∂Ω

∂φε

∂n
dS = 0,

hence the constant is zero. �

8. Limit passage

Theorem 8.1. There exists sufficiently large k0 > 0 such that for k > k0 we have

(8.1)
k − 2

k
(k − 2)γ ≥ 1 + ‖G‖∞

and for a subsequence ε→ 0+ it holds

(8.2) lim
ε→0+

|{x ∈ Ω : ρε(x) > k − 2}| = 0.

In particular, K(ρ)ρ = ρ a.e. in Ω.

Proof: We define a smooth function M : R
+
0 → [0, 1] such that

M(t) =





1 for t ≤ k − 2

∈ (0, 1) for k − 2 < t < k − 1

0 for k − 1 ≤ t
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andM ′(t) < 0 for t ∈ (k−2, k−1). Now, we multiply the approximative continuity
equation (3.2) by M l (l ∈ N) and integrate over Ω. As

ε

∫

Ω

M l(ρε)∆ρε dx = −εl
∫

Ω

M l−1(ρε)M
′(ρε)|∇ρε|2 dx ≥ 0,

we get

∫

Ω

(∫ ρε(x)

0

tlM l−1(t)M ′(t) dt

)
div vε ≥ Rε

with Rε → 0 as ε→ 0. Now, we recall definitions of G and M to get

− (k − 2)

∫

Ω

( ∫ ρε(x)

0

lM l−1(t)M ′(t) dt
)
P (ρε, θε) dx

≤ k
∣∣∣
∫

Ω

(∫ ρε(x)

0

−lM l−1(t)M ′(t) dt
)
Gε dx

∣∣∣+Rε.

Thus the properties of M lead to the following inequality

k − 2

k

∫

{ρε>k−2}

(1 −M l(ρε))P (ρε, θε) dx ≤
∫

{ρε>k−2}

(1 −M l(ρε))|Gε| dx+ |Rε|.

From the explicit form of approximative pressure function (3.5) we see

k − 2

k
(k − 2)γ |{ρε > k − 2}| − k − 2

k
‖P (ρε, θε)‖2‖M l(ρε)‖2

≤ ‖G‖∞|{ρε > k − 2}|+ ‖G−Gε‖1 + |Rε|.

Using inequality (7.13) (see Lemma 7.2) we are able to choose k0 so large that for
all k > k0 we have (8.1), ‖G‖∞ ≤ Ck1+η and γ > 2.

Therefore,

|{x ∈ Ω : ρε(x) > k − 2}|
≤ C

(
‖M l(ρε)‖L2({ρε>k−2}) + ‖G−Gε‖L1(Ω) + |Rε|

)
.

(8.3)

Now, for fixed δ > 0 there exists ε0 > 0 such that for ε < ε0

(8.4) C(‖G−Gε‖1 + |Rε|) ≤
δ

2
.

We fix ε and then consider the sequence {M l(ρε)1{ρε>k−2}}l∈N. We see that it
monotonely pointwise converges to zero. Thus by the Lebesgue theorem we are
able to find l = l(ε, δ) such that

(8.5) C‖M l(ρε)‖L2({ρε>k−3}) ≤
δ

2
.
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From (8.3), (8.4) and (8.5) we obtain

(8.6) lim
ε→0

|{x ∈ Ω; ρε(x) > k − 2}| ≤ δ.

As δ > 0 is arbitrarily small, Theorem 8.1 is proved. �

We have (for the proof see [6]):

Lemma 8.1. It holds

(8.7)

∫

Ω

P (ρ, θ)ρ dx ≤
∫

Ω

Gρdx,

and

(8.8)

∫

Ω

P (ρ, θ)ρ dx =

∫

Ω

Gρdx.

Now, using (8.7) and (8.8), together with the elementary properties of weak

limits (ρP (ρ, θ) ≤ P (ρ, θ)ρ a.e. in Ω) we get

ρP (ρ, θ) ≤ P (ρ, θ)ρ a.e. in Ω, i.e. ργ+1 + ρ2θ = ργρ+ ρ2θ a.e. in Ω.

The same elementary properties tell us that ργ+1 ≥ ργ and ρ2θ ≥ ρ2θ, so

ρ2θ = ρ2θ a.e. in Ω.

The limit temperature is a.e. positive, thus ρ2 = ρ2 a.e. and

lim
ε→0

‖ρε − ρ‖2
2 = ρ2 − ρ2 = 0.

Next, let us check the strong convergence of the velocity gradient. Due to
Theorem 8.1 and Lemma 6.1 we have

(8.9) P (ρε, θε) → p(ρ, θ) strongly in L2(Ω).

From (8.9) and (7.14) we deduce that (recall (7.11) and (7.12))

(8.10) div vε → div v strongly in L2(Ω).

Additionally, from the properties of the vorticity we already know that

(8.11) rotvε → rotv strongly in L2(Ω).

All this together with (7.4) and Korn’s inequality implies

(8.12) vε → v strongly in W 1,2(Ω).
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Due to the bound of vε in W 1,q we have

(8.13) S(vε) : ∇vε → S(v) : ∇v strongly in Lq(Ω),

1 ≤ q <∞. Now, it is time for a little summary. We know that

(8.14)

ρε → ρ in Lq(Ω) for q <∞
vε → v in W 1,q(Ω) for q <∞
θε → θ in Lq(Ω) for q <∞
θε ⇀ θ in W 1,2(Ω) if m ≥ 2

θε ⇀ θ in W 1,1+δ(Ω) for δ < 1 if m < 2.

We return to the approximative energy equation (3.4) and explain the limit pas-
sage in a more detailed way. We have

∫

Ω

(1 + θm
ε )
ε+ θε

θε
∇θε · ∇φdx +

∫

∂Ω

L(θε)(θε − θ0)φdσ +

∫

∂Ω

ε ln θεφdσ

−
∫

Ω

(( ∫ ρε(x)

0

K(t) dt
)
vε · ∇(θεφ) +K(ρε)ρεvε · ∇(θεφ)

)
dx

+

∫

Ω

(
K(ρε)ρεvε · ∇θεφ+ div(θεvεφ)

∫ ρε(x)

0

K(t) dt
)
dx

=

∫

Ω

S(vε) : ∇vεφdx.

(8.15)

From (8.14) we see that

(1 + θm
ε )
ε+ θε

θε
∇θε ⇀ (1 + θm)∇θ in Lq(Ω) for q < 2

and passing to the limit with the last four terms in the LHS of (8.15) we get
(using the strong convergence of the density)

∫

Ω

(−ρv · ∇(θφ) − ρv · ∇(θφ) + ρφv · ∇θ + div(θφv)ρ) dx

=

∫

Ω

(−ρθv · ∇φ+ ρθ div vφ) dx.

(8.16)

To pass with the boundary term we have to use the interpolation inequality (recall
that θn → θ in any Lq(Ω) and l + 1 = m):

∫

∂Ω

|θ|l+1 ≤ c‖∇θ‖q‖θ‖l
lq

q−1

,
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which implies

‖θn − θm‖l+1
l+1,∂Ω ≤ c‖∇(θn − θm)‖

1
l+1
q ‖(θn − θm)‖l+ l

l+1
lq

q−1

,

where the first term is bounded and the second one converges to zero; hence the
boundary term also converges to zero.

The very last thing to do is to prove that the limit temperature θ ∈ W 1,p(Ω).
Defining

Φ(θ) =

∫ θ

0

(1 + tm) dt

we rewrite the limit equation using the Kirchhoff transform as in Section 4 in
terms of Φ(θ). Testing it by Φ(θ), we get as in Section 4 that θ ∈ L∞(Ω). One
more iteration in the energy equation and we see that θ ∈ W 1,p(Ω) for p < ∞.
This finishes the proof of Theorem 2.1.
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[7] Mucha P.B., Pokorný M., On the steady compressible Navier–Stokes–Fourier system,

Comm. Math. Phys. 288 (2009), no. 1, 349–377.
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