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LINEAR LIFTINGS OF SKEW SYMMETRIC TENSOR FIELDS OF

TYPE (1, 2) TO WEIL BUNDLES

Jacek Dębecki, Kraków

(Received April 7, 2009)

Abstract. The paper contains a classification of linear liftings of skew symmetric tensor
fields of type (1, 2) on n-dimensional manifolds to tensor fields of type (1, 2) on Weil bundles
under the condition that n > 3. It complements author’s paper “Linear liftings of symmetric
tensor fields of type (1, 2) to Weil bundles” (Ann. Polon. Math. 92, 2007, pp. 13–27), where
similar liftings of symmetric tensor fields were studied. We apply this result to generalize
that of author’s paper “Affine liftings of torsion-free connections to Weil bundles” (Colloq.
Math. 114, 2009, pp. 1–8) and get a classification of affine liftings of all linear connections
to Weil bundles.
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Let A be a Weil algebra inducing the Weil functor T A (see [15], [6], [12], [8]) and

let n be a non-negative integer. We will denote by Te M the vector space of all tensor

fields of type (1, 2) on a manifoldM and by SkTeM the subspace of Te M consisting

of all skew symmetric tensor fields.

A linear lifting of skew symmetric tensor fields of type (1, 2) to tensor fields of

type (1, 2) on T A is, by definition, a family of linear maps LM : SkTe M → TeT AM

indexed by all n-dimensional manifolds and satisfying

(1) LM (ϕ∗t) = (T Aϕ)∗(LN t)

for all n-dimensional manifolds M , N , every embedding ϕ : M → N and every

t ∈ SkTe N (see [10] for the general theory of natural operators).

Our purpose is to describe explicitly all such liftings (for classifications of liftings

of tensor fields of some other types to Weil bundles see for example [9], [13], [1], [2],

[11]).
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In [3] we have constructed six kinds of liftings of symmetric tensor fields. Quite

similarly we can now construct six kinds of liftings of skew symmetric tensor fields.

So, if E ∈ A, F : A → A is R-linear and G, H : A × A → A are R-bilinear and such

that

G(u, vw) = G(u, v)w + G(u, w)v,(2)

H(u, vw) = H(uv, w) + H(uw, v)(3)

for all u, v, w ∈ A, then there are unique linear liftings E, F
L
, F

R
, G, H

L
, H

R
of

skew symmetric tensor fields of type (1, 2) to tensor fields of type (1, 2) on T A such

that

(EU t)p
X(Y, Z) = E · (T Atpqr)(X) · Y q · Zr,(4)

(F
L

U t)p
X(Y, Z) = F ((T Atqqr)(X) · Y r) · Zp,(5)

(F
R

U t)p
X(Y, Z) = F ((T Atqqr)(X) · Zr) · Y p,(6)

(GU t)p
X(Y, Z) =

1

2
G

((
T A
(∂tqqs

∂xr
−

∂tqqr

∂xs

))
(X) · Y r · Zs, Xp

)
,(7)

(H
L

U t)p
X(Y, Z) =

1

2
H

((
T A
(∂tqqs

∂xr
−

∂tqqr

∂xs

))
(X) · Y r, Xs

)
· Zp,(8)

(H
R

U t)p
X(Y, Z) =

1

2
H

((
T A
(∂tqqs

∂xr
−

∂tqqr

∂xs

))
(X) · Zr, Xs

)
· Y p(9)

for every open subset U of Rn, every t ∈ SkTeU , every p ∈ {1, . . . , n}, every X ∈

T AU and all Y, Z ∈ An.

We can now formulate our main result.

Theorem. If n > 3, then for every linear lifting L of skew symmetric tensor

fields of type (1, 2) to tensor fields of type (1, 2) on T A there are unique E ∈ A,

R-linear F, F ′ : A → A, R-bilinear G : A × A → A satisfying (2) and R-bilinear

H, H ′ : A × A → A satisfying (3) such that

(10) L = E + F
L

+ F ′
R

+ G + H
L

+ H ′
R
.

The above theorem is quite similar to that of [3], but its proof is not. It is based

on the lemma below, which differs from that of [3]. Nevertheless, some parts of both

the proofs coincide, so we will omit them and focus on those which are essentially

different.
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Lemma. Let L and L′ be two linear liftings of skew symmetric tensor fields of

type (1, 2) to tensor fields of type (1, 2) on T A. If n > 2, then

LRn

(
x1 ∂

∂x1
dx1 ∧ dx2

)
= L′

Rn

(
x1 ∂

∂x1
dx1 ∧ dx2

)
=⇒ L = L′.

P r o o f. Suppose that

(11) LRn

(
x1(∂/∂x1) dx1 ∧ dx2

)
= 0.

Let α ∈ N
n, where N denotes the set of all non-negative integers. According to the

Peetre theorem (see [10]), it suffices to show that LRn(xα(∂/∂xp) dxq ∧ dxr) = 0

for all p, q, r ∈ {1, . . . , n}. Since for any permutation σ of {1, . . . , n} we can take

ϕ : R
n ∋ x → (xσ(1), . . . , xσ(n)) ∈ R

n in (1), the proof will be completed as soon as

we can show that

LRn

(
xα ∂

∂x1
dx1 ∧ dx2

)
= 0,(12)

LRn

(
xα ∂

∂x3
dx1 ∧ dx2

)
= 0(13)

(the latter, of course, only in the case n > 3).

From (11) and (1) with ϕ : R
n ∋ x → (x1 + 1, x2, . . . , xn) ∈ R

n and t =

x1(∂/∂x1) dx1 ∧ dx2 it follows that LRn((∂/∂x1) dx1 ∧ dx2) = 0. If n > 3,

then from this and (1) with ϕ : R
n ∋ x → (x1, x2, x1 + x3, x4, . . . , xn) ∈ R

n

and t = (∂/∂x1) dx1 ∧ dx2 it follows that LRn((∂/∂x3) dx1 ∧ dx2) = 0. Next,

from this and (1) with ϕ : U ∋ x → (x1, x2, ϕ3(x), x4, . . . , xn) ∈ R
n, where

U = {x ∈ R
n : x3 > 0, x4 6= 0, . . . , xn 6= 0} and

ϕ3(x) =





(x3)1−α3

(1 − α3)(x4)α4 . . . (xn)αn
if α3 6= 1,

ln |x3|

(x4)α4 . . . (xn)αn
if α3 = 1,

and t = (∂/∂x3) dx1∧ dx2 it follows that LU ((x3)α3

. . . (xn)αn

(∂/∂x3) dx1∧ dx2) = 0.

The same conclusion can be drawn for V = {x ∈ R
n : x3 < 0, x4 6= 0, . . . , xn 6= 0},

and so for Rn, because U ∪ V is dense in Rn. Finally, this and (1) with ϕ : U ∋ x →(
(x1)α1+1/(α1 + 1), (x2)α2+1/(α2 + 1), x3, . . . , xn

)
∈ R

n, where U = {x ∈ R
n : x1 >

0, x2 > 0}, and t = (x3)α3

. . . (xn)αn

(∂/∂x3) dx1 ∧ dx2 imply (13).

From (11) and (1) with ϕ : U ∋ x → (ϕ1(x), x2, . . . , xn) ∈ R
n, where U = {x ∈

R
n : x1 > 0, x3 6= 0, . . . , xn 6= 0} and

ϕ1(x) =

{
x1 + (x3)α3

. . . (xn)αn

if α1 = 0,

(x1)α1

(x3)α3

. . . (xn)αn

if α1 6= 0,

935



and t = x1(∂/∂x1) dx1 ∧ dx2 it follows that

LU

(
ϕ1

∂ϕ1/∂x1

∂

∂x1

(
∂ϕ1

∂x1
dx1 +

n∑

p=3

∂ϕ1

∂xp
dxp

)
∧ dx2

)
= 0.

But for every p ∈ {3, . . . , n}

ϕ1 ∂ϕ1

∂xp

∂ϕ1

∂x1

=





ϕ1 ∂ϕ1

∂xp
if α1 = 0,

x1

α1

∂ϕ1

∂xp
if α1 6= 0,

is a polynomial. Hence from (13), which we have proved for every α ∈ N
n

with x3, x1 replaced by x1, xp (using (11) again in the case α1 = 0) we obtain

LRn

(
(x1)α1

(x3)α3

. . . (xn)αn

(∂/∂x1) dx1 ∧ dx2
)

= 0. This and (1) with ϕ : U ∋

x →
(
x1, (x2)α2+1/(α2 + 1), x3, . . . , xn

)
∈ R

n, where U = {x ∈ R
n : x2 > 0},

and t = (x1)α1

(x3)α3

. . . (xn)αn

(∂/∂x1) dx1 ∧ dx2 yield (12), which establishes the

lemma. �

P r o o f of the theorem. In the same manner as in [3] we can see that there are

unique R-trilinear maps a, b, c, d, e, f, g, h, i, j, k, l : A × A × A → A such that

LRn

(
x1 ∂

∂x1
dx1 ∧ dx2

)1
X

(Y, Z)(14)

= a(X1, Y 1, Z2) + b(X1, Y 2, Z1) + c(X2, Y 1, Z1),

LRn

(
x1 ∂

∂x1
dx1 ∧ dx2

)2
X

(Y, Z)(15)

= d(X1, Y 2, Z2) + e(X2, Y 1, Z2) + f(X2, Y 2, Z1),

LRn

(
x1 ∂

∂x1
dx1 ∧ dx2

)p
X

(Y, Z)(16)

= g(X1, Y 2, Zp) + h(X1, Y p, Z2) + i(X2, Y 1, Zp)

+ j(X2, Y p, Z1) + k(Xp, Y 1, Z2) + l(Xp, Y 2, Z1)

for every p ∈ {3, . . . , n} and all X, Y, Z ∈ An. Also similarly to [3] (using (16)

with p = 3 and (1) with ϕ : U ∋ x → (x1, x2, (x3)2/2, x4, . . . , xn) ∈ R
n, where

U = {x ∈ R
n : x3 > 0} and t = x1(∂/∂x1) dx1 ∧ dx2 and carrying out polarization

if necessary) we get for all w, x, y, z ∈ A

wg(x, y, z) = g(x, y, wz),(17)

wh(x, y, z) = h(x, wy, z),(18)

wi(x, y, z) = i(x, y, wz),(19)

wj(x, y, z) = j(x, wy, z),(20)

wk(x, y, z) + xk(w, y, z) = k(wx, y, z).(21)
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From (16) with p = 3 and (1) with ϕ : U ∋ x →
(
x1, 1

2 (x2)2, x3, . . . , xn
)
∈ R

n, where

U = {x ∈ R
n : x2 > 0}, and t = x1(∂/∂x1) dx1 ∧ dx2 it follows that

LRn

(
x1x2 ∂

∂x1
dx1 ∧ dx2

)3
X

(Y, Z)(22)

= g(X1, X2Y 2, Z3) + h(X1, Y 3, X2Z2) + i
((X2)2

2
, Y 1, Z3

)

+ j
((X2)2

2
, Y 3, Z1

)
+ k(X3, Y 1, X2Z2) + l(X3, X2Y 2, Z1).

On the other hand, from (16) with p = 3 and (1) with ϕ : U ∋ x → (x1x2,

x2, . . . , xn) ∈ R
n, where U = {x ∈ R

n : x2 6= 0} and t = x1(∂/∂x1) dx1 ∧ dx2

it follows that

LRn

(
x1x2 ∂

∂x1
dx1 ∧ dx2

)3
X

(Y, Z)(23)

= g(X1X2, Y 2, Z3) + h(X1X2, Y 3, Z2)

+ i(X2, X2Y 1 + X1Y 2, Z3) + j(X2, Y 3, X2Z1 + X1Z2)

+ k(X3, X2Y 1 + X1Y 2, Z2) + l(X3, Y 2, X2Z1 + X1Z2).

Comparing (22) with (23) and carrying out polarization if necessary we get

g(x, wy, z) = g(xw, y, z) + i(w, xy, z),(24)

h(x, y, wz) = h(xw, y, z) + j(w, y, xz),(25)

i(wx, y, z) = i(w, xy, z) + i(x, wy, z),(26)

j(wx, y, z) = j(w, y, xz) + j(x, y, wz),(27)

k(x, y, wz) = k(x, wy, z),(28)

0 = k(x, wy, z) + l(x, y, wz).(29)

Define G(u, v) = 4k(v, u, 1) for all u, v ∈ A. (21) shows that G satisfies (2). From

(28) we deduce that k(x, y, z) = 1
4G(yz, x) for all x, y, z ∈ A. In addition, by (29),

l = −k. Therefore k(Xp, Y 1, Z2)+ l(Xp, Y 2, Z1) = 1
4G(Y 1Z2 −Y 2Z1, Xp) for every

p ∈ {1, . . . , n} and all X, Y, Z ∈ An. But, on account of (7),

(30) GRn

(
x1 ∂

∂x1
dx1 ∧ dx2

)p
X

(Y, Z) =
1

4
G(Y 1Z2 − Y 2Z1, Xp),

too. Consequently, by (16), we may replace L by L − G and assume that k = 0 and

l = 0 from now on.

Define H(u, v) = 4i(v, u, 1) and H ′(u, v) = 4j(v, 1, u) for all u, v ∈ A. (26) and

(27) show that H and H ′ satisfy (3). From (19) and (20) we deduce that i(x, y, z) =
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1
4H(y, x)z and j(x, y, z) = 1

4H ′(z, x)y for all x, y, z ∈ A. Therefore i(X2, Y 1, Zp) =
1
4H(Y 1, X2)Zp and j(X2, Y p, Z1) = 1

4H ′(Z1, X2)Y p for every p ∈ {1, . . . , n} and all

X, Y, Z ∈ An. But

H
L

Rn

(
x1 ∂

∂x1
dx1 ∧ dx2

)p
X

(Y, Z) =
1

4
(H(Y 1, X2) − H(Y 2, X1))Zp,(31)

H ′
R

Rn

(
x1 ∂

∂x1
dx1 ∧ dx2

)p
X

(Y, Z) =
1

4
(H ′(Z1, X2) − H ′(Z2, X1))Y p(32)

on account of (8) and (9). Consequently, by (16), we may replace L by L−H
L
−H ′

R

and assume that i = 0 and j = 0 from now on (note that the conditions k = 0 and

l = 0 remain valid).

Define F (u) = 2g(u, 1, 1) and F ′(u) = 2h(u, 1, 1) for every u ∈ A. From (17)

and (24) we deduce that g(x, y, z) = 1
2F (xy)z and from (18) and (25) that

h(x, y, z) = 1
2F ′(xz)y for all x, y, z ∈ A. Therefore g(X1, Y 2, Zp) = 1

2F (X1Y 2)Zp

and h(X1, Y p, Z2) = 1
2F ′(X1Z2)Y p for every p ∈ {1, . . . , n} and all X, Y, Z ∈ An.

But, on account of (5) and (6),

F
L

Rn

(
x1 ∂

∂x1
dx1 ∧ dx2

)p
X

(Y, Z) =
1

2
F (X1Y 2)Zp,(33)

F ′
R

Rn

(
x1 ∂

∂x1
dx1 ∧ dx2

)p
X

(Y, Z) =
1

2
F ′(X1Z2)Y p,(34)

too. Consequently, by (16), we may replace L by L−F
L
−F ′

R
and assume that also

g = 0 and h = 0 from now on.

But now d = 0, e = 0, f = 0 as well. Indeed, from (16) with p = 3, (15) and

(1) with ϕ : R
n ∋ x → (x1, x2, x2 + x3, x4, . . . , xn) ∈ R

n and t = x1(∂/∂x1) dx1 ∧

dx2 it follows that 0 = LRn

(
x1(∂/∂x1) dx1 ∧ dx2

)3
X

(Y, Z) = −d(X1, Y 2, Z2) −

e(X2, Y 1, Z2) − f(X2, Y 2, Z1), which yields the desired conclusion.

From (14), (16) with p = 3 and (1) with ϕ : R
n ∋ x → (x1 + x3, x2, . . . , xn) ∈ R

n

and t = x1(∂/∂x1) dx1 ∧ dx2 it follows that

LRn

(
(x1 + x3)

∂

∂x1
(dx1 + dx3) ∧ dx2

)1
X

(Y, Z)(35)

= a(X1 + X3, Y 1 + Y 3, Z2) + b(X1 + X3, Y 2, Z1 + Z3)

+ c(X2, Y 1 + Y 3, Z1 + Z3).

From (14), (16) with p = 3 and (1) with ϕ : R
n ∋ x → (x1, x2, x1 + x3, x4, . . . , xn) ∈

R
n and t = x1(∂/∂x1) dx1 ∧ dx2 it follows that LRn

(
x1
(
∂/∂x1 − ∂/∂x3

)
dx1 ∧

dx2
)3
X

(Y, Z) = −a(X1, Y 1, Z2) − b(X1, Y 2, Z1) − c(X2, Y 1, Z1). This, after us-
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ing (16) with p = 3 again and then interchanging x1 and x3, yields

LRn

(
x3 ∂

∂x1
dx3 ∧ dx2

)1
X

(Y, Z)(36)

= a(X3, Y 3, Z2) + b(X3, Y 2, Z3) + c(X2, Y 3, Z3).

From (14), (16) with p = 3 and (1) with ϕ : U ∋ x → (x1, x2, x1x3, x4, . . ., xn) ∈

R
n, where U = {x ∈ R

n : x1 6= 0}, and t = x1(∂/∂x1) dx1 ∧ dx2 it follows that

LRn

(
x1
(
∂/∂x1 − (x3/x1)∂/∂x3

)
dx1 ∧ dx2

)3
X

(Y, Z) = −(X3/X1)(a(X1, Y 1, Z2) +

b(X1, Y 2, Z1) + c(X2, Y 1, Z1)). This, after using (16) with p = 3 again and then

interchanging x1 and x3, yields

LRn

(
x1 ∂

∂x1
dx3 ∧ dx2

)1
X

(Y, Z)(37)

=
X1

X3
(a(X3, Y 3, Z2) + b(X3, Y 2, Z3) + c(X2, Y 3, Z3)).

Combining (35), (36), (37) with (14) we see that

LRn

(
x3 ∂

∂x1
dx1 ∧ dx2

)1
X

(Y, Z)(38)

= a(X1, Y 3, Z2) + a(X3, Y 1, Z2) + b(X1, Y 2, Z3)

+ b(X3, Y 2, Z1) + c(X2, Y 1, Z3) + c(X2, Y 3, Z1)

−
X1

X3
(a(X3, Y 3, Z2) + b(X3, Y 2, Z3) + c(X2, Y 3, Z3)).

On the other hand, (38) and (1) with ϕ : U ∋ x →
(

1
2 (x1)2, x2, . . . , xn

)
∈ R

n, where

U = {x ∈ R
n : x1 > 0}, and t = x3(∂/∂x1) dx1 ∧ dx2 implies that

LRn

(
x3 ∂

∂x1
dx1 ∧ dx2

)1
X

(Y, Z)(39)

=
1

X1

(
a
((X1)2

2
, Y 3, Z2

)
+ a(X3, X1Y 1, Z2) + b

((X1)2

2
, Y 2, Z3

)

+ b
(
X3, Y 2, X1Z1) + c(X2, X1Y 1, Z3

)
+ c(X2, Y 3, X1Z1)

)

−
X1

2X3
(a(X3, Y 3, Z2) + b(X3, Y 2, Z3) + c(X2, Y 3, Z3)).

Comparing (38) with (39) (both multiplied by 2X1X3) we get

2wxa(x, y, z) − 2x2a(w, y, z) = wa(x2, y, z) − x2a(w, y, z),(40)

2wxa(x, y, z) = 2xa(x, wy, z),(41)

−2w2c(x, y, z) = −w2c(x, y, z).(42)
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From (42) we see at once that c = 0.

Taking x = 1 in (40) we deduce that a is A-linear with respect to the first variable.

By (41), it is also A-linear with respect to the second.

From (14) and (1) with ϕ : U ∋ x →
(
x1, 1

2 (x2)2, x3, . . . , xn
)
∈ R

n, where U =

{x ∈ R
n : x2 > 0} and t = x1(∂/∂x1) dx1 ∧ dx2 it follows that

LRn

(
x1x2 ∂

∂x1
dx1 ∧ dx2

)1
X

(Y, Z)(43)

= a(X1, Y 1, X2Z2) + b(X1, X2Y 2, Z1).

On the other hand, from (14), (15) and (1) with ϕ : U ∋ x → (x1x2, x2, . . . , xn) ∈ R
n,

where U = {x ∈ R
n : x2 6= 0} and t = x1(∂/∂x1) dx1 ∧ dx2 it follows that

LRn

(
x1x2 ∂

∂x1
dx1 ∧ dx2

)1
X

(Y, Z)(44)

=
1

X2
(a(X1X2, X2Y 1 + X1Y 2, Z2) + b(X1X2, Y 2, X2Z1 + X1Z2)).

Comparing (43) with (44) (both multiplied by X2) we get

wa(x, y, wz) = a(wx, wy, z),(45)

0 = a(wx, wy, z) + b(wx, y, wz).(46)

Since a is A-linear with respect to the first and second variables, from (45) we

deduce that it is also A-linear with respect to the third. Thus a(x, y, z) = 1
2Exyz

for all x, y, z ∈ A, where E = 2a(1, 1, 1). In addition, by (46), b = −a. Therefore

a(X1, Y 1, Z2) + b(X1, Y 2, Z1) = 1
2EX1(Y 1Z2 − Y 2Z1) for all X, Y, Z ∈ An. But,

on account of (4),

ERn

(
x1 ∂

∂x1
dx1 ∧ dx2

)p
X

(Y, Z)(47)

=





1

2
EX1(Y 1Z2 − Y 2Z1) if p = 1,

0 if p ∈ {2, . . . , n}.

Consequently, by (14)–(16) and the lemma we conclude that L = E (where L actually

stands for L−G−H
L
−H ′

R
− F

L
− F ′

R
with the original L), which completes the

proof that E, F , F ′, G, H , H ′ exist.

Analysis of formulas (30)–(34) and (47) makes it obvious that they are uniquely

determined, and the theorem is proved. �
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Remark. The author does not know whether every linear lifting can be repre-

sented in the form (10) when n = 2, but it is easy to see that then this representation

need not be unique. Indeed, for every C ∈ A and every derivationD of the algebra A

we may put E = C, F (u) = Cu, F ′(u) = −Cu, G(u, v) = −uD(v), H(u, v) = uD(v),

H ′(u, v) = −uD(v) for all u, v ∈ A. Then (by the lemma, (30)–(34) and (47)) the

right-hand side of (10) equals zero in the case n = 2.

The remainder of the paper will be devoted to some corollaries of the theorem.

If L is given by (10), then from (4)–(9) it is evident that the two liftings E +
1
2 (F − F ′)

L
+ 1

2 (−F + F ′)
R

+ G + 1
2 (H − H ′)

L
+ 1

2 (−H + H ′)
R
and 1

2 (F + F ′)
L

+

1
2 (F + F ′)

R
+ 1

2 (H + H ′)
L

+ 1
2 (H + H ′)

R
transform all skew symmetric tensor fields

into skew symmetric and symmetric ones, respectively, and the sum of them equals L.

This yields the two corollaries.

Corollary 1. If n > 3, then for every linear lifting L of skew symmetric tensor

fields of type (1, 2) to skew symmetric tensor fields of type (1, 2) on T A there are

unique E ∈ A, R-linear F : A → A, R-bilinear G : A × A → A satisfying (2) and

R-bilinear H : A × A → A satisfying (3) such that

L = E + F
L
− F

R
+ G + H

L
− H

R
.

Corollary 2. If n > 3, then for every linear lifting L of skew symmetric tensor

fields of type (1, 2) to symmetric tensor fields of type (1, 2) on T A there are unique

R-linear F : A → A and R-bilinear H : A × A → A satisfying (3) such that

L = F
L

+ F
R

+ H
L

+ H
R
.

Combining the theorem of this paper with that of [3] we easily obtain

Corollary 3. If n > 3, then for every linear lifting L of tensor fields of

type (1, 2) to tensor fields of type (1, 2) on T A there are unique E, E′ ∈ A, R-

linear F, F ′, F ′′, F ′′′ : A → A, R-bilinear G, G′ : A × A → A satisfying (2) and

R-bilinear H, H ′, H ′′, H ′′′ : A × A → A satisfying (3) such that

L = (E + F
L

+ F ′
R

+ G + H
L

+ H ′
R
) ◦ sk

+ (E′ + F ′′
L

+ F ′′′
R

+ G′ + H ′′
L

+ H ′′′
R
) ◦ sy,

where sk and sy denote the alternation and symmetrization of tensor fields of

type (1, 2) and the liftings of symmetric tensor fields are also given by formulas

(4)–(9).
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We end the paper with an application of our result in classification of all affine

liftings of linear connections to Weil bundles (the contrast between these liftings and

those of general connections to some non-Weil bundles is worth pointing out, see for

instance [5]). Namely, combining our theorem with that of [4] we easily obtain

Corollary 4. If n > 3, then for every affine lifting L of linear connections to

linear connections on T A there are unique E ∈ A, R-linear F, F ′ : A → A, R-

bilinear G, G′ : A×A → A satisfying (2) and R-bilinear H, H ′, H ′′, H ′′′ : A×A → A

satisfying (3) such that

LM∇ = ∇A + EMT + F
L

MT + F ′
R

MT + GMT + H
L

MT + H ′
R

MT

+ G̃′
M (tr R) + H̃ ′′

L

M (tr R) + H̃ ′′′
R

M (trR)

for every n-dimensional manifold M and every linear connection ∇ on M , where

∇A denotes the complete lift of ∇ (see [14], [7]), T and R the torsion and curvature

tensors of ∇ and G̃′ H̃ ′′
L
, H̃ ′′′

R
are the unique liftings of 2-forms to tensor fields of

type (1, 2) on T A such that

(G̃′
U t)p

X(Y, Z) = G′((T Atqr)(X) · Y q · Zr, Xp),

(H̃ ′′
L

U t)p
X(Y, Z) = H ′′((T Atqr)(X) · Y q, Xr) · Zp,

(H̃ ′′′
R

U t)p
X(Y, Z) = H ′′′((T Atqr)(X) · Zq, Xr) · Y p

for every open subset U of Rn, every 2-form t on U , every p ∈ {1, . . . , n}, every

X ∈ T AU and all Y, Z ∈ An.
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