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Abstract. By analogy with the projective, injective and flat modules, in this paper we
study some properties of C-Gorenstein projective, injective and flat modules and discuss
some connections between C-Gorenstein injective and C-Gorenstein flat modules. We also
investigate some connections between C-Gorenstein projective, injective and flat modules
of change of rings.
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1. Introduction

Unless stated otherwise, throughout this paper R is a commutative and noetherian

ring with unit and C is a semi-dualizing R-module. By P(R) and I(R) we denote

the class of all projective and injective R-modules, respectively. For any R-module

M , pdRM , idRM and fdRM denote the projective, injective and flat dimension,

respectively. The character module HomZ(M,Q/Z) is denoted by M+.

For any semi-dualizing module (in fact, complex) C over R and any complex Z

with bounded and finitely generated homology, Christensen introduced the dimen-

sion G-dimCZ and developed a satisfactory theory for this new invariant. If C is a

semi-dualizing R-module and M is any R-complex, then Holm and Jørgensen sug-

gested in [5] the viewpoint that one should change rings from R to R ∝ C (the

trivial extension of R by C) and then consider the three changed “ring” Gorenstein

dimensions: GidR∝CM , GpdR∝CM , GfdR∝CM . The usefulness of this viewpoint

Research supported by nwnu-kjcxgc-03-68 and by National Natural Science Foundation
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was demonstrated as it enabled them to introduce three new Cohen-Macaulay di-

mensions, which characterize Cohen-Macaulay rings in a way one could hope for.

For every semi-dualizing R-module C Holm and Jørgensen in [6] defined, three new

Gorenstein dimensions: C-GidRM , C-GpdRM , C-GfdRM , which are called the C-

Gorenstein injective, C-Gorenstein projective and C-Gorenstein flat dimension re-

spectively, and proved how they are related to the “changed ring” Gorenstein dimen-

sions over R ∝ C. They compared C-GpdR(−) with G-dimC(−) and interpreted the

C-Gorenstein dimensions in terms of Auslander and Bass categories.

In Section 2, we study some properties of C-Gorenstein projective and injective

modules. We prove that the union of a continuous chain of C-Gorenstein projective

modules is C-Gorenstein projective and the well-ordered continuous inverse system of

C-Gorenstein injective R-modules is C-Gorenstein injective. In Section 3, we discuss

some connections between C-Gorenstein injective and C-Gorenstein flat modules.

We prove that if R is artinian, then M is C-Gorenstein injective if and only if M+ is

C-Gorenstein flat. In Section 4, we show that some studies of homological properties

of change of rings can be generalized to C-Gorenstein homological properties. The

two structural operations addressed later are the information of m-adic completion

and polynomial rings.

We first recall some concepts. Let X be a class of R-modules. We call X projec-

tively resolving if P(R) ⊆ X and for every short exact sequence 0 → X ′ → X →

X ′′ → 0 with X ′′ ∈ X the conditions X ′ ∈ X and X ∈ X are equivalent. Injectively

resolving is defined dually. A semi-dualizing module C is finitely generated so that

HomR(C,C) is canonically isomorphic to R and Exti
R(C,C) = 0 for all i > 1.

An R-module M is said to be C-Gorenstein injective if

(I1) ExtiR(HomR(C, I),M) = 0 for all injective R-modules I and all i > 1;

(I2) there exist injective R-modules I0, I1, . . . together with an exact sequence

. . . −→ HomR(C, I1) −→ HomR(C, I0) −→M −→ 0,

and also, this sequence stays exact when we apply to it the functor

HomR(HomR(C, J),−)

for any injective R-module J .

An R-module M is said to be C-Gorenstein projective if

(P1) Exti
R(M,C ⊗R P ) = 0 for all projective R-modules P and all i > 1;

(P2) there exist projective R-modules P 0, P 1, . . . together with an exact sequence

0 −→M −→ C ⊗R P 0 −→ C ⊗R P 1 −→ . . . ,

and furthermore, this sequence stays exact when we apply to it the functor

HomR(−, C ⊗R Q) for any projective R-module Q.
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An R-module M is said to be C-Gorenstein flat if

(F1) TorRi (HomR(C, I),M) = 0 for all injective R-modules I and all i > 1;

(F2) there exist flat R-modules F 0, F 1, . . . together with an exact sequence

0 −→M −→ C ⊗R F 0 −→ C ⊗R F 1 −→ . . . ,

and furthermore, this sequence stays exact when we apply to it the functor

HomR(C, I) ⊗R − for any injective R-module I.

Remark. (a) If I is an injective R-module, then HomR(C, I) and I are C-

Gorenstein injective. If P is a projective R-module, then C ⊗R P and P are C-

Gorenstein projective. If F is a flat R-module, then C⊗RF and F are C-Gorenstein

flat.

(b) Note that when C = R in the above definition, we recover the categories of

ordinary Gorenstein injective, Gorenstein projective and Gorenstein flat R-modules.

If C is any R-module, then the direct sum R⊕C can be equipped with the product

(r, c)(r′, c′) = (rr′, rc′ + r′c). This turns R⊕C into a ring, which is called the trivial

extension of R by C and denoted R ∝ C. There are canonical ring homomorphisms

R ⇄ R ∝ C, which enables us to view R-modules as R ∝ C-modules, and vice versa.

2. C-Gorenstein projective and injective modules

In this section we study some properties of C-Gorenstein projective modules and

C-Gorenstein injective modules.

Proposition 2.1. The class C-GP(R) of all C-Gorenstein projective R-modules

is projectively resolving. Furthermore, C-GP(R) is closed under arbitrary direct

sums and arbitrary direct summands.

P r o o f. By [4, Theorem 2.5] and [6, Proposition 2.13]. �

Proposition 2.2. The class C-GI(R) of all C-Gorenstein injective R-modules is

injectively resolving. Furthermore, C-GI(R) is closed under arbitrary direct products

and arbitrary direct summands.

P r o o f. By [4, Theorem 2.6] and [6, Proposition 2.13]. �

Given an ordinal number λ and a family (Mα)α<λ of submodules of a module

M , we say that the family is a continuous (well ordered) chain of submodules if

Mα ⊆ Mβ whenever α 6 β < λ and if Mβ =
⋃

α<β

Mα whenever β < λ is a limit
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ordinal. A family (Mα)α6λ is called a continuous chain if (Mα)α<λ+1 is such (see

[2, Definition 7.3.3]). A continuous chain of projective R-modules is projective by

[2, p. 162, Exercise 2].

Theorem 2.3. Let L be an R-module and suppose L is the union of a continuous

chain of submodules (Lα)α6λ. If L0 and Lα+1/Lα are C-Gorenstein projective R-

modules whenever α+ 1 6 λ, then L is C-Gorenstein projective.

P r o o f. Let α + 1 6 λ. If α is not a limit ordinal, then Lα and Lα+1/Lα

are C-Gorenstein projective, and so there exist projective R-modules P 0
α, P

1
α, . . . and

Q0, Q1, . . . together with exact sequences

0 −→ Lα −→ C ⊗R P
0
α → C ⊗R P 1

α −→ . . . ,

0 −→ Lα+1/Lα −→ C ⊗R Q0 −→ C ⊗R Q1 −→ . . . ,

such that those sequences stay exact when we apply the functor HomR(−, C⊗RQ) to

them for any projective R-module Q. Consider the following commutative diagram:

0

��

0

��

0

��

0 // Lα
//

��

Lα+1
//

��

Lα+1/Lα
//

��

0

0 // C ⊗R P 0
α

//

��

C ⊗R (P 0
α ⊕Q

0) //

��

C ⊗R Q
0 //

��

0

0 // C ⊗R P 1
α

//

��

C ⊗R (P 1
α ⊕Q

1) //

��

C ⊗R Q
1 //

��

0

...
...

...

Then 0 → Lα+1 → C ⊗R (P 0
α ⊕ Q

0) → C ⊗R (P 1
α ⊕ Q

1) → . . . is exact such that

this sequence stays exact when we apply to it the functor HomR(−, C ⊗RQ) for any

projective R-module Q. If α is a limit ordinal, set P i
α =

⋃
β<α

P i
β for i = 0, 1, . . ..

Then 0 → Lα → C ⊗R P 0
α → C ⊗R P 1

α → . . . is exact. So (P i
α)α6λ is a continuous

chain for all i = 0, 1, . . .. Set P 0 =
⋃

α6λ

P 0
α, P

1 =
⋃

α6λ

P 1
α, . . .. Then

W : 0 −→ L −→ C ⊗R P 0 −→ C ⊗R P
1 −→ . . .

is exact and each P i is projective. Let Q be any projective R-module. Then

ExtiR(L0, C ⊗R Q) = 0 = ExtiR(Lα+1/Lα, C ⊗R Q) ∀i > 1, whenever α+ 1 6 λ.
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Hence ExtiR(L,C ⊗R Q) = 0 by [2, Theorem 7.3.4] for all i > 1, and so HomR(W,

C ⊗R Q) is exact by analogy with the proof of [10, Theorem 2.1]. Thus L is C-

Gorenstein projective. �

Let µ be an ordinal and A = (Aα : α 6 µ) a sequence of modules. Let (fβα :

α 6 β 6 µ) be a sequence of monomorphisms (with fβα ∈ HomR(Aα, Aβ)) such

that I = {(Aα, fβα) : α 6 β 6 µ} is an direct system of modules. I is called

continuous provided that A0 = 0 and Aα = lim−→β<αAβ for all limit ordinals. Let

(gαβ : α 6 β 6 µ) be a sequence of epimorphisms (with gαβ ∈ HomR(Aβ , Aα)) such

that I = {(Aα, gαβ) : α 6 β 6 µ} is an inverse system of modules. I is called

continuous provided that A0 = 0 and Aα = lim←−β<αAβ for all limit ordinals (see [15,

Definition 2.1]). It is well known that the class L of Gorenstein projective (injective)

objects in a Grothendieck category A is closed under direct (inverse) transfinite

extensions by [3, Theorem 3.2].

Corollary 2.4. Let I = {(Lα, fβα) : α 6 β 6 µ} be a well-ordered continuous

direct system of modules. If Cα = Coker(Lα → Lα+1) is a C-Gorenstein projective

R-module whenever α + 1 6 µ, then L = lim−→α6µLα is a C-Gorenstein projective

R-module.

Theorem 2.5. Let L0 ← L1 ← L2 ← . . . be a continuous inverse system of

modules. If Kn = Ker(Ln+1 → Ln) is a C-Gorenstein injective R-module for each

n, then L = lim←−Ln is a C-Gorenstein injective R-module.

P r o o f. For each n there exist injective R-modules I0
n, I

1
n, . . . together with an

exact sequence

. . . −→ HomR(C, I1
n) −→ HomR(C, I0

n) −→ Ln −→ 0,

such that the sequence stays exact when we apply the functor HomR(HomR(C, J),−)

to it for all injective R-modules J . Consider the following commutative diagram:

...

��

...

��

...

��

. . . // HomR(C, I1
2 )

��

f1

1,2
// HomR(C, I1

1 )

��

f1

0,1
// HomR(C, I1

0 )

��

// 0

. . . // HomR(C, I0
2 )

��

f0

1,2
// HomR(C, I0

1 )

��

f0

0,1
// HomR(C, I0

0 )

��

// 0

. . . // L2

��

f1,2
// L1

��

f0,1
// L0

��

// 0

0 0 0
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Then gi
n,n+1 = C ⊗R f i

n,n+1 : Ii
n+1 → Ii

n is an epimorphism. So (HomR(C, Ii
n)) and

(Ii
n) are continuous inverse systems for all i = 0, 1, . . . Set I0 = lim←−I

0
n, I

1 = lim←−I
1
n, . . .

Then

V : . . . −→ HomR(C, I1) −→ HomR(C, I0) −→ L −→ 0

is exact by [2, Theorem 1.5.14] and [15, Lemma 2.2] and I0, I1, . . . are injective

R-modules by [15, Lemma 2.3]. Let I be any injective R-module. Then

Exti
R(HomR(C, I), L0) = 0 = Exti

R(HomR(C, I),Kn) ∀i > 1 and each n,

and so Exti
R(HomR(C, I), L) = 0 by [15, Lemma 2.3] for all i > 1, which gives that

HomR(HomR(C, I),V) is exact by analogy with the proof of [10, Theorem 2.1]. Thus

L is C-Gorenstein injective. �

Proposition 2.6. Let Q be a projective R-module. If M is a C-Gorenstein

projective R-module, then M ⊗R Q is a C-Gorenstein projective R-module.

P r o o f. There exist projective R-modules P 0, P 1, . . . together with an exact

sequence

W : 0 −→M −→ C ⊗R P
0 −→ C ⊗R P

1 −→ . . . .

Then W⊗R Q : 0→M ⊗R Q→ C ⊗R (P 0⊗R Q)→ C ⊗R (P 1 ⊗R Q)→ . . . is exact

and each P i ⊗R Q is projective. Let P be any projective R-module. By [13, p. 258,

9.20],

Exti
R(M ⊗R Q,C ⊗R P ) ∼= HomR(Q,ExtiR(M,C ⊗R P )) = 0 ∀i > 1,

HomR(W⊗R Q,C ⊗R P ) ∼= HomR(Q,HomR(W, C ⊗R P ))

is exact. So M ⊗R Q is a C-Gorenstein projective R-module. �

Proposition 2.7. Let P be a finitely generated projective R-module. If M is a

C-Gorenstein projective R-module, then HomR(P,M) is a C-Gorenstein projective

R-module.

P r o o f. Let Q be a projective R-module and let B → C → 0 be exact. Consider

the commutative diagram

HomR(HomR(P,Q), B) //

∼=
��

HomR(HomR(P,Q), C)

∼=
��

P ⊗R HomR(Q,B) // P ⊗R HomR(Q,C) // 0
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with the lower row exact. Then

HomR(HomR(P,Q), B) −→ HomR(HomR(P,Q), C) −→ 0

is exact, and hence HomR(P,Q) is projective. Since M is a C-Gorenstein projec-

tive R-module, there exist projective R-modules P 0, P 1, . . . together with an exact

sequence

W : 0 −→M −→ C ⊗R P
0 −→ C ⊗R P

1 −→ . . . .

Then

HomR(P,W) : 0→ HomR(P,M)→ C⊗R HomR(P, P 0)→ C⊗R HomR(P, P 1)→ . . .

is exact and each HomR(P, P i) is a projective R-module. Let Q be any projective

R-module and let E� be an injective resolution of C ⊗R Q. Then

ExtiR(HomR(P,M), C ⊗R Q) = Hi(HomR(HomR(P,M), E�))

∼= Hi(P ⊗R HomR(M,E�))

∼= P ⊗R ExtiR(M,C ⊗R Q) = 0, ∀i > 1,

HomR(HomR(P,W), C ⊗R Q) ∼= P ⊗R HomR(W, C ⊗R Q)

is exact. So HomR(P,M) is C-Gorenstein projective. �

Let M be an R-module of finite Gorenstein projective dimension. Then there

exists a short exact sequence of R-modules 0 → M → H → A → 0, where A is

Gorenstein projective and pdRH = GpdRM by [1, Lemma 2.17]. �

Theorem 2.8. Let M be an R-module of finite C-Gorenstein projective dimen-

sion. Then there exists an exact sequence of R-modules 0→M → H → A→ 0 such

that there is an exact sequence 0→ C ⊗R Pn → . . .→ C ⊗R P0 → H → 0, where A

is C-Gorenstein projective, n = C-GpdRM and each Pi is projective.

P r o o f. If M is C-Gorenstein projective, we take 0 → M → H → A → 0

to be the first short exact sequence. We may now assume that C-GpdRM = n >

0. Then there exists an exact sequence 0 → K → A′ → M → 0, where A′ is

Gorenstein projective over R ∝ C and pdR∝CK = n−1 by [6, Proposition 2.13] and

[4, Theorem 2.10]. Let 0 → Qn−1 → . . .→ Q0 → K → 0 be a projective resolution

of K over R ∝ C. We successively pick projective R ∝ C-modules Q′

0, . . . , Q
′

n−1

such that

Q0 ⊕Q
′

0
∼= (R ∝ C)⊗R P0, Qi ⊕Q

′

i−1 ⊕Q
′

i
∼= (R ∝ C)⊗R Pi for i = 1, . . . , n− 1
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by [6, Lemma 1.5]. Then 0 → Qn−1 ⊕ Q′

n−2 → (R ∝ C) ⊗R Pn−2 → . . . →

(R ∝ C) ⊗R P0 → K → 0 is exact. By adding 0 → (Q′

n−1 ⊕ Qn−1 ⊕ Q
′

n−2)
(N) →

(Q′

n−1 ⊕Qn−1 ⊕Q
′

n−2)
(N) → 0 to the above sequence in degree n− 1 and n− 2, we

have that

0 −→ (R ∝ C)⊗R P
(N)
n−1 −→ (R ∝ C)⊗R (P

(N)
n−1 ⊕ Pn−2)

−→ . . . −→ (R ∝ C)⊗R P0 −→ K −→ 0

is exact. Since Exti
R(R,C ⊗R P ) = 0, hence Exti

R∝C(R, (R ∝ C) ⊗R P ) = 0 by

[6, Corollary 2.3] and [6, Lemma 1.5] for any projective R-module P . So 0 →

HomR∝C(R, (R ∝ C)⊗RP
(N)
n−1)→ HomR∝C(R, (R ∝ C)⊗R (P

(N)
n−1⊕Pn−2))→ . . .→

HomR∝C(R, (R ∝ C)⊗R P0)→ HomR∝C(R,K)→ 0 is exact, and hence

0 −→ C ⊗R P
(N)
n−1 −→ C ⊗R (P

(N)
n−1 ⊕ Pn−2) −→ . . . −→ C ⊗R P0 −→ K → 0

is exact by [6, Lemma 2.2]. Since A′ is a Gorenstein projective R ∝ C-module, hence

A′ is a C-Gorenstein projective R-module by [6, Proposition 2.13]. So there is an

exact sequence 0 → A′ → C ⊗R Q → A → 0, where A is C-Gorenstein projective.

Consider the pushout of A′ →M and A′ → C ⊗R Q:

0

��

0

��

0 // K // A′

��

// M

��

// 0

0 // K // C ⊗R Q

��

// H

��

// 0

A

��

A

��

0 0

If H ∼= C⊗RQ
′ for some projective R-module Q′, thenM is C-Gorenstein projective

by Proposition 2.1, which is a contradiction. So 0→M → H → A→ 0 is the desired

sequence such that 0 → C ⊗R P
(N)
n−1 → C ⊗R (P

(N)
n−1 ⊕ Pn−2) → . . . → C ⊗R P0 →

C ⊗R Q→ H → 0 is exact. �

By analogy with the proof of Theorem 2.8, we have the following result.
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Theorem 2.9. LetM be an R-module of finite C-Gorenstein injective dimension.

Then there exists an exact sequence of R-modules 0→ B → H →M → 0 such that

there is an exact sequence 0 → H → HomR(C,E0) → . . . → HomR(C,En) → 0,

where B is C-Gorenstein injective, n = C-GidRM and each Ei is injective.

It is well known that R is a noetherian ring if and only if any direct limit of injective

R-modules is injective by [2, Theorem 3.1.17]. Let R be a local Cohen-Macaulay ring

with residue field k and Ω a dualizing module (see [2, Definition 9.5.14]). If dimR = 0,

then Ω = E(k) is a semi-dualizing module of R and R is an artinian ring.

Theorem 2.10. Let R be artinian. If M0 →M1 →M2 → . . . is a sequence of C-

Gorenstein injective R-modules, then the direct limit lim−→Mn is again C-Gorenstein

injective.

P r o o f. For each n there exist injective R-modules I0
n, I

1
n, . . . together with an

exact sequence

Vn : . . . −→ HomR(C, I1
n) −→ HomR(C, I0

n) −→Mn −→ 0

such that the sequence stays exact when we apply the functor HomR(HomR(C, J),−)

to it for all injective R-modules J . Consider the following commutative diagram:

. . . // HomR(C, I1
0 )

ϕ1

10
��

// HomR(C, I0
0 )

ϕ0

10
��

// M0

ϕ10

��

// 0

. . . // HomR(C, I1
1 )

��

// HomR(C, I0
1 )

��

// M1

��

// 0

...
...

...

Then ϕk
n+1,n = HomR(C,ψk

n+1,n) for some homomorphism; namely ψk
n+1,n = C ⊗R

ϕk
n+1,n since C ⊗R HomR(C, Ik

n) ∼= Ik
n by [2, Theorem 3.2.11]. So (Ik

n) is a direct

system for k = 0, 1, . . ., which gives that

lim−→Vn : . . . −→ HomR(C, lim−→ I1
n) −→ HomR(C, lim−→ I0

n) −→ lim−→Mn −→ 0

is exact and each lim−→ Ik
n is an injective R-module. Let J be any injective R-module.

Then J =
⊕
Λ

Jα, where Jα is an injective envelope of some simple R-module for any

α ∈ Λ by [8, Theorem 6.6.4]. So

ExtiR(HomR(C, J), lim−→Mn) ∼= lim−→

∏

α∈Λ

ExtiR(HomR(C, Jα),Mn) = 0 ∀i > 1,

HomR(HomR(C, J), lim−→Vn) ∼= lim−→

∏

α∈Λ

HomR(HomR(C, Jα),Vn)
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is exact since C and HomR(C, Jα) are finitely generated by [9, Theorem 3.64]. There-

fore lim−→Mn is C-Gorenstein injective. �

3. C-Gorenstein flat modules

In this section we discuss some connections between C-Gorenstein flat modules

and C-Gorenstein injective modules. Holm in [4, Theorem 3.6] proved that if R is

right coherent, then M is a Gorenstein flat left R-module if and only if M+ is a

Gorenstein injective right R-module.

Theorem 3.1. M is a C-Gorenstein flat R-module if and only if M+ is a C-

Gorenstein injective R-module.

P r o o f. “⇒” There exist flat R-modules F 0, F 1, . . . together with an exact

sequence

X : 0 −→M −→ C ⊗R F
0 −→ C ⊗R F 1 −→ . . . .

Then X
+ : . . . → HomR(C,F 1+) → HomR(C,F 0+) → M+ → 0 is exact and each

F i+ is an injective R-module. Let J be any injective R-module. Then

ExtiR(HomR(C, J),M+) ∼= TorR
i (HomR(C, J),M)+ = 0 ∀i > 1,

HomR(HomR(C, J),X+) ∼= (HomR(C, J) ⊗R X)+

is exact. Hence M+ is a C-Gorenstein injective R-module.

“⇐” There are injective R-modules I0, I1, . . . together with an exact sequence

V : . . . −→ HomR(C, I1) −→ HomR(C, I0) −→M+ −→ 0.

We successively pick injective R-modules I ′0, I
′

1, . . . such that

I0 ⊕ I
′

0
∼= I++

0 , I ′i ⊕ Ii+1 ⊕ I
′

i+1
∼= (I ′i ⊕ Ii+1)

++ for i = 0, 1, . . . .

By adding 0→ HomR(C, I ′i)→ HomR(C, I ′i) → 0 to the sequence V in degree i+ 2

and i+ 1 for all i = 0, 1, . . ., we obtain an exact sequence

V
′ : . . . −→ HomR(C, (I ′0 ⊕ I1)

++) −→ HomR(C, I++
0 ) −→M+ −→ 0,

and so X : 0 → M → C ⊗R I+
0 → C ⊗R (I ′0 ⊕ I1)

+ → . . . is exact. Let I be any

injective R-module. Then

TorR
i (HomR(C, I),M)+ ∼= ExtiR(HomR(C, I),M+) = 0 ∀i > 1,

(HomR(C, I)⊗R X)+ ∼= HomR(HomR(C, I),V′)

is exact. Thus M is a C-Gorenstein flat R-module. �
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Corollary 3.2. The following conditions are equivalent for an R-module M :

(1) M is C-Gorenstein flat;

(2) HomR(M,E) is C-Gorenstein injective for all injective R-modules E;

(3) HomR(M,E) is C-Gorenstein injective for any injective cogenerator E for R-

Mod.

P r o o f. (1) ⇒ (2) Let E be any injective R-module. Then E is isomorphic to a

summand of R+X for some set X . Thus HomR(M,E) is isomorphic to a summand

of HomR(M,R+X) ∼= M+X ; it follows that HomR(M,E) is C-Gorenstein injective

by Theorem 3.1 and Proposition 2.2.

(2) ⇒ (3) is obvious.

(3) ⇒ (1) Since R+ is an injective cogenerator, we see that M+ ∼= HomR(M,R+)

is C-Gorenstein injective, and so M is C-Gorenstein flat by Theorem 3.1. �

Proposition 3.3. The class C-GF(R) of all C-Gorenstein flat R-modules is pro-

jectively resolving. Furthermore, C-GF(R) is closed under arbitrary direct sums and

arbitrary direct summands.

P r o o f. Using Proposition 2.2 and Theorem 3.1. �

Theorem 3.4. Let R be artinian. ThenM is a C-Gorenstein injective R-module

if and only if M+ is a C-Gorenstein flat R-module.

P r o o f. “⇒” There exist injective R-modules I0, I1, . . . together with an exact

sequence

V : . . . −→ HomR(C, I1) −→ HomR(C, I0) −→M −→ 0.

Then V
+ : 0 → M+ → C ⊗R I+

0 → C ⊗R I+
1 → . . . is exact by [2, Theorem 3.2.11]

and I+
i is flat for all i = 0, 1, . . .. Let J be any injective R-module. Then J =

⊕
Λ

Jα,

where Jα is an injective envelope of some simple R-module for any α ∈ Λ by [8,

Theorem 6.6.4]. Since C and HomR(C, Jα) are finitely generated by [9, Theorem

3.64], we have that

TorR
i (HomR(C, J),M+) ∼=

⊕

α∈Λ

TorR
i (HomR(C, Jα),M+)

∼=
⊕

α∈Λ

Exti
R(HomR(C, Jα),M)+ = 0 ∀i > 1,

HomR(C, J) ⊗R V
+ ∼=

⊕

α∈Λ

HomR(C, Jα)⊗R V
+ ∼=

⊕

α∈Λ

HomR(HomR(C, Jα),V)+

is exact by [2, Theorem 3.2.11] and [2, Theorem 3.2.13]. SoM+ is C-Gorenstein flat.
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“⇐” There exist flat R-modules F 0, F 1, . . . together with an exact sequence

X : 0 −→M+ −→ C ⊗R F
0 −→ C ⊗R F

1 −→ . . . .

Then X
+ : . . . → HomR(C,F 1+) → HomR(C,F 0+) → M++ → 0 is exact. We

successively pick injective R-modules E0, E1, . . . such that

F 0+ ⊕ E0 ∼= F 0+++, F i+ ⊕ Ei−1 ⊕ Ei ∼= (F i+ ⊕ Ei−1)++ for i = 1, 2, . . . .

By adding 0 → HomR(C,Ei) → HomR(C,Ei) → 0 to the sequence X+ in degree

i+ 2 and i+ 1 for all i = 0, 1, . . ., we obtain an exact sequence

. . . −→ HomR(C, (F 1+ ⊕ E0)++) −→ HomR(C,F 0+++) −→M++ −→ 0.

Hence V : . . .→ HomR(C,F 1+⊕E0)→ HomR(C,F 0+)→M → 0 is exact and F 0+,

F i+ ⊕ Ei−1 are injective for i = 1, 2, . . .. Let J be any injective R-module. Then

J =
⊕
Λ

Jα, where Jα is an injective envelope of some simple R-module for any α ∈ Λ

by [8, Theorem 6.6.4]. Thus HomR(HomR(C, Jα),X+) ∼= (HomR(C, Jα) ⊗R X)+ is

exact, which implies that

HomR(HomR(C, Jα),V)++ ∼= (HomR(C, Jα)⊗R V
+)+ ∼= HomR(HomR(C, Jα),V++)

is exact by [2, Theorem 3.2.11] since HomR(C, Jα) is finitely generated for any α ∈ Λ.

So

Exti
R(HomR(C, J),M) ∼=

∏

α∈Λ

Exti
R(HomR(C, Jα),M) = 0 ∀i > 1,

HomR(HomR(C, J),V) ∼=
∏

α∈Λ

HomR(HomR(C, Jα),V)

is exact since C is finitely generated. Thus M+ is C-Gorenstein flat. �

Corollary 3.5. Let R be artinian. The following conditions are equivalent for an

R-module M :

(1) M is C-Gorenstein injective;

(2) HomR(M,E) is C-Gorenstein flat for all injective R-modules E;

(3) HomR(M,E) is C-Gorenstein flat for any injective cogenerator E for R-Mod;

(4) M ⊗R F is C-Gorenstein injective for all flat R-modules F ;

(5) M ⊗R F is C-Gorenstein injective for any faithfully flat R-module F .
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P r o o f. (1)⇒ (2) Let I be any injective R-module. Then I =
⊕
Λ

Iα, where Iα is

an injective envelope of some simple R-module for any α ∈ Λ by [8, Theorem 6.6.4],

and so

TorR
i (HomR(C, I),HomR(M,E))

∼=
⊕

α∈Λ

HomR(Exti
R(HomR(C, Iα),M), E) = 0 ∀i > 1

by [2, Theorem 3.2.13] for any injective R-module E since HomR(C, Iα) is finitely

generated. Since M is C-Gorenstein injective, there exist injective R-modules I0,

I1, . . . together with an exact sequence

V : . . . −→ HomR(C, I1) −→ HomR(C, I0) −→M −→ 0.

Then

HomR(V, E) : 0→ HomR(M,E)→ C ⊗R HomR(I0, E)→ C ⊗R HomR(I1, E)→ . . .

is exact by [2, Theorem 3.2.11] and each HomR(Ii, E) is flat. By [2, Theorem 3.2.11],

∀i, α

HomR(C, Iα)⊗R HomR(M,E) ∼= HomR(HomR(HomR(C, Iα),M), E),

HomR(C, Iα)⊗R C ⊗R HomR(Ii, E) ∼= C ⊗R HomR(HomR(HomR(C, Iα), Ii), E)

∼= HomR(HomR(C,HomR(HomR(C, Iα), Ii)), E)

∼= HomR(HomR(HomR(C, Iα),HomR(C, Ii)), E).

Denoting H = HomR(C, Iα), consider the following commutative diagram:

0 // HomR(HomR(H,M), E) //

∼=
��

HomR(HomR(H,HomR(C, I0)), E) //

∼=
��

. . .

0 // H ⊗R HomR(M,E) // H ⊗R C ⊗R HomR(I0, E) // . . .

with the upper row exact. Then HomR(C, I)⊗RHomR(V, E) ∼=
⊕

α∈Λ

(HomR(C, Iα)⊗R

HomR(V, E)) is exact, and so HomR(M,E) is C-Gorenstein flat.

(3) ⇒ (1) Since M+ ∼= HomR(M,R+) is C-Gorenstein flat, we have that M is

C-Gorenstein injective by Theorem 3.4.

(2) ⇒ (4) Let F be any flat R-module. Then (M ⊗R F )+ ∼= HomR(M,F+) is

C-Gorenstein flat, and so M ⊗R F is C-Gorenstein injective by Theorem 3.4.

(2) ⇒ (3), (4) ⇒ (5) and (5) ⇒ (1) are obvious. �

If T is a Gorenstein flat R module, then Exti
R(T,K) = 0 for all i > 1 and all

cotorsion R-modules K with finite flat dimension by [4, Proposition 3.22].
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Proposition 3.6. If M is a C-Gorenstein flat R-module, then Exti
R(M,C ⊗R

K) = 0 for all i > 1 and all cotorsion R-modules K with finite flat dimension.

P r o o f. We use induction on the finite number fdRK = n. Assume n = 0. Then

K is flat, and hence K is a summand of an R-module HomR(E,E′), where E, E′

are injective by [1, Lemma 2.3] and HomR(C,C⊗RK) ∼= K. By [2, Theorem 3.2.11]

and [2, Theorem 3.2.1],

Exti
R(M,C ⊗R HomR(E,E′)) ∼= Exti

R(M,HomR(HomR(C,E), E′))

∼= HomR(TorR
i (HomR(C,E),M), E′) = 0 ∀i > 1.

So Exti
R(M,C⊗RK) = 0 for all i > 1. Now assume that fdRK = n > 0. Let F → K

be a flat cover of K with kernel L. Then L is cotorsion and fdRL = n− 1. Consider

the commutative diagram

0

��

// L

µL
��

// F

µF
��

0 // HomR(C,TorR
1 (C,K)) // HomR(C,C ⊗R L) // HomR(C,C ⊗R F )

Then µL is an isomorphism by the induction hypothesis, and so we get HomR(C,

TorR
1 (C,K)) = 0, which means that TorR

1 (C,K) = 0 since C is faithfully semi-

dualizing by [7, Proposition 3.6]. Thus 0 → C ⊗R L → C ⊗R F → C ⊗R K → 0 is

exact. Applying the induction hypothesis and the long exact sequence

0 = Exti
R(M,C ⊗R F ) −→ ExtiR(M,C ⊗R K) −→ Exti+1

R (M,C ⊗R L) = 0,

we have the desired conclusion. �

Proposition 3.7. Let Q be a flat R-module. If M is a C-Gorenstein flat R-

module, then M ⊗R Q is a C-Gorenstein flat R-module.

P r o o f. There exist flat R-modules F 0, F 1, . . . together with an exact sequence

X : 0 −→M −→ C ⊗R F
0 −→ C ⊗R F 1 −→ . . . .

Then X⊗R Q : 0→M ⊗R Q→ C ⊗R (F 0 ⊗R Q)→ C ⊗R (F 1 ⊗R Q)→ . . . is exact

and each F i ⊗R Q is flat by [2, p. 43, Exercise 9]. Let I be any injective R-module

and let F � be a flat resolution of M . Since I ⊗RQ is an injective R-module, we have

TorR
i (HomR(C, I),M ⊗R Q) = Hi(HomR(C, I) ⊗R F �⊗RQ)

∼= Hi(HomR(C, I ⊗R Q)⊗R F �)

= TorR
i (HomR(C, I ⊗R Q),M) = 0 ∀i > 1,

HomR(C, I) ⊗R (X⊗R Q) ∼= HomR(C, I ⊗R Q)⊗R X

is exact. Hence M ⊗R Q is C-Gorenstein flat. �
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Proposition 3.8. Let P be a finitely generated projective R-module. If M is a

C-Gorenstein flat R-module, then HomR(P,M) is a C-Gorenstein flat R-module.

P r o o f. Let Q be any flat R-module. Then HomR(P,Q) is flat by analogy with

the proof of Proposition 2.7. SinceM is C-Gorenstein flat, there exist flat R-modules

F 0, F 1, . . . together with an exact sequence

X : 0 −→M −→ C ⊗R F
0 −→ C ⊗R F 1 −→ . . . .

Then

HomR(P,X) : 0→ HomR(P,M)→ C⊗R HomR(P, F 0)→ C⊗R HomR(P, F 1)→ . . .

is exact and each HomR(P, F i) is flat. Let I be an injective R-module and F � a flat

resolution of HomR(C, I). Since

TorR
i (HomR(P,M),HomR(C, I)) = Hi(HomR(P,M)⊗R F �)

∼= Hi(HomR(P,M ⊗R F �))

∼= HomR(P,TorR
i (M,HomR(C, I))) = 0 ∀i > 1,

HomR(P,X) ⊗R HomR(C, I) ∼= HomR(P,X⊗R HomR(C, I))

is exact, hence HomR(P,M) is C-Gorenstein flat. �

4. C-Gorenstein modules and change of rings

In this section we investigate some connections between C-Gorenstein projective,

injective and flat modules of change of rings. We shall now be concerned with

what happens when certain modifications are made to a ring. The two structural

operations addressed later are the information of m-adic completion and polynomial

rings.

Let (R,m) be a commutative local noetherian ring with residue field k and let

E(k) be the injective envelope of k. R̂, M̂ will denote the m-adic completion of a

ring R and an R-module M and Mv will denote the Matlis dual HomR(M,E(k)).

Lemma 4.1. Let (R,m) be a local ring. Then Ĉ is a semi-dualizing module of R̂.

P r o o f. Since Hom
R̂
(Ĉ, Ĉ) ∼= HomR(C,C) ⊗R R̂ ∼= R̂, hence Ĉ is a semi-

dualizing module of R̂. �
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Proposition 4.2. Let (R,m) be a local ring and M an R-module. If R̂ is a

projective R-module and M is a C-Gorenstein projective R-module, then M ⊗R R̂

is a Ĉ-Gorenstein projective R̂-module.

P r o o f. There exist projective R-modules P 0, P 1, . . . together with an exact

sequence

W : 0 −→M −→ C ⊗R P
0 −→ C ⊗R P

1 −→ . . . .

ThenW⊗RR̂ : 0→M⊗RR̂→ Ĉ⊗
R̂

(P 0⊗RR̂)→ Ĉ⊗
R̂

(P 1⊗RR̂)→ . . . is exact and

each P i ⊗R R̂ is a projective R̂-module since Ext1
R̂
(P i ⊗R R̂,−) ∼= Ext1R(P i,−) = 0

by [13, p. 258, 9.21]. Let P be any projective R̂-module. Then P is a projective

R-module, and so

Exti

R̂
(M ⊗R R̂, Ĉ ⊗R̂

P ) ∼= ExtiR(M,C ⊗R P ) = 0 ∀i > 1,

Hom
R̂
(W⊗R R̂, Ĉ ⊗R̂

P ) ∼= HomR(W, C ⊗R P )

is exact, which gives that M ⊗R R̂ is a Ĉ-Gorenstein projective R̂-module. �

Proposition 4.3. Let (R,m) be a local ring and M an R-module. If R̂ is a

projective R-module, then

(1) ifM is a C-Gorenstein injective R-module, then HomR(R̂,M) is a Ĉ-Gorenstein

injective R̂-module;

(2) HomR(R̂,M) is a Ĉ-Gorenstein injective R̂-module if and only if HomR(R̂,M)

is a C-Gorenstein injective R-module.

P r o o f. (1) There exist injective R-modules I0, I1, . . . together with an exact

sequence

V : . . . −→ HomR(C, I1) −→ HomR(C, I0) −→M −→ 0.

Then HomR(R̂,V) : . . . → Hom
R̂
(Ĉ,HomR(R̂, I1)) → Hom

R̂
(Ĉ,HomR(R̂, I0)) →

HomR(R̂,M) → 0 is exact and every HomR(R̂, Ii) is an injective R̂-module since

HomR(R̂,HomR(C, Ii)) ∼= Hom
R̂
(Ĉ,HomR(R̂, Ii)). Let I be any injective R̂-module.

Then I is an injective R-module. By [13, p. 258, 9.21], we have

Exti

R̂
(Hom

R̂
(Ĉ, I),HomR(R̂,M)) ∼= ExtiR(HomR(C, I),M) = 0 ∀i > 1,

Hom
R̂
(Hom

R̂
(Ĉ, I),HomR(R̂,V)) ∼= HomR(HomR(C, I),V)

is exact. Hence HomR(R̂,M) is a Ĉ-Gorenstein injective R̂-module.

(2) “⇒” There exist injective R̂-modules I0, I1, . . . together with an exact sequence

V : . . . −→ Hom
R̂
(Ĉ, I1) −→ Hom

R̂
(Ĉ, I0) −→ HomR(R̂,M) −→ 0.
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Then V
′

: . . . → HomR(C, I1) → HomR(C, I0) → HomR(R̂,M) → 0 is exact and

each Ii is an injective R-module. Let I be any injective R-module. Then I is

isomorphic to a summand of E(k)X for some set X , and so I ⊗R R̂ is isomorphic to

a summand of E(k)X ⊗R R̂ ∼= E
R̂
(R̂/m̂)X ⊗R R̂ by [2, Theorem 3.4.1]. Thus I ⊗R R̂

is an injective R̂-module by [2, Theorem 3.2.16]. Now by [13, p. 258, 9.21] and [2,

Theorem 3.2.4], we see that ∀i > 1

ExtiR(HomR(C, I),HomR(R̂,M)) ∼= Exti
R̂
(Hom

R̂
(Ĉ, I ⊗R R̂),HomR(R̂,M)) = 0,

HomR(HomR(C, I),V
′

) ∼= Hom
R̂
(Hom

R̂
(Ĉ, I ⊗R R̂),V)

is exact, which implies that HomR(R̂,M) is a C-Gorenstein injective R-module.

“⇐” Since HomR(R̂⊗R R̂, E(k)) ∼= HomR(R̂,HomR(R̂, E(k))) ∼= HomR(R̂, E(k))

by the proof of [14, Corollary 2.5], hence R̂ ⊗R R̂ ∼= R̂, and so HomR(R̂,M) is a

Ĉ-Gorenstein injective R̂-module by (1). �

Proposition 4.4. Let (R,m) be a local ring. Then the following conditions are

equivalent for a finitely generated R-module M :

(1) M is a C-Gorenstein flat R-module;

(2) M̂ is a Ĉ-Gorenstein flat R̂-module;

(3) M̂ is a C-Gorenstein flat R-module.

P r o o f. Since TorR̂i (Hom
R̂
(Ĉ, E(k)), M̂) ∼= TorR̂i (HomR(C,E(k)) ⊗R R̂, M̂) ∼=

TorRi (HomR(C,E(k)),M)⊗R R̂ by [2, Theorem 2.1.11], hence Tor
R̂
i (Hom

R̂
(Ĉ, E(k)),

M̂) = 0 if and only if TorRi (HomR(C,E(k)),M) = 0 for all i > 1.

(1) ⇒ (2) There exist flat R-modules F 0, F 1, . . . together with an exact sequence

X : 0 −→M −→ C ⊗R F
0 −→ C ⊗R F 1 −→ . . . .

Then X⊗R R̂ : 0 → M̂ → Ĉ ⊗
R̂

(F 0 ⊗R R̂) → Ĉ ⊗
R̂

(F 1 ⊗R R̂) → . . . is exact and

every F i ⊗R R̂ is a flat R̂-module by [2, p. 43, Exercise 9]. Let I be any injective

R̂-module. Then I is an injective R-module, and so Hom
R̂
(Ĉ, I) ⊗

R̂
R̂ ⊗R X ∼=

HomR(C, I) ⊗R X is exact. Since I is isomorphic to a summand of E(k)X for some

set X and TorR̂
i (Hom

R̂
(Ĉ, E(k)X), M̂) ∼= TorR̂

i (Hom
R̂
(Ĉ, E(k)), M̂)X = 0 by [2,

Theorem 3.2.26] we have TorR̂i (Hom
R̂
(Ĉ, I), M̂) = 0 for all i > 1. Therefore M̂ is a

Ĉ-Gorenstein flat R̂-module.

(2) ⇒ (1) There exist flat R̂-modules F 0, F 1, . . . together with an exact sequence

X : 0 −→ M̂ −→ Ĉ ⊗
R̂
F 0 −→ Ĉ ⊗

R̂
F 1 −→ . . . .

Then X : 0 → M → C ⊗R F 0 → C ⊗R F 1 → . . . is exact since R̂ is a faithfully flat

R-module and each F i ∼= F i⊗
R̂
R̂ ∼= F i⊗

R̂
(R̂⊗R R̂) ∼= F i⊗R R̂ is a flat R-module.
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Let J be any injective R-module. Then J ⊗R R̂ is an injective R̂-module. Thus

HomR(C, J) ⊗R X ⊗R R̂ ∼= Hom
R̂
(Ĉ, J ⊗R R̂) ⊗

R̂
X is exact by [2, Theorem 3.2.4],

and hence HomR(C, J)⊗R X is exact. Since J is isomorphic to a summand of E(k)X

for some set X and TorRi (HomR(C,E(k)X),M) ∼= TorRi (HomR(C,E(k)),M)X = 0

by [2, Theorem 3.2.26] we have TorRi (HomR(C, J),M) = 0 for all i > 1. Thus M is

a C-Gorenstein flat R-module.

(2) ⇔ (3) By R̂⊗R R̂ ∼= R̂.

If R is a ring, then R[x] is the polynomial ring. If M is an R-module, write

M [x] = R[x] ⊗R M . Since R[x] is a free R-module and since the tensor product

commutes with sums, we may regard the elements of M [x] as ‘vectors’ (xi ⊗R mi),

i > 0, mi ∈M with almost allmi = 0. M [[x−1]] is the R[x]-module such that x(m0+

m1x
−1 + . . .) = m1 +m2x

−1 + . . . and r(m0 +m1x
−1 + . . .) = rm0 + rm1x

−1 + . . .,

where r ∈ R. �

Lemma 4.5. C[x] is a semi-dualizing module of R[x].

P r o o f. By analogy with the proof of Lemma 4.1 �

Proposition 4.6. M is a C-Gorenstein projective R-module if and only if M [x]

is a C[x]-Gorenstein projective R[x]-module.

P r o o f. “⇒” There exist projective R-modules P 0, P 1, . . . together with an

exact sequence

W : 0 −→M −→ C ⊗R P
0 −→ C ⊗R P

1 −→ . . . .

Then W⊗R R[x] : 0 → M [x] → C[x] ⊗R[x] P
0[x] → C[x] ⊗R[x] P

1[x] → . . . is exact

and each P i[x] is a projective R[x]-module by [11, Proposition 5.11]. Let Q̄ be any

projective R[x]-module. Then Q̄ is a projective R-module, and so

Exti
R[x](M [x], C[x]⊗R[x] Q̄) ∼= ExtiR(M,C ⊗R Q̄) = 0 ∀i > 1,

HomR[x](W⊗R R[x], C[x] ⊗R[x] Q̄) ∼= HomR(W, C ⊗R Q̄)

is exact. Therefore M [x] is a C[x]-Gorenstein projective R[x]-module.

“⇐” There exist projective R[x]-modules P 0, P 1, . . . together with an exact se-

quence

W : 0 −→M [x] −→ C[x]⊗R[x] P
0 −→ C[x]⊗R[x] P

1 −→ . . . .

1126



Then W
′

: 0 → M [x] → C ⊗R P 0 → C ⊗R P 1 → . . . is exact and every P i is a

projective R-module. Let Q be any projective R-module. Then

0 = ExtiR[x](M [x], C[x] ⊗R[x] Q[x]) ∼= ExtiR(M [x], C ⊗R Q[x]) ∀i > 1,

HomR(W
′

, C ⊗R Q[x]) ∼= HomR(W,HomR[x](R[x], C ⊗R Q[x]))

∼= HomR[x](W, C[x]⊗R[x] Q[x])

is exact, and hence HomR(W
′

, C ⊗R Q) is exact and ExtiR(M [x], C ⊗R Q) = 0 for

all i > 1 since Q is isomorphic to a summand of Q[x]. Thus M [x] is a C-Gorenstein

projective R-module, and it follows that M is a C-Gorenstein projective R-module

by Proposition 2.1. �

Proposition 4.7. M is a C-Gorenstein injective R-module if and only ifM [[x−1]]

is a C[x]-Gorenstein injective R[x]-module.

P r o o f. “⇒” There exist injective R-modules I0, I1, . . . together with an exact

sequence

V : . . . −→ HomR(C, I1) −→ HomR(C, I0) −→M −→ 0.

Then HomR(R[x],V) : . . . → HomR[x](C[x],HomR(R[x], I0)) → HomR(R[x],M) →

0 is exact and each HomR(R[x], Ii) is an injective R[x]-module. Let E be any injective

R[x]-module. Then E is an injective R-module. By [13, p. 258, 9.21] we have

Exti
R[x](HomR[x](C[x], E),HomR(R[x],M)) ∼= Exti

R(HomR(C,E),M) = 0 ∀i > 1,

HomR[x](HomR[x](C[x], E),HomR(R[x],V)) ∼= HomR(HomR(C,E),V)

is exact, and so M [[x−1]] ∼= HomR(R[x],M) is a C[x]-Gorenstein injective R[x]-

module.

“⇐” There exist injective R[x]-modules I0, I1, . . . together with an exact sequence

V : . . . −→ HomR[x](C[x], I1) −→ HomR[x](C[x], I0) −→ HomR(R[x],M) −→ 0.

Then V
′

: . . . → HomR(C, I1) → HomR(C, I0) → HomR(R[x],M) → 0 is exact

and every Ii is an injective R-module. Let E be any injective R-module. Then

HomR(R[x], E) is an injective R[x]-module, and so

Exti
R(HomR(C,HomR(R[x], E)),M [[x−1]])

∼= Exti
R[x](HomR[x](C[x],HomR(R[x], E)),M [[x−1]]) = 0 ∀i > 1,

HomR(HomR(C,HomR(R[x], E)),V
′

)

∼= HomR[x](HomR[x](C[x],HomR(R[x], E)),V)
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is exact, which gives that HomR(HomR(C,E),V
′

) is exact and Exti
R(HomR(C,E),

HomR(R[x],M)) = 0 for all i > 1 since E is isomorphic to a summand of

HomR(R[x], E). Thus M [[x−1]] is a C-Gorenstein injective R-module, and hence M

is a C-Gorenstein injective R-module by Proposition 2.2. �

Proposition 4.8. M is a C-Gorenstein flat R-module if and only if M [x] is a

C[x]-Gorenstein flat R[x]-module.

P r o o f. “⇒” There exist flat R-modules F 0, F 1, . . . together with an exact

sequence

X : 0 −→M −→ C ⊗R F
0 −→ C ⊗R F 1 −→ . . . .

Then X ⊗R R[x] : 0 → M [x] → C[x] ⊗R[x] F
0[x] → C[x] ⊗R[x] F

1[x] → . . . is exact

and every F i[x] is a flat R[x]-module. Let E be any injective R[x]-module. Then E

is an injective R-module, and so

Tor
R[x]
i (HomR[x](C[x], E),M [x])+ ∼= ExtiR[x](M [x],HomR(C,E)+)

∼= ExtiR(M,HomR(C,E)+)

∼= TorR
i (HomR(C,E),M)+ = 0 ∀i > 1,

HomR[x](C[x], E)⊗R[x] X⊗R R[x] ∼= HomR(C,E)⊗R X

is exact. Thus M [x] is a C[x]-Gorenstein flat R[x]-module.

“⇐” There exist flat R[x]-modules F 0, F 1, . . . together with an exact sequence

X : 0 −→M [x] −→ C[x] ⊗R[x] F
0 −→ C[x] ⊗R[x] F

1 −→ . . . .

Then X
′

: 0 → M [x] → C ⊗R F 0 → C ⊗R F 1 → . . . is exact and each F i is a flat

R-module. Let E be any injective R-module. Then

0 = Tor
R[x]
i (M [x],HomR[x](C[x],HomR(R[x], E)))+

∼= Exti
R(M [x],HomR(C,HomR(R[x], E))+)

∼= TorR
i (M [x],HomR(C,HomR(R[x], E)))+ ∀i > 1,

X
′

⊗R HomR(C,HomR(R[x], E)) ∼= X⊗R[x] HomR[x](C[x],HomR(R[x], E))

is exact, which implies that X
′

⊗R HomR(C,E) is exact and moreover ExtiR(M [x],

HomR(C,E)) = 0 for all i > 1. Thus M [x] is a C-Gorenstein flat R-module, and so

M is a C-Gorenstein flat R-module by Proposition 3.3. �
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