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Abstract. All crossed products of two cyclic groups are explicitly described using gener-
ators and relations. A necessary and sufficient condition for an extension of a group by a
group to be a cyclic group is given.
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Introduction

One of the most frequently used results in elementary number theory is the famous

ancient Chinese Remainder Theorem. The Chinese Remainder Theorem can be

restated in an abstract and elegant language of group theory as follows: the direct

product H × G of two groups is a cyclic group iff the groups are finite, cyclic of

coprime orders. The direct product H × G is the trivial example of an extension of

a group H by a group G, that is, there exists an exact sequence of groups:

1 −→ H
iH−→ H × G

πG−→ G −→ 1

It is therefore natural and tempting to consider the most general problem:

Problem 1. Let (E, i, π) be an extension of H by G: i.e. E is a group, i : H → E

and π : E → G are morphisms of groups such that the sequence

1 −→ H
i

−→ E
π

−→ G −→ 1

is exact. Give a necessary and sufficient condition for the group E to be cyclic.

The authors were supported by CNCSIS grant 24/28.09.07 of PN II “Groups, quantum
groups, corings and representation theory”.
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The main theorem of the paper (Theorem 3.8) gives a complete answer to the above

question. From this point of view Theorem 3.8 can be considered as an interesting

and non-trivial generalization of the Chinese Remainder Theorem.

To obtain this result we will go through the following steps: we will do a survey of

the famous “extension problem” of Hölder [6], then we will work in an equivalent way

with the crossed systems instead of exact sequences and in the end we will explicitly

compute all the symmetric, normalized 2-cocycles for two fixed cyclic groups and the

(crossed) twisted products associated.

The extension problem was first stated by Hölder [6]. A recent survey and new

results related to the extension problem are obtained in [3]. In particular, crossed

products arise naturally when dealing with group extensions. [3, Corollary 1.8] is

another formulation of Schreier theorem and shows that the existence of an extension

of H by G is equivalent to the existence of a normalized crossed system (H, G, α, f),

where α : G → Aut(H) is a weak action and f : G × G → H is an α-cocycle. The

classical extension problem of Hölder was restated in [3, Problem 1] in a computa-

tional manner as follows:

Problem 2. Let H and G be two fixed groups. Describe all normalized crossed

systems (H, G, α, f) and classify up to isomorphism all crossed products H#f
α G.

The first notable result regarding the extension problem was given by O.L. Hölder

(Theorem 2.1), who uses generators and relations to describe all crossed products of

two finite cyclic groups. In Section 2 of the paper we complete the structure and we

shall describe all crossed products of two cyclic groups (not necessarily finite) using

generators and relations: see Theorem 2.2, Theorem 2.3, and Theorem 2.4. Related

to Problem 2 another question arises:

Problem 3. Let Λ be a class of groups. Find necessary and sufficient conditions

for (H, G, α, f) such that the crossed product H#f
α G belongs to Λ.

In [3, Corollary 1.15] a complete answer is given to the above problem in the case

of abelian groups: the crossed product H#f
α G is an abelian group if and only if H

and G are abelian groups, α is the trivial action and f is a symmetric 2-cocycle.

The present paper deals with this problem in the case of cyclic groups. In the first

section we recall the construction and fundamental properties of crossed product

of groups. In Section 2 we describe crossed products between all types of cyclic

groups. Using the aforementioned results, in Section 3 we find necessary and sufficient

conditions for a crossed product to be a cyclic group (Theorem 3.8) which is the main

result of this paper.
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1. Preliminaries

Let us fix the notation that will be used throughout the paper. Cn will be a cyclic

group of order n generated by a: Cn = {1, a, a2, . . . , an−1} and Cg = {gk : k ∈ Z}

will denote a cyclic infinite group. Let H and G be two groups. Aut(H) denotes

the group of automorphisms of a group H and Z(H) the center of H . A map

f : G × G → H is called symmetric if f(g1, g2) = f(g2, g1) for any g1, g2 ∈ G. For a

map α : G → Aut(H) we shall use the notation

α(g)(h) = g ⊲ h

for all g ∈ G and h ∈ H .

The maps α and f are called trivial if g ⊲ h = h for all g ∈ G and h ∈ H ,

respectively f(g1, g2) = 1 for all g1, g2 ∈ G.

Definition 1.1. A crossed system of groups is a quadruple (H, G, α, f), where

H and G are two groups, α : G → Aut(H) and f : G × G → H are two maps such

that the following compatibility conditions hold:

g1 ⊲ (g2 ⊲ h) = f(g1, g2)((g1g2) ⊲ h)f(g1, g2)
−1,(1)

f(g1, g2)f(g1g2, g3) = (g1 ⊲ f(g2, g3))f(g1, g2g3)(2)

for all g1, g2, g3 ∈ G. The crossed system Γ = (H, G, α, f) is called normalized if

f(1, 1) = 1. The map α : G → Aut(H) is called a weak action and f : G × G → H

is called an α-cocycle.

If (H, G, α, f) is a normalized crossed system then [3, Lemma 1.2]

(3) f(1, g) = f(g, 1) = 1 and 1 ⊲ h = h

for any g ∈ G and h ∈ H .

Let H and G be groups, α : G → Aut(H) and f : G × G → H two maps. Let

H#f
α G := H × G as a set with a binary operation defined by the formula:

(4) (h1, g1) · (h2, g2) :=
(

h1(g1 ⊲ h2)f(g1, g2), g1g2)

for all h1, h2 ∈ H , g1, g2 ∈ G. Then [3, Theorem 1.3] (H#f
α G, ·) is a group with the

unit 1H#f
α G = (1, 1) if and only if (H, G, α, f) is a normalized crossed system. In

this case the group H#f
α G is called the crossed product of H and G associated to

the crossed system (H, G, α, f).

The following [3, Examples 1.5] are basic examples of special cases of a crossed

product of two groups.
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Examples 1.2.

1. Let H and G be two groups and α, f be the trivial maps. Then Γ = (H, G, α, f)

is a crossed system called the trivial crossed system. The crossed product

H#f
α G = H × G is the direct product of H and G.

2. Let H and G be two groups and f : G × G → H the trivial map. Then

(H, G, α, f) is a crossed system if and only if α : G → Aut(H) is a morphism of

groups. In this case the crossed product is H#f
α G = H ⋉α G, the semidirect

product of H and G.

3. Let H and G be two groups and α : G → Aut(H) the trivial action. Then

(H, G, α, f) is a crossed system if and only if Im(f) ⊆ Z(H) and

(5) f(g1, g2)f(g1g2, g3) = f(g2, g3)f(g1, g2g3)

for all g1, g2, g3 ∈ G, that is f : G × G → Z(H) is a 2-cocycle. The crossed

product H#f
α G associated to this crossed system will be denoted by H ×f G

and was called in [3] the twisted product of H and G associated to the 2-cocycle

f : G×G → Z(H). Explicitly, the multiplication of a twisted product of groups

H ×f G is given by the formula:

(6) (h1, g1) · (h2, g2) := (h1h2f(g1, g2), g1g2)

for all h1, h2 ∈ H , g1, g2 ∈ G.

The next well-known theorem is the main application of the crossed product con-

struction: it is a reconstruction theorem of a group from a normal subgroup and the

quotient.

Theorem 1.3. Let E be a group, H E E be a normal subgroup of E and

G := E/H be the quotient of E by H . Then there exist two maps α : G → Aut(H)

and f : G × G → H such that (H, G, α, f) is a normalized crossed system and

E ∼= H#f
α G (isomorphism of groups).

For complete proofs and further details we refer to [2], [3, Theorem 1.6] or [8].

2. Crossed product of cyclic groups

Our purpose in this section is to describe using generators and relations all crossed

products between cyclic groups. As mentioned in the introduction, the first impor-

tant result in the literature for the first part of the extension problem was proved

by Hölder himself [5, Theorem 12.9]. It describes the crossed product of two finite

cyclic groups: for the sake of completeness we present bellow a short proof of this

theorem.
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Theorem 2.1 (Hölder). A finite group E is isomorphic to a crossed product

Cn#f
α Cm if and only if E is the group generated by two generators a and b subject

to the relations

(7) an = 1, bm = ai, b−1ab = aj

where i, j ∈ {0, 1, . . . , n − 1} are such that

(8) i(j − 1) ≡ 0 (mod n), jm ≡ 1 (mod n).

We denote this group by Cn#j
i Cm.

P r o o f. Assume first that E is isomorphic to a crossed product Cn#f
α Cm.

Hence Cn E E and E/Cn ≃ Cm. It follows that Cn = 〈a | an = 1〉 E E and there

exists b ∈ E such that E/Cn = {Cn, bCn, . . . , bm−1Cn} and bm ∈ Cn. That is, there

exists i ∈ {0, 1, . . . , n − 1} such that

(9) bm = ai.

Since Cn E E we obtain that b−1ab ∈ Cn and so there exists j ∈ {0, 1, . . . , n − 1}

such that

(10) b−1ab = aj.

A direct computation shows that

b−1aib
(9)
= b−1bmb = bm (9)

= ai and b−1aib
(10)
= aij .

It follows from here that ai(j−1) = 1 and so i(j − 1) ≡ 0 (mod n). In a similar way

we obtain

b−mabm (10)
= a−iaai = a and aj2 (10)

= (b−1ab)j = b−1ajb
(10)
= b2ab2,

and by induction b−mabm = ajm

. Hence a = ajm

, that is jm ≡ 1 (mod n).

Conversely, assume that the relations (7) and (8) hold. We need to show that

Cn E E, that is xatx−1 ∈ Cn for every x ∈ E and t ∈ {0, 1, . . . , n − 1}. Since x ∈ E

we have x = x1x2 . . . xk where k ∈ N, xs ∈ {a, b, a−1, b−1} and s ∈ {0, 1, . . . , k}. We

obtain that gatg−1 = x1x2 . . . xkat(xk)−1 . . . (x1)
−1. It is easy to see by a direct com-

putation that xkat(xk)−1 ∈ Cn for every xk ∈ {a, b, a−1, b−1} and so, by induction

it follows that gatg−1 ∈ Cn. Hence Cn E E. In a similar way, it can be showed that

every element of the group E can be written as apbq for p, q ∈ Z. Hence |E| = mn

and so |E/Cn| = m, E/Cn = {Cn, Cnb, . . . , Cnbm−1}, that is, the group E has a

normal subgroup Cn and E/Cn ≃ Cm. By Theorem 1.3, there exists (Cn, Cm, α, f)

a crossed system such that E ≃ Cn#f
α Cm. �
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Theorem 2.2. A group E is isomorphic to a crossed product Cn#f
α Cg if and

only if there exists t ∈ Z, (t, n) = 1 such that E ≃ 〈a, g | an = 1, g−1ag = at〉.

P r o o f. Suppose first that E ≃ Cn#f
α Cg. Hence Cn E E and E/Cn ≃ Cg. That

is E/Cn = {gkCn : k ∈ Z}. Since Cn E E we obtain that Cn = 〈a | an = 1〉 ⊆ E

and g−1ag ∈ Cn. That is, there exists t ∈ {0, 1, . . . , n − 1} such that

(11) g−1ag = at

Suppose now that (t, n) = d > 1. It follows from here that there exist t1, n1 ∈ N such

that t = dt1, n = dn1 and (t1, n1) = 1. From (11) we obtain g−1an1g = ant1 = 1,

that is an1 = 1, which is a contradiction with a having order n and n1 < n. Hence

(t, n) = 1 and E ≃ 〈a, g | an = 1, g−1ag = at〉.

Now let E ≃ 〈a, g | an = 1, g−1ag = at〉 for some t ∈ Z, (t, n) = 1. By

Theorem 1.3 we only need to prove that Cn E E and E/Cn ≃ Cg. For any g′ ∈ E

we have g′ = x1x2 . . . xk, for some k ∈ N, xi ∈ {a, g, a−1, g−1}, i ∈ {1, 2, . . . , k}. That

is, to prove that Cn E E we only need to show that g−1alg ∈ Cn and galg−1 ∈ Cn

for any l ∈ Z. From (11) we obtain, by induction, that g−1alg = atl ∈ Cn. Since

(t, n) = 1 there exist α, β ∈ Z such that αt + βn = 1. We obtain from (11) that

a = gatg−1 and it follows from here that aα = gaαtg−1. Since gaβng−1 = 1 we obtain

that gaαt+βng−1 = aα, that is gag−1 = aα. It follows from here that galg−1 = aαl

for any l ∈ Z. Hence Cn E E. It follows by a simple calculation that every element

g′ ∈ E can be written as gpaq for some p, q ∈ Z. That is gCn = gpaqCn =p Cn.

Hence E/Cn ⊆ Cg. Now suppose that there exist α, β ∈ Z, α 6= β such that

gαCn = gβCn, that is gα−β = aγ for some γ ∈ {0, 1, . . . , n− 1}. It follows from here

that g(α−β)n = aγn = 1 which is a contradiction with Cg being an infinite cyclic

group. Hence E/Cn ≃ Cg. �

Theorem 2.3. A group E is isomorphic to a crossed product Cg#
f
α Cn if and

only if:

(i) E ≃ 〈g, h | gh = hg, hn = gt, ∈ Z〉 for n odd;

(ii) E ≃ 〈g, h | gh = hg, hn = gt, t ∈ Z〉 or E ≃ 〈g, h | hn = 1, ghg = h〉 for n

even.

P r o o f. Suppose first that E ≃ Cg#
f
α Cn. Hence Cg E E and E/Cg ≃ Cn.

That is, there exists h ∈ E such that E/Cg = {Cg, hCg, . . . , h
n−1Cg} and hn ∈ Cg.

Hence there exists t ∈ Z such that hn = gt. Since Cg E E we obtain h−1gh ∈ Cg,

that is h−1gh = gs for some s ∈ Z. It follows that h−1gth = gst and using hn = gt we

obtain gts = gt that is gt(s−1) = 1. Since Cg is an infinite cyclic group we must have

t(s− 1) = 0. Using again h−1gh = gs we obtain h−1gsh = gs2

, that is h−2gh2 = gs2
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and by induction h−nghn = gsn

. Thus, from hn = gt we obtain gsn
−1 = 1 and since

Cg is an infinite cyclic group we must have sn = 1. Therefore if n is odd E ≃ 〈g, h |

gh = hg, hn = gt〉 for some t ∈ Z and if n is even E ≃ 〈g, h | gh = hg, hn = gt〉 for

some t ∈ Z or E ≃ 〈g, h | hn = 1, ghg = h〉.

We assume now that E ≃ 〈g, h | gh = hg, hn = gt, t ∈ Z〉. Since E is abelian

Cg E E. E/Cg = {g′Cg | g′ ∈ E} and since every element g′ ∈ E can be

written as g′ = hpgq we obtain that g′Cg = hpgqCg = hpCg, that is E/Cg ⊆

{Cg, hCg, . . . , h
n−1Cg} ≃ Cn. Now suppose that there exists α, β ∈ {0, 1, . . . , n−1},

α > β, such that hαCg = hβCg that is hα−β = gγ for some γ ∈ Z. Since α − β < n

we obtain a contradiction with hn = gt. Hence E/Cg ≃ Cn and by Theorem 1.3

there exists (Cg, Cn, α, f) a crossed system such that E ≃ Cg#
f
α Cn.

Suppose now that n is even and E ≃ 〈g, h | hn = 1, ghg = h〉. By Theorem 1.3

we only need to prove that Cg E E and E/Cg ≃ Cn. For any g′ ∈ E we have

g′ = x1x2 . . . xk for some k ∈ N, xi ∈ {g, h, g−1, h−1} and i ∈ {1, 2, . . . , k}. That is,

to prove that Cg E E we only need to show that hglh−1 ∈ Cg and h−1glh ∈ Cg for

any l ∈ Z. Since h−1gh = g−1 we obtain, by induction, that h−1glh = g−l ∈ Cg.

Also from hglh−1 = h−n+1glhn−1 = (h−1)n−1glhn−1 = (h−1)n−2g−lhn−2 we obtain

by induction hglh−1 = g−l ∈ Cg. Hence Cg E E. E/Cg = {g′Cg | g′ ∈ E} and

since any element g′ ∈ E can be written as hpgq for some p, q ∈ Z it follows from

here that g′Cg = hpgqCg = hpCg. Hence E/Cg ⊆ Cn. Now suppose that there exist

α, β ∈ {0, 1, . . . , n − 1}, α > β such that hαCg = hβCg, that is hα−β = gγ for some

γ ∈ Z. It follows from here that gnγ = (hn)α−β = 1 and since Cg is an infinite cyclic

group we must have nγ = 0, that is γ = 0. Hence hα−β = 1 which is a contradiction

since the order of h is n and 0 < α − β < n. Therefore E/Cg = Cn. �

Theorem 2.4. A group E is isomorphic to a crossed product Cg1
#f

α Cg2
if and

only if E ≃ 〈g1, g2 | g1g2 = g2g1〉 or E ≃ 〈g1, g2 | g1g2g1 = g2〉.

P r o o f. Suppose first that E ≃ Cg1
#f

α Cg2
. Hence Cg1

E E and E/Cg1
≃ Cg2

.

That is E/Cg1
= {gk

2Cg1
| k ∈ Z}. Since Cg1

E E we obtain that g−1
2 g1g2 ∈ Cg1

and

g2g1g
−1
2 ∈ Cg1

. That is, there exist s, t ∈ Z such that

(12) g−1
2 g1g2 = gt

1

and

(13) g2g1g
−1
2 = gs

1.

From (12) we obtain, that g−1
2 gs

1g2 = gst
1 . It follows from here, using (13), that

gst
1 = g1. Since Cg1

is an infinite cyclic group, we obtain that st = 1, that is (s, t) ∈

{(1, 1), (−1,−1)}. Hence E ≃ 〈g1, g2 | g1g2 = g2g1〉 or E ≃ 〈g1, g2 | g1g2g1 = g2〉.
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Conversely, if E ≃ 〈g1, g2 | g1g2 = g2g1〉 then it is obvious that E ≃ Z × Z ≃

Cg1
#Cg2

the crossed system being the trivial one.

Now let E ≃ 〈g1, g2 | g1g2g1 = g2〉. Also by Theorem 1.3 we only need to prove

that Cg1
E E and E/Cg1

≃ Cg2
. For any g ∈ E we have g = x1x2 . . . xk for

k ∈ N, xi ∈ {g1, g2, g
−1
1 , g−1

2 } and i ∈ {1, 2, . . . , k}. Therefore, to prove Cg1
E E,

we only need to show that g2g
l
1g

−1
2 ∈ Cg1

and g−1
2 gl

1g2 ∈ Cg1
for any l ∈ Z. From

g1g2g1 = g2 we obtain g2g1g
−1
2 = g−1

1 = g−1
2 g1g2 and g2g

l
1g

−1
2 = g−l

1 = g−1
2 gl

1g2 for

any l ∈ Z. Hence Cg1
E E. In a similar way it can be shown that every element g

of the group E can be written as gp
2gq

1 for some p, q ∈ Z. It follows from here that

gCg1
= gp

2gq
1Cg1

= gp
2Cg1

. Hence E/Cg1
6 Cg2

. Since any non trivial subgroup of an

infinite cyclic group is infinite cyclic we obtain that E/Cg1
≃ Cg2

which finishes the

proof. �

3. When is a crossed product a cyclic group?

Our aim in the present section is to give a necessary and sufficient condition for a

crossed product to be a cyclic group. For this it is necessary that both groups should

be cyclic since any subgroup and any quotient of a cyclic group are cyclic groups.

Hence the problem is reduced to deciding which of the crossed products between

two cyclic groups described in the previous section are cyclic groups and under what

conditions.

It is obvious that the crossed product between a finite cyclic group Cn and an

infinite cyclic group Cg described in Theorem 2.2 cannot be a cyclic group since

an infinite cyclic group does not have torsion elements. By the same argument

we can conclude that the crossed product 〈g, h | hn = 1, ghg = h〉 obtained in

Theorem 2.3 cannot be a cyclic group. Also, the crossed product between the two

infinite cyclic groups described in Theorem 2.4 cannot be a cyclic group because a

nontrivial quotient of an infinite cyclic group must be finite.

Therefore, the only crossed products left to deal with are: Cn#j
i Cm described in

Theorem 2.1 and 〈g, h | gh = hg, hn = gt, t ∈ Z〉 from Theorem 2.3.

In what follows we investigate under what conditions these two crossed products

are cyclic groups.

In order to prove our next result we need the following technical lemma:

Lemma 3.1. Let m, n, i be rational integers such that (m, n, i) = 1. Then there

exist some u, v, w ∈ Z such that um + vi + wn = 1 and (m, v) = 1, where (r, s)

denotes the greatest common divisor of the integers r and s.

896



P r o o f. Let d = (m, n). Then (d, i) = 1. Let m′ | m be such that (m′, d) = 1

and m′d contains all the prime factors of m. Using the Chinese Remainder Theorem

we can find v ∈ Z such that d | vi − 1 and m′ | v − 1 (if m′ = 1 the last condition

is trivially fulfilled). We observe that (m, v) = 1 because all the prime divisors of m

are in m′d and (m′d, v) = 1.

Since d = (m, n) there exist u′, w′ ∈ Z such that u′m + w′n = d. From the way

we chose v it follows that there exists r ∈ Z such that vi+ rd = 1. Now put u = ru′,

w = rw′. From the above we have vi+r(u′m+w′n) = 1, thus vi+um+wn = 1. �

Proposition 3.2. A crossed product E = Cn#j
i Cm is a cyclic group if and only

if j = 1 and (m, n, i) = 1.

P r o o f. We know from Theorem 2.1 that E has a presentation of the form

E = 〈a, b | an = 1, bm = ai, b−1ab = aj〉.

Suppose first that E is a cyclic group. It follows from here that j = 1 since every

cyclic group is abelian. If E is cyclic then there exist some u, v ∈ Z such that

E = 〈aubv〉. aubv has order mn, hence (aubv)m has order n. It is well known that in

a cyclic group for any divisor of the order of the group there exists a unique subgroup

of that order, thus 〈(aubv)m〉 = 〈a〉 and therefore there exists some k ∈ Z such that

(aukbvk)m = a. Using the relation bm = ai and the fact that a has order n we obtain

that ukm + vki − 1 is divisible by n, that is (m, n, i) = 1.

For the converse we will use the previous lemma and we obtain that there exist

u, v, w ∈ Z such that um + iv + wn = 1 and (m, v) = 1. We will prove that aubv has

order mn in E and that finishes the proof. For this it is enough to prove that a, b ∈

〈aubv〉. By a simple calculation we get: (aubv)m = aumavi = aum+vi = a1−wn = a,

that is a ∈ 〈aubv〉. Since (m, v) = 1, there exists l ∈ Z such that m | vl−w. Now let

k = i + ln.

Finally (aubv)k = (aubv)i(aubv)ln = bumbvibvln = bum+vi+vln = b1−wn+vln =

bbn(vl−w) = b because n(vl−w) is divisible by mn and |E| = mn. Hence b ∈ 〈aubv〉.

�

Proposition 3.3. The group E = 〈g, h | hn = gt, hg = gh〉, where n > 2, t ∈ Z

is cyclic if and only if (n, t) = 1.

P r o o f. Denote by d = (n, t) and by Zn,t = Z + (t/n)Z which is an abelian

group and is isomorphic to (n, t)Z ≃ Z by the morphism u 7→ nu.

Define θ : E → Zn,t by h 7→ t/n and g 7→ 1. It is easy to see that this is a

morphism of groups and moreover it is surjective. In order to have E isomorphic
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to Z (i.e. E cyclic infinite), θ must be an isomorphism, otherwise we get a surjective

endomorphism of Z which is not injective and this is impossible.

So E ≃ Z iff θ is injective and this happens iff (n, t) = 1. Indeed hrg−s 7→ rt/n−

s = 0 ⇔ rt = ns ⇔ r = kn/d, s = kt/d, k ∈ Z so ker(θ) = {(hn/dg−t/d)k : k ∈ Z}

and then ker(θ) = 0 iff hn/d = gt/d, i.e. d = 1. �

Our next goal is to describe, in the language of crossed systems, all cyclic crossed

products. That is, to identify the properties that (H, G, α, f) has to verify in order

to obtain a cyclic crossed product H#f
α G. As we already noticed, both H and G

must be cyclic groups. Since H#f
α G is, in particular, an abelian group it follows

from [3, Corollary 1.15] that α must be trivial and f a symmetric 2-cocycle. In order

to find necessary and sufficient conditions on f such that H#fG is cyclic we describe

bellow all the possible symmetric 2-cocycles.

For m > 2 and n > 2 or n = ∞ define Σm,n = {ϕ : Z → Zn : ϕ(0) = 0, ϕ(t+m) =

ϕ(t), ∀ t ∈ Z} with the convention that Z∞ = Z.

Proposition 3.4. The symmetric normalized 2-cocycles f : Cm × Cm → Cn are

in bijection with the set Σm,n.

P r o o f. Let ϕ ∈ Σm,n and consider x a generator of Cm and a a generator

of Cn.

Denote Sϕ
k = Sk = ϕ(0) + . . . + ϕ(k − 1), ∀ k > 1.

We define f(xk, xl) = aSk+l−Sk−Sl for k, l > 1 (observe that if n 6= ∞ then at is

well defined for t ∈ Zn since a has order n).

It is easy to verify that f(xk+sm, xl) = f(xk, xl+tm) = f(xk, xl), (∀) s, t > 0,

(∀) l, k > 1. Observe also that f(x, xk) = aϕ(k). This will be useful for the converse.

f is obviously symmetric.

We need to prove that f is a 2-cocycle, that is:

f(xk, xl)f(xk+l, xp) = f(xl, xp)f(xk, xl+p),

aSk+l−Sk−Sl+Sk+l+p−Sp−Sk+l = aSp+l−Sp−Sl+Sk+l+p−Sk−Sl+p ,

aSk+l+p−Sk−Sl−Sp = aSk+l+p−Sk−Sl−Sp , (∀) k, l, p > 1,

and the latter is clearly true.

So to each ϕ ∈ Σm,n we have associated a symmetric 2-cocycle.

Now suppose f is a symmetric 2-cocycle. Define ϕf = ϕ such that aϕ(k) = f(x, xk),

k ∈ Z. It is obvious that ϕ ∈ Σm,n because x has order m and f is normalized.

Define Sϕ
k = Sk = ϕf (0) + . . . + ϕf (k − 1).

Using the cocycle condition on f and straightforward computation it follows that

f(xl, xk) = aSk+l−Sk−Sl , (∀) k, l > 1.
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Hence, the map that associates to each cocycle the function ϕf is a bijective map

between the cocycles and Σm,n. �

Proposition 3.5. A crossed product Cn#f Cm, m, n > 2 is a cyclic group if and

only if (Sm, m, n) = 1, where Sk = ϕ(0)+ . . .+ϕ(k−1), ϕ : Z → Zn, a
ϕ(k) = f(x, xk)

and x is a generator for Cm.

Remark 3.6. Observe that Sm is not a number, but a class (modulo n); however

(Sm, m, n) does not depend on the choice of a representative for Sm.

P r o o f. We will prove that Cn#f Cm is isomorphic to Cn#1
i Cm where i ∈

{0, 1, . . . , n − 1} such that Sm = i (mod n). The conclusion will follow from Propo-

sition 3.2.

Let i be the unique representative of Sm from {0, 1, . . . , n − 1}.

Denote by E = 〈a, b | an = 1, bm = ai, ab = ba〉 and by F = Cn#f Cm the twisted

product associated to the 2-cocycle f (see Examples 1.2).

Define θ : E → F by θ(a) = (a, 1) and θ(b) = (1, x).

It is straightforward to see that (1, x)k = (aSk , xk), ∀k > 1 hence (1, x)m =

(aSm , xm) = (ai, 1) = (a, 1)i and (1, x)k 6∈ 〈a〉, ∀k ∈ {1, . . . , m − 1}. Also (a, 1)n = 1

and (a, 1)(1, x) = (a, x) = (1, x)(a, 1). That is (a, 1) and (1, x) verify the same

relations in F as a and b do in E. Hence θ is a morphism of groups.

Let us observe that (a, 1) and (1, x) generate the group F . Indeed consider

(au, xk) ∈ F . Then

(au, xk) = (au, 1)(1, xk) = (au−Sk , 1)(aSk , xk) = (a, 1)u−Sk(1, x)k.

Therefore the morphism θ is also surjective and since the groups are finite it is an

isomorphism. �

Proposition 3.7. A crossed product Cg#
f Cm, m > 2, is cyclic iff (Sm, m) = 1,

where Sm = ϕ(0) + . . . + ϕ(m − 1), ϕ : Z → Z, gϕ(k) = f(x, xk), 〈x〉 = Zm.

P r o o f. We will prove that Cg#
f Cm is isomorphic to E = t〈g, h | hm = gSm ,

gh = hg〉 hence the conclusion follows from Proposition 3.3.

Denote by F = Cg#
f Cm the twisted product associated to the 2-cocycle f (see

Examples 1.2).

Define θ : E → F by θ(g) = (g, 1) and θ(h) = (1, x). It is easy to see that

(g, 1)(1, x) = (g, x) = (1, x)(g, 1) and (1, x)k = (gSk , xk). Hence (1, x)m =

(gSm , 1) = (g, 1)Sm . Therefore θ is a morphism of groups. Moreover, since
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(gk, xl) = (g, 1)k−Sl(1, x)l we obtain that θ is a surjection. Furthermore:

ker(θ) = {gkhl : k, l ∈ Z, θ(gkhl) = (1, 1)}

= {gkhl : k, l ∈ Z, (g, 1)k(1, x)l = (1, 1)}

= {gkhl : k, l ∈ Z, (gk+Sl , xl) = (1, 1)}

= {gkhl : k, l ∈ Z, m | l, k = −Sl}

= {gkhl : k, l ∈ Z, l = sm, k = −sSm}

= {(g−Smhm)s : s ∈ Z} = {1}.

Hence θ is a bijection. �

In conclusion, with the above notation, we have proved the following theorem:

Theorem 3.8. A normalized crossed product E = H#f
α G is a cyclic group if

and only if one of the following are true:

(1) H ≃ Cn, G ≃ Cm, for some m, n > 2, α is trivial and (Sm, m, n) = 1;

(2) H ≃ Cg, G ≃ Cm, for some m > 2, α is trivial and (Sm, m) = 1.

Let us consider a numerical example. Define ϕ ∈ Σ3,∞ by ϕ(0) = 0, ϕ(1) = 1,

ϕ(2) = 1 and consider the corresponding symmetric 2-cocycle f : Z3 × Z3 → Z

(cf. Proposition 3.4).

An easy computation leads us to

f(0̂, û) = f(û, 0̂) = f(2̂, 2̂) = 0, ∀û ∈ Z3,

f(1̂, 1̂) = f(1̂, 2̂) = f(2̂, 1̂) = 1.

Since S3 = 2 it follows from Theorem 3.8 that Z×f
Z3 ≃ Z.

We can also find the generator of Z×f
Z3, namely (0, 2̂). Indeed:

(0, 2̂)2 = (0 + 0 + f(2̂, 2̂), 2̂ + 2̂) = (0, 1̂)

and

(0, 2̂)3 = (0 + 0 + f(1̂, 2̂), 2̂ + 1̂) = (1, 0̂).
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