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TRIANGULAR REPUNIT—THERE IS BUT 1

John H. Jaroma, Ave Maria
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Abstract. In this paper, we demonstrate that 1 is the only integer that is both triangular
and a repunit.
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A repunit is any integer that can be written in decimal notation as a string of 1’s.

Examples include 1, 11, 111, 1111, 11111, . . . Furthermore, if we denote rn to be the

nth repunit then it follows that

(1) rn =
10n − 1

9
.

Triangular numbers are those integers that can be represented by the number

of dots evenly arranged in an equilateral triangle. More specifically, they are the

numbers 1, 3, 6, 10, 15, . . . It follows that the nth triangular number, tn is the sum of

the first n consecutive integers beginning with 1. In particular, for n > 1

(2) tn =
n(n + 1)

2
.

Now, the number 1 is both triangular and a repunit. It is the objective of this

note to illustrate that 1 is the only such number. To this end, we state and prove

the following lemma. It incorporates a result that [1] asserts had been known by

the early Pythagoreans. Appearing in Platonic Questions, Plutarch states that eight

times any triangular number plus one is a square. The result is actually necessary

and sufficient. We demonstrate it as such here.
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Lemma. The integer n is triangular if and only if 8n + 1 is a square.

P r o o f. If n = tn, then by (2),

8
[n(n + 1)

2

]

+ 1 = 4n2 + 4n + 1 = (2n + 1)2.

On the other hand, if 8n + 1 is a square, then 8n + 1 = x2, for some odd positive

integer x. Hence, x2 − 1 is even, and so

8n = x2 − 1 = (x + 1)(x − 1) = (2k + 2)(2k),

for some positive integer k, from which it follows that n = 1

2
k(k + 1). �

The previous result may also be observed geometrically by letting an n × (n + 1)

rectangle represent twice tn. Thus, four such rectangles plus a unit square comprise

a square with sides 2n + 1.

Theorem. The only triangular repunit is 1.

P r o o f. In light of (1) and the previous lemma, it suffices to show that 8×

(10n − 1)/9 + 1 is square only for n = 1.

To this end, we shall determine all n for which

8
[10n − 1

9

]

+ 1 = (2k + 1)2,

for some positive integer k. Thus,

10n = (2 · 5)n =
(3k + 2)(3k + 1)

2
;

whence,

(3) 5n =
(3k + 2)(3k + 1)

2n+1
.

Now, 5 | 3k + 2 or 5 | 3k + 1 but not both. Similarly, 2 | 3k + 2 or 2 | 3k + 1 but

not both.

Case 1. Suppose 5 | 3k + 2. If k is odd, then 3k + 2 is odd. As 3k + 1 is even, in

light of (3) we have 3k + 2 = 5n and 3k + 1 = 2n+1. So, 2n+1 + 1 = 5n. But this can

only occur when n = 1 (i.e., for tn = 1.) This is seen upon noting that for n > 2,

5n > 2n+1 + 1. On the other hand, if k is even then 3k + 1 is odd, implying that 5

divides both 3k + 1 and 3k + 2, which is impossible.
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Case 2. Suppose 5 | 3k + 1. If k is odd, then 3k + 1 is even, which implies that

both 5 and 2 divide 3k + 1. Hence, there must exist an integer different from 5 and

2 that is a factor of 3k + 2, which is impossible. Hence, k must be even. It follows

that 3k + 1 is odd, and so 3k + 1 = 5n and 3k + 2 = 2n+1. A triangular repunit

then results when 5n + 1 = 2n+1. But the only solution is n = 0, as n > 0 implies

5n + 1 > 2n+1. However, t0 = 0 is neither triangular nor a repunit. �
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