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SOME RESULTS ON THE GEOMETRY
OF MINKOWSKI PLANE

Bing Ye Wu

Abstract. In this paper we study the geometry of Minkowski plane and
obtain some results. We focus on the curve theory in Minkowski plane and
prove that the total curvature of any simple closed curve equals to the total
Landsberg angle. As the result, the sum of oriented exterior Landsberg angles
of any polygon is also equal to the total Landsberg angle, and when the
Minkowski plane is reversible, the sum of interior Landsberg angles of any
n-gon is n−2

2 times of the total Landsberg angle. Our results generalizes the
classical results in plane geometry. We also obtain a new characterizations of
Euclidean plane among Minkowski planes.

1. Introduction

A Minkowski norm on the real n-space Rn is a function F : Rn → R which
is positively homogeneous of degree 1, strictly convex and smooth off the origin.
The pair (Rn, F ) is called a Minkowski space, and it is said to be reversible if
F (y) = F (−y) for any y ∈ Rn. When n = 2, (R2, F ) is called a Minkowski plane.

In this paper we study the geometry of Minkowski plane and obtain some results.
The main tool we use is the polar expression of (R2, F ). We first focus on the curve
theory and obtain the Frenet type formula for curves in (R2, F ), and prove that the
total curvature of any simple closed curve equals to the total Landsberg angle of
(R2, F ). As the result, the sum of oriented exterior Landsberg angles of any polygon
is also equal to the total Landsberg angle, and when F is reversible, the sum of
interior Landsberg angles of any n-gon is n−2

2 times of the total Landsberg angle.
Our results generalizes the classical results in plane geometry. We also characterize
the Euclidean plane among Minkowski planes by a function which is essentially
defined by Zhongmin Shen.

2. Polar expression of Minkowski plane

Let | · | be the standard Euclidean norm on R2, then for any Minkowski norm F

on R2, the function φ(y) = F (y)
|y| is a positively homogeneous function of degree zero
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on R2\{0}. Let (r, θ) be the standard polar coordinates of R2, then it is clear that
φ depends only on θ, and φ = φ(θ) is periodical with period 2π (not necessarily
minimal period). Hence we can view φ as a function on unit circle S. Now we can
express the Minkowski norm F as F = r ·φ(θ). Recall that the fundament tensor of
F is defined by gij(y) = 1

2
∂2F 2

∂yi∂yj , by a direct computation we obtain the following
polar expression for gij(y) = gij(θ):

g11 = φ2 − 2φφ′ cos θ sin θ + ((φ′)2 + φφ′′) sin2 θ ,(2.1)

g22 = φ2 + 2φφ′ cos θ sin θ + ((φ′)2 + φφ′′) cos2 θ ,(2.2)

g12 = φφ′ cos 2θ − ((φ′)2 + φφ′′) cos θ sin θ ,(2.3)

det(gij) = g11g22 − g2
12 = φ3(φ+ φ′′) .(2.4)

By these formulas we clearly have the following

Proposition 2.1. Let φ : S→ R be a positive smooth function, then F = r · φ(θ)
is a Minkowski norm on R2 if and only if φ+ φ′′ > 0.

Let S = {y ∈ R2 : F (y) = 1} be the indicatrix of R2. The Minkowski norm F
defines a Riemannian metric ĝ = gij(y)dyi

⊗
dyj on the punctured plane R2\0.

We view S as the closed curve in Riemannian surface (R2\0, ĝ), its arc length
Λ = Λ(F ) with respect to ĝ is called the total Landsberg angle of (R2, F ). If F
is Euclidean, then we certainly have Λ = 2π, while for general Minkowski norm,
Λ may be smaller or bigger than 2π (see e.g., [1, 2]). On the other hand, if F is
reversible, then the inequality Λ ≤ 2π always holds, with the equality holds if
and only if F is Euclidean [5]. Notice that the equation of S can be written as
y = y(θ) = 1

φ(θ) (cos θ, sin θ), by (2.4) the arc element is

dΘ =
√
g11g22 − g2

12(y1dy2 − y2dy1) =

√
1 + φ′′

φ
dθ ,(2.5)

and consequently,

Λ =
∮
S

dΘ =
∫ 2π

0

√
1 + φ′′

φ
dθ .(2.6)

Since φ+ φ′′ > 0, we have dΘ
dθ > 0, and thus Θ and θ can be mutually expressed,

and the parameter Θ is also known as the Landsberg angle. For two nonzero
vectors y1, y2 ∈ R2, the oriented Landsberg angle ](y1, y2) and the Landsberg angle
∠(y1, y2) between y1 and y2 are defined by

](y1, y2) =
∫ θ2

θ1

√
1 + φ′′

φ
dθ = Θ2 −Θ1

and
∠(y1, y2) = |](y1, y2)| ,
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respectively. Here θ1 and θ2 are polar angles of y1 and y2, and Θ1 and Θ2 the
Landsberg angles of y1 and y2, respectively.

3. The curve theory in Minkowski plane

For a given Minkowski plane (R2, F ), the fundamental tensor and the Cartan
tensor are defined by gij(y) = 1

2
∂2F 2

∂yi∂yj and Cijk(y) = 1
2
∂gij
∂yk

, respectively. For
X = Xi ∂

∂yi , Y = Y i ∂
∂yi , Z = Zi ∂

∂yi , write gy(X,Y ) = gij(y)XiY j , Cy(X,Y, Z) =
Cijk(y)XiY jZk. Let D be the standard flat connection on (R2, F ), we have

(3.1) Z · gy(X,Y ) = gy(DZX,Y ) + gy(X,DZY ) + 2Cy(X,Y, Z) .

Recall that Cy(y, ·, ·) = 0, we call Iy = Cy(u, u, u) the Cartan scalar of F , where
u is a vector satisfying gy(y, u) = 0, gy(u, u) = 1.

Now let c = c(s) =
(
y1(s), y2(s)

)
be a curve in (R2, F ) with arc parameter s,

thus the tangent vector field T = dc
ds is a unit vector field along the curve, namely,

F 2(T ) = gT (T, T ) = 1. By (3.1), we get 0 = T · gT (T, T ) = 2gT ( ddsT, T ), here
d
dsT = DTT . Clearly, when d

dsT ≡ 0, then c = c(s) is a (part of) straight line; if
d
dsT 6= 0, let

N =
d
dsT

k
:=

d
dsT√

gT ( ddsT,
d
dsT )

,

and write
d

ds
N = DTN = aT + bN .

It is easy to see from (3.1) that

a = gT
( d
ds
N, T

)
= T · gT (N,T )− gT

(
N,

d

ds
T
)

= −k ,

b = gT
( d
ds
N,N

)
= 1

2T · gT (N,N)−CT

( d
ds
T,N,N

)
= −kIT .

Consequently, we get the following Frenet formulas for the curve c in (R2, F ):

(3.2) d

ds
T = kN ,

d

ds
N = −k(T + ITN) .

Here k is called the curvature of c, and T , N the Frenet frame of c. If F is Euclidean,
then IT = 0, and (3.2) is reduced to the standard Frenet formulas for curves in
Euclidean plane.

Let F = r ·φ(θ) be the polar expression of F . In polar coordinate we can express
the unit tangent vector field T as

T = T (θ) = 1
φ(θ) (cos θ, sin θ) .
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A direct computation yields
d

dθ
T = 1

φ(θ)

(
− sin θ − φ′

φ
cos θ, cos θ − φ′

φ
sin θ

)
=
√
φ2(θ) + φ′2(θ)

φ2(θ) (cos θ, sin θ) ,(3.3)

where θ = θ + θ̃, and θ̃ is determined by

(3.4) cos θ̃ = −φ′(θ)√
φ2(θ) + φ′2(θ)

, sin θ̃ = φ(θ)√
φ2(θ) + φ′2(θ)

Combining (2.1)–(2.3) and (3.4) we get
gT
(
(cos θ, sin θ), (cos θ, sin θ)

)
= φ2(θ) + (φ′2 + φφ′′)(θ) sin2(θ − θ) + φ(θ)φ′(θ) sin 2(θ − θ)

= φ4(θ) + φ3(θ)φ′′(θ)
φ2(θ) + φ′2(θ) ,

and thus

gT
( d
dθ
T,

d

dθ
T
)

= 1 + φ′′(θ)
φ(θ) ,

which together with (2.5) yields

k =
√

gT
( d
ds
T,

d

ds
T
)

=

√
1 + φ′′

φ

∣∣∣dθ
ds

∣∣∣ =
∣∣∣dΘ
ds

∣∣∣ .
As in the Euclidean case, we call

kr = dΘ
ds

the relative curvature of curve c. Now let c = c(s) be a smooth simple closed curve
in (R2, F ), and let Ω be the finite domain with boundary c. The positive orientation
of c is defined in a way such that Ω is on the left when goes forward along c. As
the curve in Euclidean plane (R2, | · |), it is well-known that the incremental of the
polar angle along c is 2π, namely, ∮

c

dθ = 2π .

Hence, the total curvature of c is∮
c

kr ds =
∮
c

dΘ =
∫ 2π

0

√
1 + φ′′

φ
dθ = Λ ,

namely, we have proved the following

Theorem 3.1. The total curvature of any smooth simple closed curve in (R2, F )
equals to the total Landsberg angle of F .
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As in the Euclidean case, Theorem 3.1 can be generalized to the case when c
is only piecewise smooth by replacing the curve near the non-smooth points with
some smooth curves and then taking the limit.

Corollary 3.2. Let c = c(s) : [0, L]→ (R2, F ) is a piecewise smooth simple closed
curve with non-smooth points c(si), i = 1, · · · , n. Let αi = ](T (si − 0), T (si +
0)), ci = {c(s) : si ≤ s ≤ si+1}, 1 ≤ i ≤ n−1, and cn = {c(s) : sn ≤ s ≤ L}∪{c(s) :
0 ≤ s ≤ s1}, then

n∑
i=1

∫
ci

kr ds+
n∑
i=1

αi = Λ .

In particular, the sum of oriented exterior Landsberg angles of any polygon is equal
to the total Landsberg angle.

It is clear that when F is reversible, then the Landsberg angle of any straight
angle is Λ

2 , and we can prove the following corollary just as in the Euclidean case.

Corollary 3.3. The sum of interior Landsberg angles of any n-gon in a reversible
Minkowski plane is n−2

2 Λ.

4. A new characterization of Euclidean plane

In this last section we shall provide a new characterization of Euclidean plane
among Minkowski planes. Let us first introduce a function defined by Professor
Zhongmin Shen. Let (Rn, F ) be a Minkowski n-space. For vector y ∈ Rn\{0}, we
obtain a hyperplane

Wy = {u ∈ Rn : gy(y, u) = 0} .
Taking a basis e1, . . . , en of Rn such that e1 = y, and e2, . . . , en is a basis for Wy.
Let

Bn =
{

(yi) ∈ Rn : F
( n∑
i=1

yiei

)
< 1
}
,

Bn−1
y =

{
(ya) ∈ Rn−1 : F

( n∑
a=2

yaea

)
< 1
}
.

In [5] Shen defined a function ζ̃ = ζ̃(y) on (Rn\{0}, F ) as following:

ζ̃(y) = vol(Bn)
vol(Bn−1) ·

vol(Bn−1
y )

F (y) vol(Bn) .

Here Bk denotes the k-dimensional unit ball in Euclidean k-space Rk. Clearly,
function ζ̃ is independent of the choice of basis e2, . . . , en for Wy, and ζ̃ = 1 when
F is Euclidean. Shen asked that whether or not F is Euclidean when ζ̃ = 1. In the
following we shall consider the problem of this type for n = 2. For this purpose
let us first introduce the reversibility λ = λ(F ) of a Minkowski plane (R2, F ) as
following (see [4]):

λ = λ(F ) = max
y 6=0

F (y)
F (−y) .
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In term of polar expression, we have

(4.1) λ = max
θ∈[0,2π]

φ(θ)
φ(θ + π)

We consider a function ζ = ζ(y) on a Minkowski plane (R2\{0}, F ) as following:

(4.2) ζ(y) = Λ
4λ ·

vol(B1
y)

F (y) vol(B2) .

It is clearly that up to a constant, ζ is essentially the same as ζ̃. We have the
following result which provides a new characterization for Euclidean plane among
Minkowski planes.

Theorem 4.1. Let ζ = ζ(y) be a function on Minkowski plane (R2\{0}, F ) defined
by (4.2). Then F is Euclidean if and only if ζ(y) = 1 for any y 6= 0.

Proof. The necessity is trivial, so we need only to prove the sufficiency. Assume
that ζ(y) = 1 for any y 6= 0. Let F = r · φ(θ) be the polar expression of F , and
let y = (cos θ, sin θ). Taking e1 = y, e2 = (cos θ, sin θ), where θ = θ + θ̃, and θ̃
is determined by (3.4). Then by (2.1)–(2.3) it can be verified that e2 ∈ Wy, and
consequently,

(4.3) vol(B1
y) = 1

φ(θ)
+ 1
φ(θ + π)

.

In the following we need to compute vol(B2). Recall that

B2 = {(y1, y2) ∈ R2 : F (y1e1 + y2e2) < 1} .

Let

Ω = {(y1, y2) ∈ (R2, F ) : F (y1, y2) < 1} ,

then the following transformation

(y1, y2) 7→ (y1, y2) = (y1 cos θ + y2 cos θ, y1 sin θ + y2 sin θ)

maps B2 onto Ω, and

dy1 ∧ dy2 = (dy1 cos θ + dy2 cos θ) ∧ (dy1 sin θ + dy2 sin θ)

= sin(θ − θ)dy1 ∧ dy2 = φ(θ)√
φ2(θ) + φ′2(θ)

dy1 ∧ dy2 ,
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and thus

vol(B2) =
∫
B2
dy1 ∧ dy2 =

√
φ2(θ) + φ′2(θ)

φ(θ)

∫
Ω
dy1 ∧ dy2

=
√
φ2(θ) + φ′2(θ)

φ(θ)

∫ 2π

0
dξ

∫ 1
φ(ξ)

0
r dr

=
√
φ2(θ) + φ′2(θ)

2φ(θ)

∫ 2π

0

dξ

φ2(ξ) .(4.4)

From (4.3), (4.4) and the assumption that ζ(y) = 1 for any y 6= 0, we have

(4.5) Λ
λ

(
1

φ(θ)
+ 1
φ(θ + π)

)
= 2
√
φ2(θ) + φ′2(θ)

∫ 2π

0

dξ

φ2(ξ) ,

which together with (4.1) yields

(4.6) Λ
φ(θ)

≥ Λ
2λ

(
1

φ(θ)
+ 1
φ(θ + π)

)
=
√
φ2(θ) + φ′2(θ)

∫ 2π

0

dξ

φ2(ξ) .

Note that
dθ = dθ + dθ̃ = φ2(θ) + φ(θ)φ′′(θ)

φ2(θ) + φ′2(θ) dθ ,

and the incremental of θ is 2π when θ goes from 0 to 2π, it is easy to know from
(4.6) that

Λ2 ·
∫ 2π

0

dθ

φ2(θ)
≥
∫ 2π

0

(
φ2(θ) + φ(θ)φ′′(θ)

)
dθ
(∫ 2π

0

dθ

φ2(θ)

)2
,

which together with the Cauchy-Schwartz inequality implies that

Λ2 ≥
∫ 2π

0

(
φ2(θ) + φ(θ)φ′′(θ)

)
dθ

∫ 2π

0

dθ

φ2(θ) ≥
(∫ 2π

0

√
1 + φ′′

φ
dθ
)2

= Λ2 .

As the result, above inequality becomes an equality, and

φ2(θ) + φ(θ)φ′′(θ) = C

φ2(θ)
for some positive constant C. It is equivalent to det(gij(y)) = C by (2.4), and thus
the mean Cartan tensor Ik = 1

2
∂
∂yk

log
(

det(gij(y))
)

= 0, and by Deiche’s theorem
[3], F is Euclidean. So we are done.

�
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