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MAXIMAL SOLUTIONS OF TWO–SIDED LINEAR
SYSTEMS IN MAX–MIN ALGEBRA

Pavel Krbálek and Alena Pozd́ılková

Max-min algebra and its various aspects have been intensively studied by many authors
[1, 4] because of its applicability to various areas, such as fuzzy system, knowledge man-
agement and others. Binary operations of addition and multiplication of real numbers used
in classical linear algebra are replaced in max-min algebra by operations of maximum and
minimum. We consider two-sided systems of max-min linear equations A⊗ x = B⊗ x, with
given coefficient matrices A and B. We present a polynomial method for finding maximal
solutions to such systems, and also when only solutions with prescribed lower and upper
bounds are sought.

Keywords: max-min algebra, two-sided linear systems, lower bound, upper bound

Classification: 15A06, 15A24

1. INTRODUCTION

Max-min algebra (R̄,⊕,⊗) is the set R̄ = R
⋃{−∞,∞} equipped with operations

⊗ = min and ⊕ = max. These operations are used instead of the operations of mul-
tiplication and addition, respectively. Algebraically, max-min algebra is an idempo-
tent semiring. In many application, the operations maximum and minimum can be
considered for fuzzy relations [6]. Fuzzy relation equations are important in dynamic
systems, knowledge engineering and other areas.

Max-min algebra belongs to the family of so-called extremal algebras. Interval
systems in extremal algebras were investigated by [3], two-sided systems in max-plus
algebras were studied by [2]. Two-sided systems of max-min linear equations are also
treated in [5].

In this paper an approach to solving the two-sided problem is described. Suppose
A, B are two matrices of dimension m × n and x is a vector of unknown values of
dimension n× 1. The main problem is to find a maximal solution of system

A⊗ x = B ⊗ x, (1)

sets of indices M = {1, 2, . . . ,m}, N = {1, 2, . . . , n}. The second section describes
how to find the maximal solution for two-sided problem for system (1) of dimension
(1, n), as well as solutions with prescribed lower and upper bounds (in a remark).
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Section 3 presents an algorithm with complexity O(m2n), which finds the maxi-
mal solution for system (1) with dimension m x n, and also when upper and lower
bounds for the solutions are given apriori. The theoretical results are accompanied
by numerical examples.

2. MAXIMAL SOLUTION FOR MATRICES A, B OF DIMENSION (1, N)

In this section we are finding the maximal solution of the system (1) for given
matrices A, B of dimension (1, n) without restriction, and also with lower and upper
bound constraint for the solution. In more details, the equation can be written in
the form

(
a11 a12 . . . a1n

)
⊗




x1

. . .
xn


 =

(
b11 b12 . . . b1n

)
⊗




x1

. . .
xn


 , or

(a11 ⊗ x1)⊕ (a12 ⊗ x2)⊕ . . .⊕ (a1n ⊗ xn) = (b11 ⊗ x1)⊕ (b12 ⊗ x2)⊕ . . .⊕ (b1n ⊗ xn)

Equivalently, we are looking for maximal values of the unknown vector x satisfying
the equation

n⊕

j=1

(a1j ⊗ xj) =

n⊕

j=1

(b1j ⊗ xj).

Let us denote

a = max
j=1...n

(a11, . . . , a1n) =

n⊕

j=1

a1j , b = max
j=1...n

(b11, . . . , b1n) =

n⊕

j=1

b1j .

There are 3th three possibilities: a = b, a < b, or a > b. The following lemmas
describe the first two cases; the third is similar to the second one.

Lemma 2.1. If a=b, then x̄ = (∞,∞, . . . ,∞)T is the greatest solution of linear
system A⊗ x = B ⊗ x.

P r o o f . Let a = b. Direct computation shows that x is the solution of (1):

L = A⊗ x =
n⊕

j=1

(a1j ⊗∞) =
n⊕

j=1

(a1j) = a,

R = B ⊗ x =
n⊕

j=1

(b1j ⊗∞) =
n⊕

j=1

(b1j) = b.

Thus L = R holds and x is the solution of system (1). Obviously x is the greatest
solution. �
Lemma 2.2. Let us denote N1 = {j ∈ N : a1j > b}. If a > b, then x̄ =
(x̄1, x̄2, . . . , x̄n)

T is the greatest solution of linear system A⊗ x = B ⊗ x, where

x̄j :=

{
b if j ∈ N1

∞ otherwise,

for j = 1, . . . , n.
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P r o o f . Assumption a > b. We can verify by direct computation, whether x is a
solution:

R = B ⊗ x =

n⊕

j=1

(b1j ⊗ xj) ≤ b.

There exists k ∈ N , for which bk = b holds true, R ≥ (b ⊗ xj) = b, for j = 1, . . . n,
hence R = b. Then xj = b for j ∈ N1 and xj = ∞ for j ∈ N −N1. We have

L = A⊗ x =

n⊕

j=1

(a1j ⊗ xj) =


⊕

j∈N1

(a1j ⊗ b)


⊕


 ⊕

j∈N−N1

(a1j ⊗∞)




= b⊕


 ⊕

j∈N−N1

a1j


 = b.

Therefore L = b = R and x = (x1, x2, . . . , xn)
T is the solution of system (1).

It remains to prove that x is the greatest solution. The proof will be done by
contradiction. Let x′ = (x′

1, x
′
2, . . . , x

′
n)

T be a solution of (1). Suppose that x is not
greater than x′. There exists k ∈ N with xk < x′

k. Then necessarily xk 6= ∞, hence
k ∈ N1 and ak > b = xk. By substituting x′ into the original system (1) we get:
L′ ≥ ak ⊗ x′

k > b, because ak > b and x′
k > xk = b. On the other hand R′ ≤ b,

hence L′ 6= R′ and x′ is not a solution. �

Example 2.3.
(
3 7 2

)
⊗




x1

x2

x3


 =

(
4 2 5

)
⊗




x1

x2

x3


 ,

a =

n⊕

j=1

(a1j) = 7, b =

n⊕

j=1

(b1j) = 5, a > b,

so according to Lemma 2.2:
x1 = ∞, x2 = 5, because a2 > b, x3 = ∞, so x = (∞, 5,∞).

Remark 2.4. Maximal solution with given lower-bound constraint (l1, . . . , ln)
T ≤

(x1, . . . , xn)
T is defined analogously as the maximal solution without restriction. If

the maximal solution without restriction is not greater than or equal to the given
lower bound l, than system A⊗x = B⊗x, l ≤ x has no maximal solution. Otherwise
solution is the same as the solution of the system without any restriction.

2.1. Maximal solution of A ⊗ x = B ⊗ x with defined upper bound for
matrices A, B of dimension (1, n)

We are finding maximal existing solution x = (x1, x2, . . . , xn) of linear system
A ⊗ x = B ⊗ x, matrices A, B of dimension (1, n), with constraint condition
(x1, . . . , xn)

T ≤ (u1, . . . , un)
T .
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Denote a = A ⊗ u, b = B ⊗ u. There are three possibilities: a = b, a < b, or
a > b. The following two lemmas describe the first two cases; the third case can be
described analogously as the second case.

Lemma 2.5. If a = b, then vector u = (u1, u2, . . . , un)
T is the greatest solution of

linear system A⊗ x = B ⊗ x with upper bound u.

P r o o f . Let a = b. Direct computation shows, that u is the solution of (1):

L = a⊗ u =

n⊕

j=1

(a1j ⊗ uj) = a

and

R = b⊗ u =

n⊕

j=1

(b1j ⊗ uj) = b

and because u is the upper boundary, u is the greatest solution. �

Lemma 2.6. Let us denote N2 = {j ∈ N : a1j ⊗ uj > b}. If a > b, then the
greatest solution of linear system A ⊗ x = B ⊗ x with the upper bound u is the
vector x̄ = (x̄1, x̄2, .., x̄n)

T defined as follows:

x̄j :=

{
b if j ∈ N1

uj otherwise,

for j = 1, . . . , n.
By definition of x̄, we have x̄j = b < a1j⊗uj ≤ b or x̄j = uj ≤ uj, for j = 1, . . . , n.

P r o o f . Let a > b. We verify by direct computation that x is a solution of (1):

R = B ⊗ x =

n⊕

j=1

(b1j ⊗ xj) ≤ b.

There exists k ∈ N , for which bk ⊗ uk = b holds true, R ≥ (b ⊗ xj) = b, for j ∈ N ,
hence R = b. We have

L = A⊗ x =

n⊕

j=1

(a1j ⊗ xj) =


⊕

j∈N1

(a1j ⊗ b)


⊕


 ⊕

j∈N−N1

(a1j ⊗ uj)




= b⊕


 ⊕

j∈N−N1

(a1j ⊗ uj)


 = b.

Consequently L = b = R and x = (x1, x2, . . . , xn)
T is the solution of system (1).
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It remains to prove that x is the greatest solution. The proof will be done by
contradiction. Let x′ = (x′

1, x
′
2, . . . , x

′
n)

T be a solution of (1). Suppose that x is not
greater than x′. There exists k ∈ N with xk < x′

k. Then necessarily xk 6= uk, hence
k ∈ N1 and a1k ⊗ uk > b = xk. By substituting x′ into the original system (1) we
get: L′ ≥ (a1k ⊗ uk)⊗ x′

k > b, because a1k ⊗ uk > b and x′
k > xk = b. On the other

hand R′ ≤ b, hence L′ 6= R′ and x′ is not a solution. �

Example 2.7.
(
10 8 10

)
⊗




x1

x2

x3


 =

(
9 9 9

)
⊗




x1

x2

x3


 , u =




11
11
11


.

Set x = u, a(x) = A⊗ u = 10, b(x) = B ⊗ u = 9, a(x) > b(x), so according to
Lemma 2.6: x1 = 9, because a11 ⊗ x1 = 10 ⊗ 11 > 9, x3 = 9, because a13 ⊗ x3 =
10⊗ 11 > 9. There is the maximal solution x = (9, 11, 9).

Lemma 2.8. Assume a > b and denote N2 = {j ∈ N : a1j ⊗ uj > b}. Suppose the
interval solution x̂:

x̂j :=

{
< b, b > if j ∈ N2

< b, uj > otherwise,

for j = 1, . . . , n.
Interval solution x̂ means that value x̄j , j ∈ N , defined by Lemma 2.6 can be

changed to a value from the interval x̂j . Then ∀x̄ ∈ x̂ holds A ⊗ x̂ = B ⊗ x̂ and
moreover:

A⊗ x̂ = A⊗ x̄, B ⊗ x̂ = B ⊗ x̄.

P r o o f . We can verify by direct computation that x̂ is a solution of (1), then:
a) x̂ = b for j ∈ N −N2

R = B ⊗ x̂ =

n⊕

j=1

(b1j ⊗ x̂j) =


⊕

j∈N2

(b1j ⊗ b)


⊕


 ⊕

j∈N−N2

(b1j ⊗ b)


 = b⊕ b = b.

L = A⊗ x̂ =
n⊕

j=1

(a1j ⊗ x̂j) =


⊕

j∈N2

(a1j ⊗ b)


⊕


 ⊕

j∈N−N2

(a1j ⊗ b)


 = b.

b) x̂ = uj for j ∈ N −N2

R = B ⊗ x̂ =
n⊕

j=1

(b1j ⊗ x̂j) =


⊕

j∈N2

(b1j ⊗ b)


⊕


 ⊕

j∈N−N2

(b1j ⊗ uj)


 = b⊕ b = b.

L = A⊗ x̂ =

n⊕

j=1

(a1j ⊗ x̂j) =


⊕

j∈N2

(a1j ⊗ b)


⊕


 ⊕

j∈N−N2

(a1j ⊗ uj)


 = b.

Hence holds L = b = R and x̂ is the solution of system. �
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Example 2.9.

(
9 18 7 11

)
⊗




x1

x2

x3

x4


 =

(
10 10 4 9

)
⊗




x1

x2

x3

x4


 , u =




20
20
20
20


.

According to Lemma 2.8 there is interval: x̂1 = 〈b, u1〉 = 〈10, 20〉,
x̂2 = 〈b〉 = 〈10〉, x̂3 = 〈b, u3〉 = 〈10, 20〉, x̂4 = 〈b〉 = 〈10〉.

Lemma 2.8 about interval vector x̂ will be used in the proof of theorem 3.7 in the
next section.

3. MAXIMAL SOLUTION FOR MATRICES A, B OFDIMENSION (M,N)

Algorithm. Maximal solution of linear systems equation x̄ = (x̄1, x̄2, . . . , x̄n)
T is

establihed by the algorithm with four steps. Let us define system A⊗ x = B⊗ x and
matrices A, B of dimension (m,n). Algorithm works in cycles and identifies x̄k in
cycle k and computes with

ai(x̄
k) =

n⊕

j=1

aij ⊗ xkj , bi(x̄
k) =

n⊕

j=1

bij ⊗ xkj

in ith row. Variable k is increasing during the algorithm. Each row of system
is chosen only once. The maximal possible number of cycles in the algorithm for
(m,n) equals to number of rows in system, so k ∈ {0, . . . ,K},K ≤ M,K is number
of cycles.

Initial values before first cycle are k=0, u = (∞,∞, . . . ,∞)T , x̄0 = u.

Step 1. Set k = k + 1. Exchange left and right hand side if necessary according
to inequality

ai(x̄
k−1) ≥ bi(x̄

k−1) (2)

at the beginning of each cycle.

Step 2. Select ith row of system (1) for next computing such that

Mk =
{
r ∈ M : ar(x̄

k−1) 6= br(x̄
k−1)

}
(3)

i ∈ Ik,

Ik =

{
i ∈ Mk : bi(x̄

k−1) = min
i∈Mk

bi(x̄
k−1)

}
. (4)
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Step 3. Find solution in the ith row, ik = i ∈ Ik. The solution in the ith row
is denoted as x̄k and will be formulated according to Lemma 2.6 with upper bound
x̄k−1,

bk =

n⊕

j=1

(
bikj ⊗ x̄k−1

j

)
(5)

Jk = {j ∈ N : aikj ⊗ x̄k−1
j > bk} (6)

x̄k
j :=

{
bk if j ∈ Jk
x̄k−1
j otherwise,

for j = 1, . . . , n.

Step 4. Check whether x̄k is the solution to A⊗ x̄k = B ⊗ x̄k. If yes, x̄k is the
maximal solution and stop the cycle, else continue with Step 1.

Lemma 3.1. Assume x̄k is defined in the ikth row according to the Step 3 in the
k-cycle. Then x̄k can be changed to a value from the interval x̂k:

x̂k
j :=

{ 〈bk, bk〉 if j ∈ Jk
〈bk, x̄k−1

j 〉 otherwise,

for j = 1, . . . , n, and

aik(x̂
k) = bik(x̂

k).

P r o o f . Lemma 2.8 defines the interval solution x̂ to the maximal solution x̄ with
defined upper bound u for matrices of dimension (1, n):

x̂j :=

{
〈b, b〉 if j ∈ N2

〈b, uj〉 otherwise,

for j = 1, . . . , n.

Analogically Step 3 defines the maximal solution x̄k with defined upper bound
x̄k−1 for the ikth row, then:

x̂k
j :=

{ 〈bk, bk〉 if j ∈ Jk
〈bk, x̄k−1

j 〉 otherwise,

for j = 1, . . . , n. �
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Lemma 3.2. Assume x̄k is defined according to the Step 3 in the k-cycle and x̄k−1

is the maximal solution in the (k − 1)-cycle then

x̄k ≤ x̄k−1.

P r o o f . According to the algorithm x̄k−1
j ≥ aikj ⊗ x̄k−1

j > bk = x̄k
j if j ∈ Jk, hence

x̄k ≤ x̄k−1. �

Let us denote

S1 = {s ∈ M − Ik : bs(x̄
k−1) > bk}, S2 = {s ∈ M − Ik : bs(x̄

k−1) ≤ bk}.

Lemma 3.3. Assume bk is defined in the k-cycle (computed with the upper bound
x̄k−1) and bk+1 is defined in the (k+1)-cycle (computed with the upper bound x̄k).
Then

bk+1 ≥ bk.

P r o o f . According to the minimal bi = bk (4), x̄k results from lowering certain
coordinates of x̄k−1 to the level bk then such s ∈ S1 that as(x̄

k) > bs(x̄
k) and

bs(x̄
k) ≥ bk. Then for minimal bs, s ∈ S1 in the next cycle holds bs = bk+1 hence

bk+1 ≥ bk. �

Lemma 3.4. Assume x̄k is defined according to the Step 3 then for such s ∈ S2,
holds that:

as(x̄
k) = bs(x̄

k).

P r o o f . According to the Lemma 3.1 solution x̄k for sth equation can be changed
to a value from the interval x̂k := 〈bk, x̄k−1〉, in the concrete such value is bk+1 in
(k + 1)th cycle and according to Lemma 3.3 bk+1 ≥ bk is in the interval. �

Lemma 3.5. According to the Jk (6) certain x̄k
j is specified then this coordinates

is not changed in l-cycle, l > k, l ≤ K.

P r o o f . Suppose x̄k
j can change in l-cycle, l > k, l ≤ K then ailj ⊗ x̄l−1

j > bl, but

x̄l−1
j = bl−1 and bl−1 ≤ bl according to Lemma 3.3. Hence bl−1 ≤ bl < ailj ⊗ x̄l−1

j , a
contradiction. �

Lemma 3.6. A maximal solution to the system (1) does not exceed the maximal
solution to any equation computed in the Step 3 of the algorithm.
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P r o o f . By induction, x̄1 is computed with the upper bound x̄0, that is the maximal
solution according to Lemma 2.6. Then there exists k such that maximal solution
does not exceed x̄k. The proof will be done by contradiction. Let x̃ > x̄k be a
solution. Then necessarily x̃ cannot be greater than upper bound x̄k−1, hence x̃j ,
j ∈ Jk. We get x̃j > aikj ⊗ x̄k−1

j > bk, then ak(x̃) > bk(x̃) and x̃ is not a solution.

Hence x̄k does not exceed the greatest solution then it does not exceed x̄k+1. �

Theorem 3.7. The maximal solution x̄ for system A⊗x = B⊗x and matrices A,B
of type (m,n), sets of indexes M = {1, 2, . . . ,m}, N = {1, 2, . . . , n} is defined by the
polynomial algorithm defined above. Then x̄K is the maximal solution according
to the polynomial algorithm defined above. The complexity of the algorithm is
O(m2n).

P r o o f . From Lemma 3.6, it follows that the greatest solution to A ⊗ x = B ⊗ x
does not exceed the vector found by the algorithm. As this vector is itself a solution,
Theorem 3.7 follows.

The algorithm complexity is stated as a function relating the input equation
system to the number of inner steps. The first step of the algorithm computes
maximal solution of each equation side for n coordinates. This is for allm rows hence
complexity of each cycle is mn. The next limit for the run-time of the algorithm is
the steps count that is determined by rows count m. Hence the presented algorithm
can be said to be of order O(m2n) that express the worst-case scenario for the given
algorithm. �

Remark 3.8. Maximal solution with given lower-bound constraint (l1, . . . , ln)
T ≤

(x1, . . . , xn)
T is defined analogously as the maximal solution for system of type

(m,n) without restriction. If maximal solution without restriction is not greater
or equal than the given lower bound l, than system A ⊗ x̄ = B ⊗ x̄, l ≤ x̄ has no
maximal solution. In other cases maximal solution is the same as the solution of the
system without any restriction.

Example 3.9. Example of using algorithm for matrices of type (m,n):




5 1 3
0 8 6
1 1 5
5 4 1


⊗




∞
∞
∞


 =




5 2 3
3 9 7
8 2 3
7 1 0


⊗




∞
∞
∞




Following four steps will be repeated in cycle, until maximal solution will be found by
using algorithm defined above. The elements in matrices is lined through if equality
of left and right hands side holds true.

1. To order left and right sides of equations

2. To select ith row in the k-cycle

3. To find solution in selected ith row
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4. To check whether found solution is also solution of system 1

First cycle, first step:
x0 is the maximal solution for the 1st row of the system. Non-ordered set:




6 5 6 1 6 3
0 8 6
1 1 5
5 4 1


⊗




∞
∞
∞


 =




6 5 6 2 6 3
3 9 7
8 2 3
7 1 0


⊗




∞
∞
∞


 ,

a1(x
1) = 6 5 b1(x

1) = 6 5
a2(x

1) = 8 b2(x
1) = 9

a3(x
1) = 5 b3(x

1) = 8
a4(x

1) = 5 b4(x
1) = 7

Ordered set:




6 5 6 1 6 3
3 9 7
8 2 3
7 1 0


⊗




∞
∞
∞


 =




6 5 6 2 6 3
0 8 6
1 1 5
5 4 1


⊗




∞
∞
∞


 ,

a1(x
1) = 6 5 b1(x

1) = 6 5
a2(x

1) = 9 b2(x
1) = 8

a3(x
1) = 8 b3(x

1) = 5
a4(x

1) = 7 b4(x
1) = 5

First cycle, second step:
I1 = {3, 4}. Ordered set:




6 5 6 1 6 3
3 9 7
8 2 3
7 1 0


⊗




∞
∞
∞


 =




6 5 6 2 6 3
0 8 6
1 1 5
5 4 1


⊗




∞
∞
∞


 ,

a1(x
1) = 6 5 b1(x

1) = 6 5
a2(x

1) = 9 b2(x
1) = 8

a3(x
1) = 8 b3(x

1) = 5
a4(x

1) = 7 b4(x
1) = 5

First cycle, third step:
The solution for the 3rd row is computed, 4th row holds equality too. Ordered set:




6 5 6 1 6 3
3 9 7
6 8 6 2 6 3
6 7 6 1 6 0


⊗




5
∞
∞


 =




6 5 6 2 6 3
0 8 6
6 1 6 1 6 5
6 5 6 4 6 1


⊗




5
∞
∞


 ,

a1(x
1) = 6 5 b1(x

1) = 6 5
a2(x

1) = 9 b2(x
1) = 8

a3(x
1) = 6 5 b3(x

1) = 6 5
a4(x

1) = 6 5 b4(x
1) = 6 5

First cycle, fourth step:




5
9
5
5


 6=




5
8
5
5




Second cycle, first step:
Ordered set:




6 5 6 1 6 3
3 9 7
6 8 6 2 6 3
6 7 6 1 6 0


⊗




5
∞
∞


 =




6 5 6 2 6 3
0 8 6
6 1 6 1 6 5
6 5 6 4 6 1


⊗




5
∞
∞


 ,

a1(x
2) = 6 5 b1(x

2) = 6 5
a2(x

2) = 9 b2(x
2) = 8

a3(x
2) = 6 5 b3(x

2) = 6 5
a4(x

2) = 6 5 b4(x
2) = 6 5
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Second cycle, second step:
I2 = {2}. Ordered set:




6 5 6 1 6 3
3 9 7
6 8 6 2 6 3
6 7 6 1 6 0


⊗




5
∞
∞


 =




6 5 6 2 6 3
0 8 6
6 1 6 1 6 5
6 5 6 4 6 1


⊗




5
∞
∞


 ,

a1(x
2) = 6 5 b1(x

2) = 6 5
a2(x

2) = 9 b2(x
2) = 8

a3(x
2) = 6 5 b3(x

2) = 6 5
a4(x

2) = 6 5 b4(x
2) = 6 5

Second cycle, third step:
The maximal solution for the 2nd row is computed. Ordered set:




6 5 6 1 6 3
6 3 6 9 6 7
6 8 6 2 6 3
6 7 6 1 6 0


⊗




5
8
∞


 =




6 5 6 2 6 3
6 0 6 8 6 6
6 1 6 1 6 5
6 5 6 4 6 1


⊗




5
8
∞


 ,

a1(x
2) = 6 5 b1(x

2) = 6 5
a2(x

2) = 6 8 b2(x
2) = 6 8

a3(x
2) = 6 5 b3(x

2) = 6 5
a4(x

2) = 6 5 b4(x
2) = 6 5

Second cycle, fourth step:




5
8
5
5


 =




5
8
5
5


 . The maximal solution of the example system is x =




5
8
∞


 .
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e-mail: pavel.krbalek@uhk.cz
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