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A PROBABILITY DENSITY FUNCTION
ESTIMATION USING F-TRANSFORM

Michal Holčapek and Tomaš Tichý

The aim of this paper is to propose a new approach to probability density function
(PDF) estimation which is based on the fuzzy transform (F-transform) introduced by Per-
filieva in [10]. Firstly, a smoothing filter based on the combination of the discrete direct and
continuous inverse F-transform is introduced and some of the basic properties are investi-
gated. Next, an alternative approach to PDF estimation based on the proposed smoothing
filter is established and compared with the most used method of Parzen windows. Such
an approach can be of a great value mainly when dealing with financial data, i. e. large
samples of observations.

Keywords: fuzzy transform, probability density function estimation, smoothing filter, fi-
nancial returns

Classification: 60E99, 91G80

1. INTRODUCTION

Without loss of generality we can say that any economic variable or, more precisely,
its state (e. g. the price), follows a stochastic process, i. e. it moves randomly in
time. In order to describe such a randomness, a suitable probability distribution
can be used. Doing that, either characteristic function, or cumulative distribution
function, or probability density function (PDF) can be used. Since the data are
generally observable only in a discrete time, some approach of PDF estimation must
be applied.

In general, one can distinguish three distinct approaches to PDF estimation: a
parametric, a semi-parametric and a non-parametric one. Since the a priori choice
of the PDF may often provide a false representation of the true PDF, here, we focus
on non-parametric methods. Although there is a wide variety of non-parametric
methods estimating PDF (for a survey, see e. g. [4, 12]), only a few of them are used in
practice. Among the most used methods are the histograms, Parzen windows, vector
quantization based Parzen, and finite Gaussian mixtures. A comparison of these
methods can be found in [2]. In this paper, we would like to propose an approach to
PDF estimation based on the fuzzy (F-)transform, introduced by Perfilieva in [10].

The idea is very simple. A larger sample size allows us to build up a good es-
timation of an unknown PDF using the histogram technique. Unfortunately, the
histogram is not continuous. Hence, we should use a smoothing technique to obtain
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a continuous representation of the histogram and then the unknown PDF. It is well
known that the smoothing techniques, such as stochastic processes, kernel regres-
sions, integral transforms, wavelet transforms, or even fuzzy filters, for more details
see e. g. [3, 5, 6, 8], often give a noise reduction contained in the histogram, which
is very profitable in cases when the samples are used.

A relatively new approach to the smoothing of data seems to be the F-transform
method, which is based on a fuzzy partitioning of a universe into fuzzy subsets.
Analogously to the standard smoothing approaches, the F-transform offers a noise
reduction that has been illustrated on continuous functions in [11].

The aim of this paper is to introduce a filter based on the F-transform that would
allow us an efficient smoothing of PDF of financial market returns, i. e. a data set
of a large length.

We proceed as follows. The following preliminary section provides the important
facts relating to the discrete F-transform. Further, we will propose an FT-smoothing
filter which is based on the discrete F-transform and the inverse continuous F-
transform. Some of the basic FT-smoothing filter properties are presented. The
fourth section is devoted to the PDF estimation for the financial data, where the
basic approaches are mentioned and an approach based on the FT-smoothing filter
is introduced. The last section is a conclusion.

2. DISCRETE F-TRANSFORM

The key idea on which the F-transform is based is a fuzzy partition of the uni-
verse into fuzzy subsets (factors, clusters, granules etc.). A fuzzy partition may be
understood as a system of neighborhoods of some chosen nodes. For a sufficient
representation of a function we may consider its average values over fuzzy subsets
from the partition. Then, a function can be associated with a mapping from a set of
fuzzy subsets to the set of thus obtained average function values. We take an inter-
val [a, b] as a universe. That is, all (real-valued) functions considered in this section
have this interval as a common domain. The fuzzy partition of the universe is given
by fuzzy subsets of the universe [a, b] (determined by their membership functions)
which must have properties described in the following definition.

Definition 2.1. Let x1 < · · · < xn be fixed nodes within [a, b], such that x1 =
a, xn = b and n ≥ 2. We say that fuzzy sets A1, . . . , An, identified with their
membership functions A1(x), . . . , An(x) defined on [a, b], form a fuzzy partition of
[a, b], if they fulfill the following conditions for k = 1, . . . , n:

(1) Ak : [a, b] → [0, 1], Ak(xk) = 1;

(2) Ak(x) = 0, if x 6∈ (xk−1, xk+1), where for the uniformity of denotation, we put
x0 = a and xn+1 = b;

(3) Ak(x) is continuous;

(4) Ak(x), k = 2, . . . , n, strictly increases on [xk−1, xk] and Ak(x), k = 1, . . . , n− 1,
strictly decreases on [xk, xk+1];
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(5) for all x ∈ [a, b]

n∑

k=1

Ak(x) = 1. (1)

The fuzzy sets A1, . . . , An are called basic functions.

Note that an interesting generalization of the fuzzy partition which can lead to a
greater smoothness of functions can be found in [14]. A simple consequence of the
definition of fuzzy partitions is the following lemma saying that it is sufficient to
define only left or right parts of basic functions, where, e. g. the left part of Ak is
the restriction of function Ak on the interval [xk−1, xk].

Lemma 2.2. Let x1 < · · · < xn be fixed nodes within [a, b] and A = {A1, . . . , An}
define a fuzzy partition of [a, b]. Then

Ak(x) = 1−Ak+1(x) (2)

holds for any k = 1, . . . , n− 1 and x ∈ [xk, xk+1].

Definition 2.3. Let A = {A1, . . . , An} define a fuzzy partition of [a, b]. We say that
A forms a uniform fuzzy partition of [a, b], if xk+1−xk = h for any k = 1, . . . , n−1,
where h > 0 is a constant, and there is a fuzzy set A identified with its membership
function A(x) defined on (−∞,∞) satisfying the following two properties:

(i) A is an even function,

(ii) A(xk − x) = Ak(x) for any x ∈ [a, b] and k = 1, . . . , n.

From the definition of fuzzy partitions and Lemma 2.2, we simply obtain A(x) = 0
for any x 6∈ [−h, h], A(0) = 1 and A(x) + A(x + h) = 1 for any x ∈ [−h, 0]. The
determination of basic functions from a one fuzzy set seems to be profitable from an
optimization point of view. More precisely, only the parameter h of the uniform fuzzy
partitions is optimized, contrary to the non-uniform fuzzy partitions, where each
basic function is determined by at least two parameters, i. e. a center xk and a width
hk of, for example, the left part of basic function Ak (cf. Lemma 2.2). Nevertheless,
one could imagine that the non-uniform fuzzy partitions may be very important in
some cases when the number of basic functions of uniform fuzzy partition is too large1

and the function (on which the F-transform is applied) over some basic functions
has no important changes. In this work, we will mainly deal with the uniform fuzzy
partitions.

The following lemma shows a useful property holding for the uniform fuzzy par-
titions and which will be used latter in the text.

1Note that the number of basic functions has a primary importance in the rate of computational
algorithms.
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Lemma 2.4. Let A = {A1, . . . , An} define a uniform fuzzy partition of [a, b] such
that n ≥ 3 and xk+1 − xk = h. Then

∫ b

a

Ak(x)
r dx = αrkh, (3)

∫ b

a

Ak(x)Al(x) dx =





α
2 h, if k = l = 1 or k = l = n,
αh, if k = l 6= 1 and k = l 6= n,
βh, if |k − l| = 1,
0, otherwise,

(4)

where r ≥ 1 and αrk, α, β ∈ [0, 1] are suitable constants, hold for any k, l = 1, . . . , n.
Especially, we have

α1k =

{
1
2 , if k = 1 or k = n
1, otherwise.

(5)

P r o o f . This is a simple consequence of the fact that all basic functions are deter-
mined by the same function A and the area under A is less than or equal to h. In
fact, we may write

∫ ∞

−∞
A(x) dx =

∫ h

−h

A(x) dx =

∫ 0

−h

A(x) dx +

∫ h

0

A(x) dx

=

∫ 0

−h

A(x) dx +

∫ 0

−h

A(x + h) dx =

∫ 0

−h

(A(x) +A(x+ h)) dx =

∫ 0

−h

dx = h.

�
Let us show two basic examples of uniform fuzzy partitions.

Example 2.5. Let A,B : [−h, h] → [0, 1] be fuzzy sets defined as follows:

A(x) =

{
h−|x|

h , x ∈ [−h, h],
0, otherwise,

B(x) =

{
0.5 cos π

hx+ 0.5, x ∈ [−h, h],
0, otherwise.

If x1 < · · · < xn are nodes within [a, b] such that x1 = a, xn = b and xk =
x1 + (i − 1)h, then A = {Ak | A(xk − x) = Ak(x), k = 1, . . . , n} and B = {Bk |
B(xk − x) = Bk(x), i = 1, . . . , n} define a triangle and a cosine uniform fuzzy
partition of [a, b], respectively. In Figure 1, we can see the triangle and cosine
uniform fuzzy partitions of the interval [2, 7] for h = 0.5.

Now, we can introduce the definition of the discrete (direct) F-transform which
assigns, using basic functions, to each function f defined in a finite number of nodes
a vector of real numbers. This vector is then a representation of the function f . Let
t1, . . . , tl ∈ [a, b] be nodes and A be a set of basic functions. In the following text we
assume that each set of nodes t1, . . . , tl is sufficiently dense with respect to A, i. e.
for each Ak ∈ A there is a node tj such that Ak(tj) > 0.
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Fig. 1. Triangle and cosine uniform fuzzy partitions of [2, 7].

Definition 2.6. Let a function f be given at nodes t1, . . . , tl ∈ [a, b] and A =
{A1, . . . , An}, n < l, be a set of basic functions which form a fuzzy partition of [a, b].
We say that the n-tuple of real numbers [FA,1, . . . , FA,n] is the discrete F-transform
of f with respect to A, if

FA,k =

∑l
j=1 f(tj)Ak(tj)
∑l

j=1 Ak(tj)
. (6)

For more information about the discrete F -transform, we refer to [10].

3. FT-SMOOTHING FILTER

We will denote R the set of all real numbers and D(f) the domain of f . We say that
a function f is finite, if its domain is a finite set. Let A be a set of basic functions
which form a fuzzy partition of [a, b]. We will denote D([a, b],A) the set of all finite
real functions f such that D(f) ⊆ [a, b], D(f) is sufficiently dense with respect to A
and |A| < |D(f)|. Obviously, the set DA contains all functions on which the discrete
F-transform may be applied. Finally, we will denote C([a, b]) the set of all continuous
real functions f with D(f) = [a, b].

Definition 3.1. Let A = {A1, . . . , An} define a fuzzy partition of [a, b]. An FT -
smoothing filter determined by A is a mapping FA : D([a, b],A) → C([a, b]) defined
by

FA(f)(x) =
n∑

k=1

FA,kAk(x) (7)

for any x ∈ [a, b], where FA,k, k = 1, . . . , n, are the components of the discrete
F-transform.

Remark 3.2. One can check easily that the linear combination of continuous func-
tions is a continuous function. Hence, our definition is correct and FA is really a
mapping to the set of all continuous functions.
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Remark 3.3. Let us note that our definition of the FT-smoothing filter is the in-
verse F-transform for the continuous case. For the discrete case the resulted function
of the inverse F-transform is again a finite function, more precisely, if f is a finite
function with D(f) = {t1, . . . , tl}, then

fFA(tj) = FA(f)(tj), (8)

j = 1, . . . , l, defines the finite function which is the inverse F-transform of f in the
sense of Definition 5 in [10].

In Figure 2, there is an illustration of FT-smoothing filters determined by the triangle
and cosine uniform partitions introduced in Example 2.5 applied on a finite function.
One can see the effect of F-transform which computes the average values from the
function values over fuzzy sets defining fuzzy partition. The linear combination
used in the FT-smoothing filter defines a type of approximation and the result of
this procedure is a smooth function.
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0.8
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0.4

0.6

0.8

1.0

Fig. 2. Smoothed finite function by FT-smoothing filters

based on the triangle and cosine uniform fuzzy partitions.

Let us define the partial addition on D([a, b],A) (or on C([a, b])) by

(f + g)(t) = f(t) + g(t), (9)

for any f, g ∈ D([a, b],A) such that D(f) = D(g) and the multiplication by a real
number on D([a, b],A) (or on C([a, b])) by

(αf)(t) = α(f(t)) (10)

for any f ∈ D([a, b],A) and α ∈ R. Let f, g ∈ D([a, b],A) (or f, g ∈ C([a, b])). We
shall say that f is less than or equal to g and write f ≤ g, if D(f) = D(g) and
f(x) ≤ g(x) for any x ∈ D(f). Obviously, the relation ≤ is a partial ordering on
D([a, b],A) (or on C([a, b])). The following lemmas are straightforward conclusions
of the previous definitions.

Lemma 3.4. Let f, g ∈ D([a, b],A) such that D(f) = D(g) and α, β ∈ R. Then

FA(αf + βg) = αFA(f) + βFA(g) (11)

If f ≤ g, then FA(f) ≤ FA(g).
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Lemma 3.5. Let f ∈ D([a, b],A) and f(x) = α, where α ∈ R, for any x ∈ D(f).
Then FA(f)(x) = α for any x ∈ [a, b].

Let f be a finite function. To investigate an approximation power of FT-smoothing
filter, let us consider the following (local) modulus of continuity

ωf (x, h) = sup
y∈D(f)
|x−y|≤h

|f(x)− f(y)| (12)

defined for any x ∈ D(f). Now we can state the following theorem2 showing how
the approximation of f by an FT-smoothing filter is good.

Theorem 3.6. Let A be a uniform fuzzy partition of [a, b] with xk+1 − xk = h and
f ∈ D([a, b],A). Then

|f(ti)−FA(f)(ti)| ≤ ωf (ti, 2h) (13)

holds for any ti ∈ D(f).

P r o o f . Let ti ∈ D(f), |D(f)| = n. According to Lemma 2.2, there is a natural
number k such that either Ak(ti) = 1 (i. e. Al(ti) = 0 for k 6= l), or Ak(ti) > 0 and
Ak+1(ti) > 0 (i. e. Al(ti) = 0 for k 6= l 6= k + 1). Let us consider the second case,
the first one may be proved analogously. We can write

|Fk − f(ti)| =
∣∣∣∣∣

∑n
j=1 f(tj)Ak(tj)∑n

j=1 Ak(tj)
− f(ti)

∣∣∣∣∣ =
∣∣∣∣∣

∑n
j=1(f(tj)− f(ti))Ak(tj)∑n

j=1 Ak(tj)

∣∣∣∣∣

≤
∑n

j=1 |f(tj)− f(ti)|Ak(tj)∑n
j=1 Ak(tj)

=

∑
tj∈D(f),|tj−ti|≤2h |f(ti)− f(t)|Ak(ti)∑

tj∈D(f),|tj−ti|≤2hAk(ti)

≤
∑

tj∈D(f),|tj−ti|≤2h ωf (ti, 2h)Ak(ti)∑
tj∈D(f),|tj−ti|≤2h Ak(ti)

= ωf (ti, 2h).

Analogously, we can prove |Fk+1 − f(ti)| ≤ ωf (ti, 2h). Hence, using Lemma 2.2
(recall that Ak(t) +Ak+1(t) = 1), we obtain

|f(t)−FA(f)(t)| = |f(t)− (FkAk(t) + Fk+1Ak+1(t))|
= |(f(t)− Fk)Ak(t) + (f(t)− Fk+1)Ak+1(t)|

≤ |f(t)− Fk|Ak(t) + |f(t)− Fk+1|Ak+1(t) ≤ ωf (ti, 2h)Ak(t) + ωf (ti, 2h)Ak+1(t)

= ωf (ti, 2h)

and the proof is finished. �
One can easily see that smaller values of h give smaller values of modulus of

continuity and thus a better approximation in general.

2Note that the approximation power of the (direct-inverse) F-transform using modulus of con-
tinuity for continuous functions has been investigated in [10].
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4. PROBABILITY DENSITY ESTIMATION FOR FINANCIAL DATA

Let us assume a time series of financial data {xt | t = 1, . . . , T}. A general model
for xt can look as follows:

xt = f(x1, . . . , xt−1) + εt, (14)

where f(x1, . . . , xt−1) can be any function (linear, non-linear) of preceding values
or simply a given constant and εt describes a white noise, i. e. εt is a value of
random variable with zero mean and no autocorrelation. Further, assume that
{xt | t = 1, . . . , T} is a set of values of a continuous random variable X . To
make a deeper analysis of data, we are often interested in the unknown proba-
bility density function of the random variable X . In practice, we usually use some
of non-parametric methods for a probability density function estimation. For our
purpose, let us mention basic methods.

4.1. Basic approaches

The simplest method how to approximate PDF is a method called a histogram. Let
the suitable interval be divided in M mutually disjoint bins Bj of a bin width h
covering the considered interval. The PDF is then given by

f̂h(x) =
1

Th

T∑

t=1

M∑

j=1

I(xt ∈ Bj)I(x ∈ Bj), (15)

where T is the length of the series of data and I(·) is the indicator function

I(A) =

{
1, if A holds,
0, otherwise.

(16)

It is easy to see that the histogram appears to be strongly dependent on h and the
PDF is neither smooth nor continuous. Here, however, it is important to emphasize
that we can obtain very precise (of course, non-continuous) image of PDF, if we
have a large sample.

Another and also the most popular approach to the estimation of PDF is a Parzen
windows estimator (established in [9]) based on a kernel function K(y):

f̂h(x) =
1

Th

T∑

t=1

K

(
xt − x

h

)
, (17)

where h is a bandwidth parameter for the window size description. A natural choice
for the kernel function K(y) is the Gaussian kernelN(x|xn, h) or any kernel from the
symmetric Beta family (for details we refer to [4, 12, 13] ). A criterion of goodness
of estimation for a given bandwidth h may be given by the integrated square error

ISE(h) =

∫ ∞

−∞
(f(x)− f̂h(x))

2 dx, (18)



Probability Density Estimation 455

where f(x) is the unknown PDF and f̂h(x) its estimation. Obviously, the best
choice of h is in which ISE(h) has the minimal value. Since f(x) is unknown, there
are several methods how to find an optimal choice of h. For example, Silverman
proposed in [12] an optimal value of h for the Gaussian kernel derived from (18) by
the following rule of thumb:

hSIL = 0.9AT−1
5 , A = min(s,

R

1.34
), (19)

where s is the empirical standard deviation and R is the sample interquartile range.
It is known that the Parzen windows estimator usually gives very good results,
but the model complexity is proportional to the number of data samples which
can rapidly lead to storage problems (see e. g. [2]). It motivated to develop some
methods which circumvent this disadvantage. Two very popular methods are the
Vector quantization based Parzen and the Finite Gaussian mixtures (see e. g. [1, 7])
that goal is to decrease the number of used Gaussian kernels in the procedure.

4.2. An approach based on FT-smoothing filter

As we have mentioned in the previous section, the histogram gives very precise image
of PDF for samples with larger sizes. Then the PDF estimation can be obtained by
a smoothing procedure, in our case by the FT-smoothing filter. Thus, our approach
has two steps:

Step 1. we create a finite function {(xi, f̂r(xi)) | i = 1, . . . ,m}, where xi are the

centers of bins with the bin width r and f̂r(xi) are the values of the histogram
(15);

Step 2. we apply the FT-smoothing filter determined by a uniform fuzzy partition
A = {A1, . . . , An} with h = xk+1 − xk and the PDF estimation f̂h has the
form

f̂h(x) =
FA(f̂r)(x)

S
, (20)

where S = h(12 (FA,1 + FA,n) +
∑n−1

k=2 FA,k).

Note that S is the area (integral) under the function FA(f̂r)(x) to obtain a PDF
and it is computed using Lemma 2.4.

To investigate the goodness of PDF estimation for a given bandwidth h, let us
consider the integrated square error ISE(h) defined above. Our aim is to find a value
for h in which ISE(h) is as small as possible. Rewriting this criterion, we obtain

ISE(h) =

∫ ∞

−∞
f(x)2 dx− 2

∫ ∞

−∞
f(x)f̂h(x) dx +

∫ ∞

−∞
f̂h(x)

2 dx. (21)

Since the first term does not dependent on h, we can ignore it here. Then an error
criterion may by given by

E(h) =

∫ ∞

−∞
f̂h(x)

2 dx− 2

∫ ∞

−∞
f(x)f̂h(x) dx =

∫

−∞
f̂h(x)

2 dx− 2E(f̂h(X)), (22)
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Fig. 3. Comparison of Gaussian kernel (left) and FT-smoothing filter (right) approach

applied on the Gaussian and Exponential probability distribution.

where E(f̂h(X))) denotes the expected value of f̂h(X). Hence, we can establish a
leave-one-out cross-validation criterion as follows

ELOO(h) =

∫ ∞

−∞
f̂h(x)

2 dx − 2

m∑

i=1

f̂h(xi)ph(xi), (23)

ph(xi) =
f̂−i
h (xi)∑m

j=1 f̂
−j
h (xj)

, (24)

where f̂−i(x) is the PDF (leave-one-out) estimation of f(x) for the sample without xi

and m denotes the sample size. Intuitively, ph(xi) is a discrete probability function
which estimates the unknown f(x). The value h minimizing the error ELOO may
be understood as an optimal bandwidth (denote it by hopt) for the FT-smoothing
filter. If n denotes the number of basic functions, it is easy to show that the integral
in ELOO can be expressed by

∫ ∞

−∞
f̂h(x)

2 dx =
α
2 (F

2
A,1 + F 2

A,n) + α
∑n−1

k=2 F
2
A,k + 2β

∑n−1
k=1 FA,kFA,k+1

h(12 (FA,1 + FA,n) +
∑n−1

k=2 FA,k)2
, (25)

where α and β are the suitable constants obtained by the integral (4) in Lemma 2.4.
Hence, we can see that the computation of the integral is very simple.

In Figure 3, we can see the results of the Gaussian kernel and the FT-smoothing
filter applied on the standard normal distribution and the exponential distribu-
tion with λ = 1, when we use the Silverman’s estimation of h for Gaussian kernel
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(hSIL = 0.254 for the Gaussian and hSIL = 0.235 for the Exponential PDF) and
the estimation of the optimal value of h for the FT-smoothing filter based on the
uniform cosine fuzzy partition (hopt = 0.295 and hopt = 0.265, respectively). Note
that the number of data is 500 and the number of bins is 30 (the bin width is 0.259
for Gaussian and 0.260 for Exponential PDF). Comparing the results it is evident
that both estimations of the Gaussian PDF are very similar and there is a slight
overfitting here. A better PDF estimation respecting the smoothness of obtained
PDF seems to be obtained by a slight increasing of the bandwidth. On the other
hand, a better result for the Exponential PDF seems to be for the FT-smoothing
filter which is again slightly overfitted. The bandwidth obtained by Silverman’s rule
of thumb appears too big for a good approximation of values close to 0 and thus
an advanced method for estimation of hopt would be used here to ensure a better
result.

In Figure 4, we can see a comparison of both approaches on a data set of con-
tinuous financial returns, i. e. a natural logarithm of discretely observed prices is
considered here. We choose continuous financial returns since they are (relatively)
scale-free and since their statistical properties allow us easy handling. The data
set consists of 2017 daily returns of CZK/EUR exchange rate over last eight years.
The data exhibit very high kurtosis (13.01) and slightly negative skewness (−0.13).
Thus, a relatively high probability of extreme returns constitute a challenging task
for any filter. We set hSIL = 0.00053 and hopt = 0.0025. Obviously, both results
seems to be very similar, perhaps, the FT-smoothing filter gives a generally less
smoothed PDF contrary to the Gaussian kernel. By contrast, we believe that the
FT-smoothing filter works slightly better when the tails are to be smoothed.

-

0 . 0 2
-

0 . 0 1 0 . 0 0 0 . 0 1 0 . 0 22 04 06 08 01 0 01 2 01 4 0
-

0 . 0 2
-
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Fig. 4. Comparison of Gaussian kernel (left) and FT-smoothing filter (right)

approach applied on CZK/EUR exchange rate.

5. CONCLUSIONS

In this paper, we proposed an alternative approach to the PDF estimation based on
the F-transform that is more suitable for samples with larger sizes and non-standard
distributions. The approach is based on the discrete F-transform filtering and it can
be of a great value mainly for a financial modeling and forecasting.
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Tomaš Tichý, Department of Finance, Faculty of Economics VŠB-TU Ostrava, Sokolská
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