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1. Introduction

The goal of this note is to give an answer to the following problem of Professor

Gheorghita Zbaganu.

Problem 1.1 (Zbaganu). Find the subclass of all monotone decreasing functions

f : [0,∞) → (0,∞) with

∫ ∞

0

xnf(x) dx < ∞, ∀ n = 0, 1, . . .

such that the following limit exists:

lim
n→∞

n
∫ ∞
0

xnf(x) dx
∫ ∞
0

xn+1f(x) dx
.

The problem that arose from insurance/risk theory problems, is related to the

study of the properties of the moments of the iterates of the so called integrated tail

operator, and during the last three years it has also been studied by the mathematics
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community. For a history of how this operator was introduced in the mathematical

literature the interested reader is referred to [1] and [2]. Straightforward properties

of the integrated tail operator as well as the moment calculations of the iterates of

it are given in [3]. Before we give an answer to Problem 1.1 we prove the following

theorem.

Theorem 1.2. If h, g : [0,∞) → (0,∞) are integrable functions such that for all

nonnegative integers n

∫ ∞

0

h(x)xn dx < ∞ and

∫ ∞

0

g(x)xn dx < ∞,

then

lim
n→∞

∫ ∞
0

h(x)xn dx
∫ ∞
0

g(x)xn dx
= lim

x→∞

h(x)

g(x)

provided that the right-hand side limit exists.

P r o o f. Let L = lim
x→∞

h(x)/g(x). We will discuss, in detail, only the case when

L is finite, since the case when L = ∞ is treated similarly. Let ε > 0 be a fixed

positive real number. There exists δ > 0 such that

(1.1) L − ε <
h(x)

g(x)
< L + ε, x > δ.

We have
∫ δ

0

h(x) xn dx 6 δn

∫ δ

0

h(x) dx

and
∫ ∞

δ

h(x)xn dx >

∫ δ+2

δ+1

h(x)xn dx > (δ + 1)n

∫ δ+2

δ+1

h(x) dx.

It follows that

0 <

∫ δ

0 h(x)xn dx
∫ ∞

δ
h(x)xn dx

6

( δ

δ + 1

)n
∫ δ

0 h(x) dx
∫ δ+2

δ+1
h(x) dx

,

0 <

∫ δ

0 g(x)xn dx
∫ ∞

δ g(x)xn dx
6

( δ

δ + 1

)n
∫ δ

0 g(x) dx
∫ δ+2

δ+1
g(x) dx

,

and hence,

(1.2) lim
n→∞

∫ δ

0 h(x)xn dx
∫ ∞

δ h(x)xn dx
= 0 and lim

n→∞

∫ δ

0 g(x)xn dx
∫ ∞

δ g(x)xn dx
= 0.
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On the other hand,

∫ ∞
0

h(x)xn dx
∫ ∞
0 g(x)xn dx

=

∫ δ

0
h(x)xn dx +

∫ ∞
δ

h(x)xn dx
∫ δ

0 g(x)xn dx +
∫ ∞

δ g(x)xn dx

=

∫ ∞
δ h(x)xn dx

∫ ∞
δ

g(x)xn dx
· αn,

where

αn =
1 +

∫ δ

0 h(x)xn dx/
∫ ∞

δ h(x)xn dx

1 +
∫ δ

0
g(x)xn dx/

∫ ∞
δ

g(x)xn dx
.

We have, by virtue of (1.2), that lim
n→∞

αn = 1. On the other hand, it follows from

(1.1) that

L − ε 6

∫ ∞
δ

h(x)xn dx
∫ ∞

δ g(x)xn dx
6 L + ε,

and hence,

(L − ε)αn 6

∫ ∞
0 h(x)xn dx

∫ ∞
0 g(x)xn dx

6 (L + ε)αn.

Letting n tend to ∞ in the preceding inequality we obtain that

L − ε 6 lim
n→∞

∫ ∞
0

h(x)xn dx
∫ ∞
0

g(x)xn dx
6 L + ε.

Since ε is arbitrary we get that the desired limit relation holds and the theorem is

proved. �

2. An answer to Zbaganu’s problem

In this section we prove Theorem 2.1 below which gives an answer to Problem 1.1.

Theorem 2.1. Let f : [0,∞) → (0,∞) be a positive and monotone decreasing

function such that for all nonnegative integers n

(2.1)

∫ ∞

0

xnf(x) dx < ∞,

and let F (x) =
∫ ∞

x
f(t) dt. Then

(2.2) lim
n→∞

n
∫ ∞
0

xnf(x) dx
∫ ∞
0 xn+1f(x) dx

= lim
x→∞

f(x)

F (x)

provided that the right-hand side limit exists.
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P r o o f. Since f decreases, condition (2.1) implies that lim
x→∞

xnf(x) = 0. An

application of the l’Hospital Rule shows that

lim
x→∞

xn+1F (x) = lim
x→∞

F (x)

x−n−1
=

1

n + 1
lim

x→∞
xn+2f(x) = 0.

Integrating by parts, we obtain that

∫ ∞

0

xn+1f(x) dx = (n + 1)

∫ ∞

0

xnF (x) dx,

and the proof follows as an application of Theorem 1.2. �

Remark 2.2. It is worth mentioning that there are positive functions such that

even though the right-hand side limit of (2.2) does not exist, the left-hand side limit

does. To see this, let f(x) = (2 + sinx)e−x. We have

n
∫ ∞
0 xnf(x) dx

∫ ∞
0

xn+1f(x) dx
=

n

n + 1

(

1 +
sin 1

4nπ

4 · 2n/2 + cos 1
4nπ

)

→ 1.

On the other hand, the function f(x)/F (x) = (4 + 2 sinx)/(4 + cosx + sin x), has

no limit as x → ∞.

The next corollary is a consequence of Theorem 2.1.

Corollary 2.3. If f ∈ C1[0,∞) is a positive and monotone decreasing function

such that for all nonnegative integers n

∫ ∞

0

xnf(x) dx < ∞,

then

lim
n→∞

n
∫ ∞
0

xnf(x) dx
∫ ∞
0

xn+1f(x) dx
= − lim

x→∞

f ′(x)

f(x)

provided that the right-hand side limit exists.

Remark 2.4. We mention that if f ∈ C1[0,∞) is logarithmically convex/concave,

i.e., log f is convex/concave, then the limit lim
x→∞

f ′(x)/f(x) exists.

Remark 2.5. Under the conditions of Theorem 2.1 we have

lim
n→∞

n
∫ ∞
0 xnf(x) dx

∫ ∞
0 xn+1f(x) dx

= λ ∈ (0,∞)

if and only if

f(x) = e−(λ+o(1))x as x → ∞.
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Example 2.6. Let

Ln(f) =
n

∫ ∞
0 xn f(x) dx

∫ ∞
0

xn+1f(x) dx
.

A calculation shows that

Ln(e−x2

) =
2Γ

(

1
2 (1 + n)

)

Γ
(

1
2n

) → ∞,

Ln(e−x) =
n

1 + n
→ 1,

Ln(e−
√

x) =
n

6 + 10n + 4n2
→ 0.

We conclude this note with the following generalization of Theorem 1.2.

Theorem 2.7. If f, g, ̺n : [0,∞) → (0,∞), n = 0, 1, . . ., are integrable functions

such that for all n
∫ ∞

0

f(x)̺n(x) dx < ∞,

∫ ∞

0

g(x)̺n(x) dx < ∞,

̺n being strictly increasing functions and lim
n→∞

̺n(a)/̺n(b) = 0 with a < b, then

lim
n→∞

∫ ∞
0 f(x)̺n(x) dx

∫ ∞
0 g(x)̺n(x) dx

= lim
x→∞

f(x)

g(x)

provided that the right-hand side limit exists.

The proof is identical to the proof of Theorem 1.2.
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