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OPTIMAL SEQUENTIAL PROCEDURES

WITH BAYES DECISION RULES

Andrey Novikov

In this article, a general problem of sequential statistical inference for general discrete-
time stochastic processes is considered. The problem is to minimize an average sample
number given that Bayesian risk due to incorrect decision does not exceed some given
bound. We characterize the form of optimal sequential stopping rules in this problem. In
particular, we have a characterization of the form of optimal sequential decision procedures
when the Bayesian risk includes both the loss due to incorrect decision and the cost of
observations.

Keywords: sequential analysis, discrete-time stochastic process, dependent observations,
statistical decision problem, Bayes decision, randomized stopping time, op-
timal stopping rule, existence and uniqueness of optimal sequential decision
procedure

Classification: 62L10, 62L15, 62C10, 60G40

1. INTRODUCTION

Let X1, X2, . . . , Xn, . . . be a discrete-time stochastic process, whose distribution
depends on an unknown parameter θ, θ ∈ Θ. In this article, we consider a general
problem of sequential statistical decision making based on the observations of this
process.

Let us suppose that for any n = 1, 2, . . . , the vector (X1, X2, . . . , Xn) has a
probability “density” function

fnθ = fnθ (x1, x2, . . . , xn) (1)

(Radon–Nikodym derivative of its distribution) with respect to a product-measure

µn = µ⊗ µ⊗ · · · ⊗ µ,

with some σ-finite measure µ on the respective space. As usual in the Bayesian con-
text, we suppose that fnθ (x1, x2, . . . , xn) is measurable with respect to (θ, x1, . . . , xn),
for any n = 1, 2, . . . .

Let us define a sequential statistical procedure as a pair (ψ, δ), being ψ a (ran-
domized) stopping rule,

ψ = (ψ1, ψ2, . . . , ψn, . . . ) ,
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and δ a decision rule
δ = (δ1, δ2, . . . , δn, . . . ) ,

supposing that
ψn = ψn(x1, x2, . . . , xn)

and
δn = δn(x1, x2, . . . , xn)

are measurable functions, ψn(x1, . . . , xn) ∈ [0, 1], δn(x1, . . . , xn) ∈ D (a decision
space), for any observation vector (x1, . . . , xn), for any n = 1, 2, . . . (see, for example,
[1, 7, 8, 9, 21]).

The interpretation of these elements is as follows.
The value of ψn(x1, . . . , xn) is interpreted as the conditional probability to stop

and proceed to decision making, given that that we came to stage n of the experiment
and that the observations up to stage n were (x1, x2, . . . , xn). If there is no stop, the
experiment continues to the next stage and an additional observation xn+1 is taken.
Then the rule ψn+1 is applied to x1, . . . , xn, xn+1 in the same way as above, etc.,
until the experiment eventually stops.

When the experiments stops at stage n, being (x1, . . . , xn) the data vector ob-
served, the decision specified by δn(x1, . . . , xn) is taken, and the sequential statistical
experiment stops.

The stopping rule ψ generates, by the above process, a random variable τψ (ran-
domized stopping time), which may be defined as follows. Let U1, U2 . . . , Un, . . .

be a sequence of independent and identically distributed (i.i.d.) random variables
uniformly distributed on [0, 1] (randomization variables), such that the process
(U1, U2, . . . ) is independent of the process of observations (X1, X2, . . . ). Then let us
say that τψ = n if, and only if,

U1 > ψ1(X1), . . . , Un−1 > ψn−1(X1, . . . , Xn−1), and Un ≤ ψn(X1, . . .Xn),

n = 1, 2, . . . .
It is easy to see that the distribution of τψ is given by

Pθ(τψ = n) = Eθ(1 − ψ1)(1 − ψ2) . . . (1 − ψn−1)ψn, n = 1, 2, . . . . (2)

In (2), ψn stands for ψn(X1, . . . , Xn), unlike its previous definition as ψn =
ψn(x1, . . . , xn). We use this “duality” throughout the paper, applying, for any
Fn = Fn(x1, . . . , xn) or Fn = Fn(X1, . . .Xn) the following general rule: when Fn
is under the probability or expectation sign, it is Fn(X1, . . . , Xn), otherwise it is
Fn(x1, . . . , xn).

Let w(θ, d) be a non-negative loss function (measurable with respect to (θ, d),
θ ∈ Θ, d ∈ D) and π1 any probability measure on Θ. We define the average loss of
the sequential statistical procedure (ψ, δ) as

W (ψ, δ) =
∞
∑

n=1

∫

[Eθ(1 − ψ1) . . . (1 − ψn−1)ψnw(θ, δn)] dπ1(θ). (3)

and its average sample number, given θ, as

N(θ;ψ) = Eθτψ (4)
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(we suppose that N(θ;ψ) = ∞ if
∑∞

n=1
Pθ(τψ = n) < 1 in (2)).

Let us also define its ”weighted” value

N(ψ) =

∫

N(θ;ψ) dπ2(θ), (5)

where π2 is some probability measure on Θ, giving “weights” to the particular values
of θ.

Our main goal is minimizing N(ψ) over all sequential decision procedures (ψ, δ)
subject to

W (ψ, δ) ≤ w, (6)

where w is some positive constant, supposing that π1 in (3) and π2 in (5) are,
generally speaking, two different probability measures. We only consider the cases
when there exist procedures (ψ, δ) satisfying (6).

Sometimes it is necessary to put the risk under control in a more detailed way.
Let Θ1, . . . ,Θk be some subsets of the parametric space such that Θi

⋂

Θj = ∅ if
i 6= j, i, j = 1, . . . , k. Then, instead of (6), we may want to guarantee that

Wi(ψ, δ) =
∞
∑

n=1

∫

Θi

Eθ(1 − ψ1) . . . (1 − ψn−1)ψnw(θ, δn) dπ1(θ) ≤ wi, (7)

with some wi > 0, for any i = 1, . . . , k, when minimizing N(ψ).
To advocate restricting the sequential procedures by (7), let us see a particular

case of hypothesis testing.
Let H1 : θ = θ1 and H2 : θ = θ2 be two simple hypotheses about the parameter

value, and let

w(θ, d) =











1 if θ = θ1 and d = 2,

1 if θ = θ2 and d = 1,

0 otherwise,

and π1({θ1}) = π, π1({θ2}) = 1− π, with some 0 < π < 1. Then, letting Θi = {θi},
i = 1, 2, in (7), we have that

W1(ψ, δ) = πPθ1( reject H1) = πα(ψ, δ)

and
W2(ψ, δ) = (1 − π)Pθ2(accept H1) = (1 − π)β(ψ, δ),

where α(ψ, δ) and β(ψ, δ) are the type I and type II error probabilities. Thus, taking
in (7) w1 = πα, w2 = (1−π)β, with some α, β ∈ (0, 1), we see that (7) is equivalent
to

α(ψ, δ) ≤ α, and β(ψ, δ) ≤ β. (8)

Let now π2({θ0}) = 1 and suppose that the observations are i.i.d. Then our problem
of minimizing N(ψ) = N(θ0;ψ) under restrictions (8) is the classical Wald and
Wolfowitz problem of minimizing the expected sample size (see [22]). It is well
known that its solution is given by the sequential probability ratio test (SPRT), and
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that it minimizes the expected sample size under the alternative hypothesis as well
(see [12, 22]).

On the other hand, if π2({θ}) = 1 with θ 6= θ0 and θ 6= θ1, we have the problem
known as the modified Kiefer–Weiss problem, the problem of minimizing the ex-
pected sample size, under θ, among all sequential tests subject to (8) (see [10, 23]).
The general structure of the optimal sequential test in this problem is given by
Lorden [12] for i.i.d. observations.

So, we see that considering natural particular cases of sequential procedures sub-
ject to (7) and using different choices of π1 in (3) and π2 in (5) we extend known
problems for i.i.d. observations to the case of general discrete-time stochastic pro-
cesses.

The method we use in this article was originally developed for testing of two
hypotheses [17], then extended for multiple hypothesis testing problems [15], and to
composite hypothesis testing [18]. An extension of the same method for hypothesis
testing problems when control variables are present can be found in [14].

A more general, than used in this article, setting for Bayes-type decision problems,
where both the cost of observations and the loss functions depend on the true value
of the parameter and on the observations, is considered in [16].

From this time on, our aim will be minimizing N(ψ), defined by (5), in the class
of sequential statistical procedures subject to (7).

In Section 2, we reduce the problem to an optimal stopping problem. In Section 3,
we give a solution to the optimal stopping problems in the class of truncated stopping
rules, and in Section 4 in some natural class of non-truncated stopping rules. In
particular, in Section 4 we give a solution to the problem of minimizing N(ψ) in
the class of all statistical procedures satisfying Wi(ψ, δ) ≤ wi, i = 1, . . . , k (see
Remark 4.10).

2. REDUCTION TO AN OPTIMAL STOPPING PROBLEM

In this section, the problem of minimizing the average sample number (5) over all
sequential procedures subject to (7) will be reduced to an optimal stopping problem.
This is a usual treatment of conditional problems in sequential hypothesis testing
(see, for example, [2, 3, 12, 13, 19]). We will use the same ideas to treat the general
statistical decision problem described above.

Let us define the following Lagrange-multiplier function:

L(ψ, δ) = L(ψ, δ;λ1, . . . , λk) = N(ψ) +

k
∑

i=1

λiWi(ψ, δ) (9)

where λi ≥ 0, i = 1, . . . , k are some constant multipliers.
Let ∆ be a class of sequential statistical procedures.
The following Theorem is a direct application of the method of Lagrange multi-

pliers to the above optimization problem.

Theorem 2.1. Let there exist λi > 0, i = 1, . . . , k, and a procedure (ψ∗, δ∗) ∈ ∆
such that for any procedure (ψ, δ) ∈ ∆

L(ψ∗, δ∗;λ1, . . . , λk) ≤ L(ψ, δ;λ1, . . . , λk) (10)
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holds and such that

Wi(ψ
∗, δ∗) = wi, i = 1, . . . k. (11)

Then for any test (ψ, δ) ∈ ∆ satisfying

Wi(ψ, δ) ≤ wi, i = 1, 2, . . . , k, (12)

it holds
N(ψ∗) ≤ N(ψ). (13)

The inequality in (13) is strict if at least one of the inequalities (12) is strict.

P r o o f . Let (ψ, δ) ∈ ∆ be any procedure satisfying (12). Because of (10),

L(ψ∗, δ∗;λ1, . . . , λk) = N(ψ∗) +
k

∑

i=1

λiWi(ψ
∗, δ∗) ≤ L(ψ, δ;λ1, . . . , λk) (14)

= N(ψ) +
k

∑

i=1

λiWi(ψ, δ) ≤ N(ψ) +
k

∑

i=1

λiwi, (15)

where to get the last inequality we used (12). Taking into account conditions (11)
we get from this that

N(ψ∗) ≤ N(ψ).

To get the last statement of the theorem we note that if N(ψ∗) = N(ψ) then
there are equalities in (14) – (15) instead of the inequalities, which is only possible
if Wi(ψ, φ) = wi for any i = 1, . . . , k. �

Remark 2.2. It is easy to see that defining a new loss function w′(θ, d) which
is equal to λiw(θ, d) whenever θ ∈ Θi, i = 1, . . . , k, we have that the weighted
average loss W (ψ, δ) defined by (3) with w(θ, d) = w′(θ, d) coincides with the second
summand in (9).

Because of this, we treat in what follows only the case of one summand (k = 1)
in (9), being the Lagrange-multiplier function defined as

L(ψ, δ;λ) = N(ψ) + λW (ψ, δ). (16)

It is obvious that the problem of minimization of (16) is equivalent to that of
minimization of

R(ψ, δ; c) = cN(ψ) +W (ψ, δ), (17)

where c > 0 is any constant, and, in the rest of the article, we will solve the problem
of minimizing (17), instead of (16). This is because the problem of minimization of
(17) is interesting by itself, without its relation to the conditional problem above.
For example, if π2 = π1 = π, it is easy to see that it is equivalent to the problem of
Bayesian sequential decision-making, with the prior distribution π and a fixed cost
c per observation. The latter set-up is fundamental in the sequential analysis (see
[7, 8, 9, 21, 24], among many others).
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Because of Theorem 2.1, from this time on, our main focus will be on the unre-
stricted minimization of R(ψ, δ; c), over all sequential decision procedures.

Let us suppose, additionally to the assumptions of Introduction, that for any
n = 1, 2 . . . there exists a decision function δBn = δBn (x1, . . . , xn) such that for any
d ∈ D

∫

w(θ, d)fnθ (x1, . . . , xn) dπ1(θ) ≥

∫

w(θ, δBn (x1, . . . , xn))fnθ (x1, . . . , xn) dπ1(θ)

(18)
for µn-almost all (x1, . . . , xn). Then δBn is called the Bayesian decision function based
on n observations. We do not discuss in this article the questions of the existence
of Bayesian decision functions, we just suppose that they exist for any n = 1, 2, . . .
referring, e. g., to [21] for an extensive underlying theory.

Let us denote by ln = ln(x1, . . . , xn) the right-hand side of (18). It easily follows
from (18) that

∫

lndµ
n = inf

δn

∫

Eθw(θ, δn) dπ1(θ), (19)

thus
∫

l1 dµ1 ≥

∫

l2 dµ2 ≥ . . . .

Because of that, we suppose that
∫

l1(x) dµ(x) <∞

which makes all the Bayesian risks (19) finite, for any n = 1, 2, . . . .
Let δB = (δB1 , δ

B
2 , . . . ). The following Theorem shows that the only decision rules

worth our attention are the Bayesian ones. Its “if”-part is, in essence, Theorem
5.2.1 [9].

Let for any n = 1, 2, . . . and for any stopping rule ψ

sψn = (1 − ψ1) . . . (1 − ψn−1)ψn,

and let
Sψn = {(x1, . . . , xn) : sψn(x1, . . . , xn) > 0}

for all n = 1, 2, . . . .

Theorem 2.3. For any sequential procedure (ψ, δ)

W (ψ, δ) ≥W (ψ, δB) =

∞
∑

n=1

∫

sψn ln dµn. (20)

Supposing that the right-hand side of (20) is finite, the equality in (20) is only
possible if

∫

w(θ, δn)fnθ dπ1(θ) =

∫

w(θ, δBn )fnθ dπ1(θ)

µn-almost everywhere on Sψn for all n = 1, 2, . . . .
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P r o o f . It is easy to see that W (ψ, δ) on the left-hand side of (20) has the following
equivalent form:

W (ψ, δ) =

∞
∑

n=1

∫

sψn

∫

w(θ, δn)fnθ dπ1(θ) dµn. (21)

Applying (18) under the integral sign in each summand in (21) we immediately
have:

W (ψ, δ) ≥
∞
∑

n=1

∫

sψn

∫

w(θ, δBn )fnθ dπ1(θ) dµn = W (ψ, δB). (22)

If W (ψ, δB) <∞, then (22) is equivalent to

∞
∑

n=1

∫

sψn∆n dµn ≥ 0,

where

∆n =

∫

w(θ, δn)fnθ dπ1(θ) −

∫

w(θ, δBn )fnθ dπ1(θ),

which is, due to (18), non-negative µn-almost everywhere for all n = 1, 2, . . . . Thus,
there is an equality in (22) if and only if ∆n = 0 µn-almost everywhere on Sψn =
{sψn > 0} for all n = 1, 2, . . . . �

Because of (17), it follows from Theorem 2.3 that for any sequential decision
procedure (ψ, δ)

R(ψ, δ; c) ≥ R(ψ, δB ; c). (23)

The following lemma gives the right-hand side of (23) a more convenient form.
For any probability measure π on Θ let us denote

P π(τψ = n) ≡

∫

Pθ(τψ = n) dπ(θ) =

∫

Eθs
ψ
n dπ(θ),

for n = 1, 2, . . . Respectively, P π(τψ <∞) =
∑∞

n=1
P π(τψ = n), and

Eπτψ =

∫

Eθτψ dπ(θ).

Lemma 2.4. If
P π2(τψ <∞) = 1 (24)

then

R(ψ, δB; c) =

∞
∑

n=1

∫

sψn (cnfn + ln) dµn, (25)

where, by definition,

fn = fn(x1, . . . , xn) =

∫

fnθ (x1, . . . , xn) dπ2(θ). (26)
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P r o o f . By Theorem 2.3,

R(ψ, δB; c) = cN(ψ) +W (ψ, δB) = cN(ψ) +
∞
∑

n=1

∫

sψn ln dµn. (27)

If now (24) is fulfilled, then, by the Fubini theorem,

N(ψ) =

∫ ∞
∑

n=1

nEθs
ψ
n dπ2(θ) =

∞
∑

n=1

∫

Eθns
ψ
n dπ2(θ)

=

∞
∑

n=1

∫

sψn

(

n

∫

fnθ dπ2(θ)

)

dµn =

∞
∑

n=1

∫

sψnnf
n dµn,

so, combining this with (27), we get (25). �

Let us denote

R(ψ) = R(ψ; c) = R(ψ, δB; c). (28)

By Lemma 2.4,

R(ψ) =











∞
∑

n=1

∫

sψn (cnfn + ln) dµn, if P π2(τψ <∞) = 1,

∞, otherwise.

(29)

The aim of what follows is to minimize R(ψ) over all stopping rules. In this way,
our problem of minimization of R(ψ, δ) is reduced to an optimal stopping problem.

3. OPTIMAL TRUNCATED STOPPING RULES

In this section, as a first step, we characterize the structure of optimal stopping rules
in the class FN , N ≥ 2, of all truncated stopping rules, i. e., such that

ψ = (ψ1, ψ2, . . . , ψN−1, 1, . . . ) (30)

(if (1−ψ1) . . . (1−ψn) = 0 µn-almost everywhere for some n < N , we suppose that
ψk ≡ 1 for any k > n, so FN ⊂ FN+1, N = 1, 2, . . . ).

Obviously, for any ψ ∈ FN

R(ψ) = RN (ψ) =

N−1
∑

n=1

∫

sψn(cnfn + ln) dµn +

∫

t
ψ
N

(

cNfN + lN
)

dµN ,

where for any n = 1, 2, . . .

tψn = tψn(x1, . . . , xn) = (1 − ψ1(x1))(1 − ψ2(x1, x2)) . . . (1 − ψn−1(x1, . . . , xn−1))

(we suppose, by definition, that tψ1 ≡ 1).
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Let us introduce a sequence of functions V Nn , n = 1, . . . , N , which will define
optimal stopping rules. Let V NN ≡ lN , and recursively for n = N − 1, N − 2, . . . 1

V Nn = min{ln, Q
N
n }, (31)

where

QNn = QNn (x1, . . . , xn) = cfn(x1, . . . , xn) +

∫

V Nn+1(x1, . . . , xn+1) dµ(xn+1), (32)

n = 0, 1, . . . , N −1 (we assume that f0 ≡ 1). Please, remember that all V Nn and QNn
implicitly depend on the “unitary observation cost” c.

The following theorem characterizes the structure of optimal stopping rules in
FN .

Theorem 3.1. For all ψ ∈ FN

RN (ψ) ≥ QN0 . (33)

The lower bound in (33) is attained by a ψ ∈ FN if and only if

I{ln<QNn } ≤ ψn ≤ I{ln≤QNn } (34)

µn-almost everywhere on

Tψn = {(x1, . . . , xn) : tψn(x1, . . . , xn) > 0},

for all n = 1, 2, . . . , N − 1.

The p r o o f of Theorem 3.1 can be conducted following the lines of the proof of
Theorem 3.1 in [17] (in a less formal way, the same routine is used to obtain Theo-
rem 4 in [15]). In fact, both of these theorems are particular cases of Theorem 3.1.

Remark 3.2. Despite that ψ satisfying (34) is optimal among all truncated stop-
ping rules in FN , it only makes practical sense if

l0 = inf
d

∫

w(θ, d) dπ1(θ) ≥ QN0 . (35)

Indeed, if (35) does not hold, we can, without taking any observation, make any
decision d0 such that

∫

w(θ, d0) dπ1(θ) < QN0 , and this guarantees that this trivial
procedure (something like “(ψ0, d0)” with R(ψ0, d0) =

∫

w(θ, d0) dπ1(θ) < QN0 )
performs better than the best procedure with the optimal stopping time in FN .

Because of this, V N0 , defined by (31) for n = 0, may be considered the “minimum
value of R(ψ)”, when taking no observations is allowed.
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Remark 3.3. When π2 in (5) coincides with π1 in (3) (Bayesian setting), an op-
timal truncated (non-randomized) stopping rule for minimizing (17) is provided by
Theorem 5.2.2 in [9]. Theorem 3.1 describes the class of all randomized optimal
stopping rules for the same problem in this particular case. This may be irrelevant
if one is interested in the purely Bayesian problem, because any of these stopping
rules provides the same minimum value of the risk.

Nevertheless, this extension of the class of optimal procedures may be useful for
complying with (11) in Theorem 2.1 when seeking for optimal sequential procedures
for the original conditional problem (minimization ofN(ψ) given that Wi(ψ, δ) ≤ wi,
i = 1, . . . , k, see Introduction and the discussion therein). This is very much like in
non-sequential hypothesis testing, where the randomization is crucial for finding the
optimal level-α test in the Neyman-Pearson problem (see, for example, [11]).

4. OPTIMAL NON-TRUNCATED STOPPING RULES

In this section, we solve the problem of minimization of R(ψ) in natural classes of
non-truncated stopping rules ψ.

Let ψ be any stopping rule. Define

RN (ψ) = RN (ψ; c) =

N−1
∑

n=1

∫

sψn(cnfn + ln) dµn +

∫

t
ψ
N

(

cNfN + lN
)

dµN . (36)

This is the “risk” (17) for ψ truncated at N , i. e. the rule with the components
ψN = (ψ1, ψ2, . . . , ψN−1, 1, . . . ): RN (ψ) = R(ψN ).

Because ψN is truncated, the results of the preceding section apply, in particular,
the lower bound of (33). Very much like in [17] and in [15], our aim is to pass to
the limit, as N → ∞, in order to obtain a lower bound for R(ψ), and conditions for
attaining this bound.

It is easy to see that V Nn (x1, . . . , xn) ≥ V N+1
n (x1, . . . , xn) for all N ≥ n, and for

all (x1, . . . , xn), n ≥ 1 (see, for example, Lemma 3.3 in [17]). Thus, for any n ≥ 1
there exists

Vn = Vn(x1, . . . , xn) = lim
N→∞

V Nn (x1, . . . , xn),

(Vn implicitly depend on c, as V Nn do). It immediately follows from the dominated
convergence theorem that for all n ≥ 1

lim
N→∞

QNn (x1, . . . , xn) = cfn(x1, . . . , xn) +

∫

Vn+1(x1, . . . , xn+1) dµ(xn+1) (37)

(see (32)). Let Qn = Qn(x1, . . . , xn) = limN→∞QNn (x1, . . . , xn).
In addition, passing to the limit, as N → ∞, in (31) we obtain

Vn = min{ln, Qn}, n = 1, 2, . . . .

Let now F be any class of stopping rules such that ψ ∈ F entails RN (ψ) → R(ψ),
as N → ∞ (let us call such stopping rules truncatable). It is easy to see that such
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classes exist, for example, any FN has this property. Moreover, we will assume that
all truncated stopping rules are included in F , i. e. that

⋃

N≥1
FN ⊂ F .

It follows from Theorem 3.1 now that for all ψ ∈ F

R(ψ) ≥ Q0. (38)

The following lemma states that, in fact, the lower bound in (38) is the infimum of
the risk R(ψ) over ψ ∈ F .

Lemma 4.1.

Q0 = inf
ψ∈F

R(ψ).

The p r o o f of Lemma 4.1 is very close to that of Lemma 3.5 in [17] (see also
Lemma 6 in [15]) and is omitted here.

Remark 4.2. Again (see Remark 3.3), if π1 = π2, Lemma 4.1 is essentially Theorem
5.2.3 in [9] (see also Section 7.2 of [8]) .

The following Theorem gives the structure of optimal stopping rules in F .

Theorem 4.3. If there exists ψ ∈ F such that

R(ψ) = inf
ψ′∈F

R(ψ′), (39)

then
I{ln<Qn} ≤ ψn ≤ I{ln≤Qn} (40)

µn-almost everywhere on Tψn for all n = 1, 2, . . . .

On the other hand, if a stopping rule ψ satisfies (40) µn-almost everywhere on
Tψn for all n = 1, 2, . . . , and ψ ∈ F , then ψ satisfies (39) as well.

The p r o o f of Theorem 4.3 is very close to the proof of Theorem 3.2 in [17] or
Theorem 6 in [15] and is omitted here.

It follows from Theorem 4.3 that “ψ ∈ F” is a sufficient condition for the op-
timality of a stopping rule ψ satisfying (40). In the hypothesis testing problems
considered in [17] and in [15], there are large classes of problems (called truncatable)
for which RN (ψ) → R(ψ), as N → ∞, for all stopping times ψ. In this article, we
also identify the problems where this is the case.

The following Lemma gives a necessary and sufficient condition for truncatablity
of a stopping rule.

Lemma 4.4. A stopping rule ψ with R(ψ) <∞ is truncatable if and only if

∫

t
ψ
N lN dµN → 0, as N → ∞. (41)

If R(ψ) = ∞, then RN (ψ) → ∞, N → ∞.
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P r o o f . Let ψ be such that R(ψ) <∞.
Suppose that (41) is fulfilled. Then, by (36)

R(ψ)−RN (ψ) =

∞
∑

n=N

∫

sψn(cnfn + ln) dµn− c

∫

t
ψ
NNf

NdµN +

∫

t
ψ
N lN dµN . (42)

The first summand converges to zero, as N → ∞, being the tail of a convergent
series (this is because R(ψ) <∞).

The third summand in (42) goes to 0 as N → ∞, because of (41).
The integral in the second summand in (42) is equal to

NP π2(τψ ≥ N) ≤ Eπ2τψI{τψ≥N} → 0,

as N → ∞, because Eπ2τψ <∞ (this is due to R(ψ) <∞ again).
It follows from (42) now that RN (ψ) → R(ψ) <∞ as N → ∞.
Let us suppose now that RN (ψ) → R(ψ) <∞ as N → ∞. For the same reasons

as above, the first two summands on the right-hand side of (42) tend to 0 as N → ∞,
therefore so does the third, i. e. (41) follows. The first assertion of Lemma 4.4 is
proved.

If R(ψ) = ∞, this may be because P π2(τψ <∞) < 1, or, if not, because

∞
∑

n=1

∫

sψn(cnfn + ln) dµn = ∞.

In the latter case, obviously,

RN (ψ) ≥
N−1
∑

n=1

∫

sψn(cnfn + ln) dµn → ∞, as N → ∞.

In the former case,

RN (ψ) ≥ c

∫

t
ψ
NNf

N dµN = cNP π2(τψ ≥ N) → ∞,

as N → ∞, as well. �

Let us say that the problem (of minimization ofR(ψ)) is truncatable if all stopping
rule ψ are truncatable.

Corollary 4.5 below gives some practical sufficient conditions for truncatability of
a problem.

Corollary 4.5. The problem of minimization of R(ψ) is truncatable if
i) the loss function w is bounded, and

R(ψ) <∞ implies that P π1(τψ <∞) = 1, (43)

or
ii)

∫

lN dµN → 0, (44)

as N → ∞.
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P r o o f . If w(θ, d) < M <∞ for any θ and d, then, by the definition of lN ,

∫

t
ψ
N lN dµN ≤M

∫

t
ψ
N

(
∫

fNθ dπ1(θ)

)

dµN = MP π1(τψ ≥ N). (45)

If now R(ψ) < ∞, then by (43) the right-hand side of (45) tends to 0, as N → ∞,
i. e. (41) is fulfilled for any ψ such that R(ψ) < ∞. Thus, by Lemma 4.4 any ψ is
truncatable.

If (44) is fulfilled, then (41) is satisfied for any ψ. Again, by Lemma 4.4 any ψ is
truncatable. �

Remark 4.6. Condition i) of Corollary 4.5 is fulfilled for any Bayesian hypothesis
testing problem (i. e. when π1 = π2 = π) with bounded loss function (see, for
example, [17] and [15]). Indeed, in this case R(ψ) < ∞ implies Eπτψ < ∞, so, in
particular, P π(τψ <∞) = 1.

Remark 4.7. It is easy to see that Condition ii) of Corollary 4.5 is equivalent to

∫

Θ

Eθw(θ, δBN ) dπ1(θ) → 0, N → ∞,

i. e. that the Bayesian risk, with respect to the prior distribution π1, of an optimal
procedure based on sample of a fixed size N , vanishes as N → ∞. This is a very
typical behavior of statistical risks.

The following Theorem is an immediate consequence of Theorem 4.3.

Theorem 4.8. Let the problem of minimization of R(ψ) be truncatable, and let F

be the set of all stopping rules. Then

R(ψ) = inf
ψ′∈F

R(ψ′) (46)

if and only if
I{ln<Qn} ≤ ψn ≤ I{ln≤Qn} (47)

µn-almost everywhere on Tψn for all n = 1, 2, . . . .

Remark 4.9. Once again (see Remark 3.2), the optimal stopping rule ψ from The-
orem 4.8 (and Theorem 4.3) only makes practical sense if l0 ≥ Q0 = infψ∈F R(ψ),
because otherwise the trivial rule, which does not take any observation, performs
better than ψ, from the point of view of minimization of R(ψ).

Remark 4.10. Combining Theorems 2.1, 2.3, and 4.8 we immediately have the
following solution to the conditional problem posed in Introduction.

Let λ1, . . . , λk be arbitrary positive constants. Let δBn , n = 1, 2, . . . be Bayesian,
with respect to π1, decision rules for the “loss function”

w′(θ, d) =

k
∑

i=1

λiw(θ, d)IΘi (θ),
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i. e. such that for all d ∈ D

k
∑

i=1

λi

∫

Θi

w(θ, d)fnθ dπ1(θ) ≥ ln =

k
∑

i=1

λi

∫

Θi

w(θ, δBn )fnθ dπ1(θ) (48)

µn-almost everywhere (remember that δBn = δBn (x1, . . . , xn) and fnθ = fnθ (x1, . . . , xn)).
For any N ≥ 1 define V NN = lN , and V Nn = min{ln, QNn } for n = N − 1, N −

2, . . . , 1, where QNn = fn +
∫

ln+1 dµ(xn+1), with fn =
∫

Θ
fnθ dπ2(θ) (cf. (31) and

(32)).
Let also Vn = limN→∞ V Nn and Qn = limN→∞QNn , n = 1, 2, . . . .
Suppose, finally, that the problem is truncatable (see Corollary 4.5 for sufficient

conditions for that).
Let ψ = (ψ1, ψ2, . . . ) be any stopping rule satisfying

I{ln<Qn} ≤ ψn ≤ I{ln≤Qn} (49)

µn-almost everywhere on Tψn for all n = 1, 2, . . . .
Then for any sequential decision procedure (ψ′, δ) such that

Wi(ψ
′, δ) ≤Wi(ψ, δ

B), i = 1, . . . , k, (50)

it holds
N(ψ) ≤ N(ψ′). (51)

The inequality in (51) is strict if at least one of the inequalities in (50) is strict.
If there are equalities in all of the inequalities in (50) and (51), then

I{ln<Qn} ≤ ψ′
n ≤ I{ln≤Qn} (52)

µn-almost everywhere on Tψ
′

n for all n = 1, 2, . . . , and

k
∑

i=1

λi

∫

Θi

w(θ, δn)fnθ dπ1(θ) =

k
∑

i=1

λi

∫

Θi

w(θ, δBn )fnθ dπ1(θ)

µn-almost everywhere on Sψ
′

n for all n = 1, 2, . . . .

For Bayesian problems (when π1 = π2 = π) Theorem 4.8 can be reformulated in the
following equivalent way.

Let

Rn =
ln

fn
=

∫

Θ
fnθ w(θ, δBn ) dπ(θ)
∫

Θ
fnθ dπ(θ)

be the posterior risk (see, e. g., [1]). Let vNN ≡ RN (X1, . . . , Xn), and recursively for
n = N − 1, N − 2, . . . , 1

vNn (X1, . . . , Xn) = min{Rn(X1, . . . , Xn), q
N
n (X1, . . . , Xn)},

where
qNn (X1, . . . , Xn) = c+ Eπ{vNn+1|X1, . . . , Xn}



768 A. NOVIKOV

(Eπ stands for the expectation with respect to the family of finite-dimensional den-
sities fn =

∫

Θ
fnθ dπ(θ), n = 1, 2, . . . , meaning, in particular, that

Eπ{vNn+1|x1, . . . , xn} =

∫

vNn+1(x1, . . . , xn+1)f
n+1(x1, . . . , xn+1)

fn(x1, . . . , xn)
dµ(xn+1)).

Let, finally, vn = vn(X1, . . . , Xn) = limN→∞ vNn (X1, . . . , Xn), and
qn = qn(X1, . . . , Xn) = limN→∞ qNn (X1, . . . , Xn), n = 1, 2, . . . .

Then, the following reformulation of Theorem 4.8 gives, for a truncatable Bayesian
problem, the structure of all Bayesian randomized tests (cf. Theorem 7, Ch. 7, in [1]).

Theorem 4.11. Let the problem of minimization of R(ψ) be truncatable, and let
F be the set of all stopping rules. Then

R(ψ) = inf
ψ′∈F

R(ψ′) (53)

if and only if
I{Rn<qn} ≤ ψn ≤ I{Rn≤qn} (54)

P π-almost surely on Tψn for all n = 1, 2, . . . .

Remark 4.12. More general variants of Theorem 4.11, for cases when the loss
function due to incorrect decision is of the form w(θ, d) = wn(θ, d;x1, . . . , xn) and/or
the cost of the observations (x1, . . . , xn) is of type Kn

θ (x1, . . . , xn), can easily be
deduced from Theorem 4 [16]. In particular, this gives the structure of optimal
sequential multiple hypotheses tests for the problem considered in Section 9.4 of [24].

Remark 4.13. Theorem 4.11, in particular, gives a solution to optimal sequential
hypothesis testing problems considered in [6] and [5] (where the general theory of
optimal stopping is used, see [4] or [20]). See [17] and [15] for a more detailed
description of the respective Bayesian sequential procedures.
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