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A NOTE ON THE RELATION BETWEEN STRONG AND
M-STATIONARITY FOR A CLASS OF MATHEMATICAL
PROGRAMS WITH EQUILIBRIUM CONSTRAINTS

RENE HENRION, JIRf OUTRATA AND THOMAS SUROWIEC

In this paper, we deal with strong stationarity conditions for mathematical programs with
equilibrium constraints (MPEC). The main task in deriving these conditions consists in
calculating the Fréchet normal cone to the graph of the solution mapping associated with
the underlying generalized equation of the MPEC. We derive an inner approximation to
this cone, which is exact under an additional assumption. Even if the latter fails to hold,
the inner approximation can be used to check strong stationarity via the weaker (but easier
to calculate) concept of M-stationarity.

Keywords: mathematical programs with equilibrium constraints, S-stationary points,
M-stationary points, Fréchet normal cone, limiting normal cone

Classification: 90C30, 49J53

1. INTRODUCTION

Over the last twenty years, both researchers as well as practitioners have paid a
considerable amount of attention to so-called mathematical programs with equilib-
rium constraints (MPECs). This class of problems offers a very suitable modeling
framework for a number of practical problems (cf. the monographs [8, 13] and
the references therein). In addition, the study of MPECs provides a fruitful area
for application of various notions and tools from modern variational analysis ([11,
Chapter 5]). Because of the intrinsic nonsmoothness arising in every MPEC setting,
various stationarity concepts have been developed (cf. [18] for the case of equilibria
governed by complementarity problems). Among these conditions, a distinguished
role is played by so-called M(ordukhovich)-stationarity, which leads to rather sharp
optimality conditions under none too restrictive qualification conditions, and by
S(trong)-stationarity, where one pays for increased sharpness by the necessity to
impose a rather strong qualification condition. This strong qualification condition,
which apparently cannot be fulfilled in numerous MPECs, has been thoroughly an-
alyzed in the case of equilibria given by complementarity problems (see ([12, 14]).
On the other hand, very little is known about S-stationarity provided the equilibria
are governed by variational inequalities (VIs).

The aim of this paper is to analyze the S-stationarity of MPEC solutions, where
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the equilibria are governed by strongly regular VIs ([16]), and there are no other
constraints. We assume first that the constraint set of the considered VI is a convex
polyhedron and compute an inner approximation of the Fréchet normal cone to the
feasible set. Under a new qualification condition in terms of the problem data this
inclusion becomes an equality, which in turn ensures S-stationarity of the point in
question. Next, we assume that the constraint set of the VI is given by smooth
convex inequalities and rewrite the VI into the “enhanced” Lagrangian formulation.
On the basis of the previous result and the respective M-stationarity conditions,
we are then able to obtain a qualification condition for S-stationarity also in this
situation.

A standard notation is employed, where gph ® stands for the graph of a mul-
tifunction ®, K~ is the negative polar cone to a cone K and f’(x;d) denotes the
directional derivative of f at x in the direction d and by Id we denote the identity
operator. Throughout the paper, VIs will be written down in the form of generalized
equations ([16]), which is well-suited for this type of analysis.

2. PROBLEM FORMULATION AND PRELIMINARIES
In this paper, we will consider MPECs of the type:

min {{ (2, ) |2 € S(z) }. (1)

Here, f: R® x Rt — R is continuously differentiable and S : R® = R? is the solution
mapping to the generalized equation

OEF(.]Z,Z)+N0(Z), (2)
where F : R® x R® — R? is continuously differentiable and
C:={zeR"|A(z) <0},

with A : Rt — RP twice continuously differentiable and having convex components
A; for all j = 1,...,p. Note that the convexity assumption implies N¢(z) is the
standard normal cone from convex analysis.

We begin by defining the notions of variational analysis important for our study.
We refer the reader to [17] and [10] for a detailed introduction to the objects in-
troduced in the following. For a closed set C' C R?, we recall the definition of the
contingent cone to C' at some point z € C:

Tc(i) = {dERtBTk\O,Edk—)dZVk‘,i-l-dek GC}

In the case C' is convex, this reduces to the standard tangent cone from convex
analysis. Using the contingent cone, the Fréchet normal cone is defined as N¢(z) :=
[Te(Z)] . By taking the outer limit of Fréchet normal cones in the following way

Ne(2) = {2" | 3 (2, 25) = (2,2) : (2n,25) € C x No(zn)Vn},

one arrives at the Mordukhovich or limiting normal cone to C' at z. Note that if C
is convex, then No = N¢ and the cones coincide with the classical notion of normal
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cone from convex analysis. Given a multifunction ® : R® = R?, the Mordukhovich
coderivative of ® at (Z,z) € gph ® in (dual) direction z* € R is defined as

D*®(z,z)(z") == {z* € R®|(z", —2") € Ngpna(T,2) } .

In this note, we will call upon certain stability properties of multifunctions, which
we outline below. Let ® : R® = R? be a multifunction and (Z,z) € gph ®. Then we
say that ® has the Aubin property at (Z, z), if there exist neighborhoods U of & and
V of Z and a constant x > 0 such that the following relation holds

d(z,®(2")) < kl||lz —2'||,Yz € VN ®(z),Va,2' €U.

By fixing 2/ = Z, we say that ® is calm at (Z,Z). Evidently, the Aubin property
implies calmness.

Let now (7, z) be a solution to (2) and define the multifunction ¥ : R* = R via
a local partial linearization with respect to z

(&) :={z e R € F(z,2) + V.F(z,2)(z — 2) + No(2) } .

If there exist neighborhoods W of 0 € R? and V of Z such that the map & — X(£)NV is
single-valued and Lipschitz continuous on VW with modulus «, then the generalized
equation is is called strongly regular at (Z,Z) in the sense of Robinson (see [16]).
Strong regularity has the implication that for any € > 0 there exist neighborhoods
U, of T and Ve of z such that the mapping x — o(z) := S(z) N V. (with S from (1))
is single-valued and Lipschitz on U, with Lipschitz modulus (k+¢)L, where L is the
uniform Lipschitz modulus of F(+, z) on U, for all z € V. (see [16], Theorem 2.1).

Given (z,z) € gphS, we say that the strong second-order sufficient condition
(SSOSC) holds at (z, 2), if V.L(%, Z, \) is positive definite on ker (VAL (z,3)(2)) for
all A € Ngr (A(2)) with

VIA(Z)N = —F(z,2),

where L£(z,2,A) = F(z,2) + VT A(2)X and I.(2,A) == {j € {1,...,p}|A; > 0}.
Clearly, (1) can be converted to the mathematical-programming form

min{f(ac,z) { _F(Zx,z) } egthC}. (3)

T,z

) (1) is called strongly or S-stationary if there is a pair of

A feasible point (&, 2
,b*) € Ngpune (2, —F (&, 2)) such that

*

multipliers (u
0=V2f(s,2) —VLIF(z,2)b* @
0=VTf(#2) - VIF(2,2)b* +u*.

If (u*,b*) € Ngpnne (2, —F(Z, 2)), one speaks about Mordukhovich or M-stationarity.
Equivalently, with v* = —b*, M-stationarity amounts to the existence of a multiplier
v* such that

0=VIf(i2) +VEIF(& )" (5)

0€VTf(i,2) +VIF(&, 2)v* + D*No(3, —F(&, 2))(v*). (6)
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From [3, Theorem 4.1] we know that

—VTF(%,2
Nans(2.2) € | 3y Tyt pie 2 | Nesmoe (5 ~F(2.2) @

whenever the multifunction

z

U(u) = {(z,2) € R®* x R* { —F(z,2

) ] —u € gph N} (8)

is calm at (0, £, £). On the basis of [9] we arrive in this way at the following statement.

Theorem 2.1. Let (Z, Z) be a local solution to (1) and let the multifunction (8) be
calm at (0,7, z). Then (Z,%) is M-stationary, i.e., there exists a multiplier v* € R?
such that relations (5), (6) are fulfilled (with (Z, 2) replaced by (Z, 2)).

Recent developments in the study of explicit formulae for coderivatives of the type
displayed in (6) allow us to ultimately rewrite (5) and (6) even more explicitly, i.e.,
without any ambiguous terms, provided C' enjoys certain regularity properties. In
the following proposition we assume without loss of generality, that A(z) = 0 at the
considered point zZ € C'. This is justified, because the derived necessary optimality
conditions just depend on the problem data in a neighbourhood of the considered
local solution. Hence, inequality constraints which are non-binding at this solution
can be ignored.

Proposition 2.2. Let (Z, Z) be a local solution to (1) and, without loss of generality,
assume that A(z) = 0. Suppose that

1. VA(Z2) is surjective;
2. The perturbation mapping (8) is calm at (0, z, 2).

Then there exists a unique \ € R” and vectors (v*, w*) € R* x R? such that

_ng(i‘vz) = VZF(i‘az)v* (9)
p

~VIf(@z) = VIF@2v + Y NV24;@E) | v+ VTAEw"  (10)
j=1

VA;(z)v* = 0 Vj:A >0 (11)

wi = 0 Vj:A=0, VA;(z)v" <0 (12)

w; > 0 Vji:\=0, VA;(z)v" >0 (13)

F(z,z) = —VTA(Z)A (14)

Proof. Given assumption 2., there exists v* € R? such that (5) and (6) hold,
from which we immediately obtain (9). Turning now to the coderivative in (6),
assumption 1. allows us to invoke Theorem 3.1 in [5], which states

D*Ne(z,—F(z,2))(v") = | YN V24;(2) | v+ VT A(Z) D" Nar (A(2), ) (VA(Z)0Y),
j=1
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where A € R is uniquely defined by (14). Furthermore, Corollary 3.1 in [5] states
that the last term in the formula above amounts to V7 A(Z)w*, where v* and w*
satisfy (11)-(13). O

3. APPROXIMATING Ngpy s
3.1. Polyhedral feasible sets

In this section, we provide results detailing how one could possibly calculate, or at
the very least, characterize, a large subset contained within nghS~ These results
will allow us to characterize S-stationarity under certain assumptions similar to
those which were used for characterizing M-stationarity. In addition, the results will
later be used to intimate how the gap between M-stationarity and S-stationarity
might be bridged. To begin, we associate the solution mapping S with the following
generalized equation

0 € F(xz,w) + Ne(w), (15)

where x € R®, w € R", F : R* xR" — R" is continuously differentiable, and C C R" is
a convex polyhedron. Let us denote by K (Z,w) the critical cone to C corresponding

to (w, F(Z,@)), i.e., the set K(z, @) = Te(w) N {F(z,@)}".
Theorem 3.1 (polyhedral feasible sets). Let (Z,w) € gph S. Then

Seste 2 { | |

u* € K (Z,w),v" € K(x,w)} . (16)

If, in addition, (15) is strongly regular at (z,w) and
VuF (&, w)K(z,w) CImV,F(z,w©), (17)

then equality holds true in (16).

Proof. By definition, S(z) consists of those w satisfying (15). Equivalently,

gph S = {(z,w)|G(z,w) € gphN¢} G(z,w) := < —Fggc,w) ) . (18)

By [17, Theorem 6.14], we infer that

nghs(f,’w) D) vt G(z,w) gthcG(.f,’lD).
Recalling that, in accordance with our definition of K (z,w),
Nephne (0, —F(2,)) = K~ (2,) x K(z,0) (19)

(see [1, proof of Theorem 2]), we arrive at inclusion (16).

Suppose now, that (15) is strongly regular at (z,w) and (17) holds true. For
readability, we leave off the arguments of the critical cone. As C is a polyhedron, the
strong regularity assumption implies that the Lipschitz localization of S, denoted
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by o(z), is directionally differentiable at Z for each d € R*. Moreover, one has
o'(z;d) = v, where v is the unique solution of the generalized equation

0 € Vo, F(Z,w)d+ VyuF(Z,w)v + Nk (v)
(see e.g., Theorem 6.3 [13]). We calculate first the contingent cone to gph S:

Tgph s (T, )
{(d,v) e R®* xR"|37; \( 0, (d;,v;) = (d,v) : @+ Tyv; = 0(T + 75d;)Vi}
{(dv) €R® xR | = o'(z;d) },

where the last equality follows from the Lipschitz continuity of o. Hence,

Typn s(Z,w)
= {(dv) €R® x R" [0 € Vo F(Z,®)d + Vo F (Z,@)v + Ni(v) }

v

B {(d,v) €R’ xR” { =V F (2, w)d — V. F(Z, 0)v ] < soh Nie } '

Moreover, given K is a convex cone, it is easy to see that
gph N = {(v,u) € K x K~ |{(v,u) =0} .
As a consequence,

veK
Tepns(Z,w) = ¢ (d,v) € R® X R" | =V, F(z,w)d — V. F(z,w)v e K~ p. (20)
(v, Vo F (2, w)d + V., F(%,@)v) = 0

Now, in order to show the reverse inclusion to (16), let (d*,v*) € Ngpns(F, @) =
[Teph s(Z,w)]” be arbitrary. Then, (d*,d) + (v*,v) <0 for all (d,v) € Tgphs(Z,w).
Setting v := 0 € K, (20) implies that (d*,d) < 0 for all d such that —V,F(z,w)d €
K~. In other words,

& € [V, F (@ @) (K)" = ~VIF(z,0)(K).

Consequently, there exists a @ € K such that
d* = —VIF(z o)a. (21)
Plugging in this information yields that (—VZIF(z,w)d,d) + (v*,v) < 0 for all
(d,v) € Typn (T, w). Let a v € K be arbitrarily fixed. By the additional assumption
of the Theorem, to this v there exists a d, such that
V., F(Z,w)d, = Vo F (T, 0)v.

Therefore, (dy,v) € Typn s(Z,w) and the previous inequality yields

(@, Vo F (Z,w)v) + (v*,v) <0.
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As v € K is arbitrary, we have v := v* + VL F(z,w)u € K~. Then along with (21),
we get

IS

=[O TTTED ) (

I VR o) ) e VIG(z,w) K~ x K], (22)

where G is defined in (18). Since (d*,v*) € Ngphs(Z, w) was arbitrary, this proves
the reverse inclusion to (16). O

We note that the set on the right-hand side of (16) can be easily made fully ex-
plicit (similarly to what was done in Prop. 2.2) by exploiting representations of the
cartesian product of the critical cone with its polar as provided in [4] or [7]. From
Theorem 3.1 we can also immediately derive a setting under which an exact formula
for the studied Fréchet normal cone is available:

Corollary 3.2. Under the assumptions of Theorem 3.1, (16) holds as an equality
whenever V,F(Z,w) is surjective, i.e., the controls provide an ample parametriza-
tion of (2) ([2]).

On the basis of Theorem 3.1 we arrive now at the following sharp optimality
condition for the MPEC
min{o(z, w)|lw € S(z)}, (23)

T, w

where p[R* x R" — R] is continuously differentiable and S is given by (15).

Theorem 3.3. Let (Z,w) be a local solution to (23). Assume that the generalized
equation (15) is strongly regular at (Z,w) and inclusion (17) is fulfilled. Then (Z, @)
is S-stationary.

Proof. Clearly, 0 € VT (Z, @) 4+ Nypns (%, @), where N,pns(Z,®) amounts to the
set on the right-hand side of (16). It remains to recall (19) in order to check that
(4) is fulfilled at (2, 2) := (Z, ). O

3.2. Nonpolyhedral convex feasible sets

We now use Theorem 3.1 to obtain a similar statement for the solution mapping S
to the generalized equation (2), i.e., for settings in which a non-polyhedral convex
feasible set is considered. We start by writing the so-called enhanced generalized
equation associated with (2)

L(x,z,\)
0e |: —A(Z) :| +NR"><R§;(Z7)‘)7 (24)

where, as before,
L(z,2,\) = F(z,z) + VT A(2)\

and A is a vector of Lagrange multipliers associated with the constraint mapping A.
For the enhanced generalized equation, we introduce the enhanced solution mapping

S¢(z) :={(z,A) € R" x R [(24) is fulfilled } . (25)
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Clearly (24) is of the form (15), where

L(x,z,\)

w:=(z,\), F(z,w):= [ “A(2)

], C:=R'xR%.

On the basis of Theorem 3.1 we arrive now at the following statement.

Proposition 3.4 (an inner approximation of J\Afgph ge). Consider a reference
point (Z,z,\) € gph S¢ and assume w.l.o.g that A(Z) = 0 and that (24) is strongly
regular at (Z,z,\). Then,

Ngphse(7,2,0) 2 {(a,b,c) e R* x R' x R” | Jv € R, u € R x R,
u € {0} x R% :
a=-VIF(z,z)v
b= -VIL(Z, 2 \v+ VTAL (D)ur, + VAL (2)ur,
cr, = —VAL (2)v
cr, = u}o — VAL (Z)v}

where VIL(Z, 2, \)v = [VIF(z,2) + Y.7_, \;V2A4;(Z)]v and

I, = {jE{l,...,p}|5\j>0},IO::{je{]-v"'vp}P‘j:O}
|I+|, apg = ‘Io‘

a4
Proof. Letting w = (2, ) in Theorem 3.1, it suffices to compute
o7l
oty _ 5 L(z,Z,\)
K@) = TG0 | 2500 |
—A(z

= {( )E]Rtx]Rp’— Ty=0, u[OEO}
{(v, )efoRP\ufozo}

= {(v,u)eRthPuIOZO}ﬂ[ 0()]L

and

K~ (z,z2,)\) = {(v/,u') €R™ x RP |v/ =O,u/br =0,uf, < O}

and apply Theorem 3.1 with

Vo F (Z,w) = [V"”FO(’Z)}
VoF@o) = | Ve TR AT TG ],
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Based on the structure provided by Proposition 3.4, we next compute a similar inner
approximation for Ngph 5(Z, Z), where S is the solution map associated with (2).

Proposition 3.5 (an inner approximation of ﬁgph s). Under the assumptions
of Proposition 3.4, we have that

~

o v7
Nepn s(%,2) 2 s, @20

ot +VTA( Yu* VAL (Z)v* =20 . (26)

:| VAI+(7) *:0
wIOZO

| vrc

Proof. Note that due to strong regularity, A, used to define I, and Iy, is the
unique multiplier vector associated with the pair (z,z). We claim that

~

Nepns(@,2) = {(a,0) € R* x R (,6,0) € Ngpnse(2,2,1) } . (27)

Indeed, by Theorem 6.11, [17], one has (a,b) € ]\Afgphs(i, z) if and only if there is a
smooth function h that achieves its local maximum relative to gph S at (z,z) and
Vh(z,%) = (a,b). Then clearly (z,Z,)) is a local maximum of the function  on
gph S€¢, where

h(z,2,\) = h(z, z) for all .

Consequently, (a,b,0) € ﬁgph s¢(Z, %, ). For the reverse direction, we appeal to the
equivalent definition of the Fréchet normal cone (see e. g., Definition 1.1 [10]), which
states

- ) (a,2 —Z)+ (b,z—2)+0
(a,b,0) € Nypn e (Z,2,A) <  limsup —— <0.
gp @@z @ 2A) = (7,2, M|
(x,2,\)€gph §°©
(z,2,\)#(%,2,))

We claim now that this implies (a,b) € ]Vgphs(a’c,é). Indeed, due to the strong
regularity assumption, both z and A are single-valued locally Lipschitz functions of
x near Z. In particular, it is easy to argue that locally around (z, z, \) one has that

(z,2) € gph S < (x, 2z, \(z)) € gph S°.
Then we may continue the inequality given above as follows

(a,x —Z) + (b,z — Z) (a,z —Z) + (b,z — 2)

1
0> limsup —— lim sup = =
(@,2)—(@.2) (@, 2,A(2) = (@, 20| 7~ L+1 goys@s o2l +]z - 2]
(z,z)Egph S (z,z)€Egph S
(w,2)#(%,2) (w,2)#(%,2)

where L is the Lipschitz modulus of A(x). Thus by definition, (a,b) € ﬁgphs(f, zZ),
which proves (27). Then the asserted formula follows immediately from Proposition
3.4. |
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4. USING M-STATIONARITY CONDITIONS TO OBTAIN
STRONG STATIONARITY CONDITIONS

We can now use the results of the previous section to obtain a new condition ensuring
that a local minimizer is S-stationary for (1).

Let the assumptions of Theorem 3.1 be fulfilled. Then one could adapt the notion
of S-stationarity with respect to the structure of C' as follows.

A feasible point (7, z) to the MPEC (1) is S-stationary, assuming A(z) = 0, if
there exist A € R%. and (v*,w*) € R x RP such that

—fo(faf) = V?;F(LE,Z)’U* (28)
~VTfz,2) = VIF(z zp: A;(2) | v+ VT AZ)w* (29)
VAL (Z)0* = 0 (30)
VA, (Z)w* > 0 (31)
wy, > 0 (32)
F(z,2) = —-VTA(Z)\ (33)

It is clear that a solution (Z,Z) to (1) need not be S-stationary, provided (26)
holds as a proper inclusion. Nevertheless, under an additional condition, (Z, z) will
be S-stationary as shown in the next statement via comparison of the M-stationarity
conditions in Proposition 2.1 with inclusion (26).

Theorem 4.1 (using M-stationarity to obtain S-stationarity). Let (7, Z) be
a local solution to (1) and assume without loss of generality that A(Z) = 0. Assume
that

1. VA(Z) is surjective;
2. SSOSC holds at (z, 2);
3. there is a v* satisfying (9), (10) such that VAy, (2)v* > 0.

Then (Z,2) is S-stationary. In particular, there exists a unique A\ € R% and
(v*,w*) € R* x R? such that

VT2 = VIF(z 2"

p
V7T z = VIF@z Z A;(2) | v+ VTAR)w

VA (2)v* =0, VA, (Z)0v* >0, wj, >0, F(z,2)=-VTA(Z)\

Proof. Given assumptions 1. and 2., we know (24) is strongly regular at (Z,z, \)
(see Theorem 4.1 [16]). Thus, the inclusion (26) holds and we can write down the
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S-stationarity conditions in the form (28)-(33). In addition, assumptions 1. and
2. also imply that the perturbation mapping associated with (2) has the Aubin
property at (Z,z) (see Corollary 5.1 in [19] in general or Proposition 5.1 in [6]
for a special case). Then by Proposition 2.2, there exists a unique \ € R” and
multipliers (v, w*) € R! x R? such that (9)—(14) hold. At this point, it is clear that
relations (9)—(11),(14) are equivalent to (28)—(30),(33). Finally, by assumption
3., we observe that (12) vanishes and (13) becomes equivalent to wj > 0 and
VAp (2)v* > 0. Therefore, the pair (v*,w*) fulfills (together with ,z, \) the S-
stationarity conditions and we are done. O

Note that if strict complementarity were to hold, then the S-stationarity conditions
would always coincide with the M-stationarity conditions, in which case M- and
S-stationarity become equivalent conditions, as would be expected.

The interested reader can find an example in which all three conditions of the
previous theorem hold in [19] (Example 8.6).
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