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Abstract

This paper is based mainly on the joint paper with W. Kryszewski [9],
where cohomological Conley type index for multivalued flows has been ap-
plied to prove the existence of nontrivial periodic solutions for asymptot-
ically linear Hamiltonian inclusions. Some proofs and additional remarks
concerning definition of the index and special cases are given.
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1 Introduction

Conley index theory (see [6]) is a topological generalization of Morse theory
of critical points. Conley’s original approach was developed for dynamical sys-
tems on locally compact metric spaces. In applications they where generated
by vector fields in Rn ore on manifolds. There are several generalizations to
the infinite dimensional case (non locally compact) e.g. by V. Benci and K. Ry-
bakowski (comp. [21]). The properties of the index used in applications are
to some extend similar to topological degree. In particular, many vector fields
can be written in the form L +H , where L is a given linear bounded operator
in some Hilbert space, and K is completely continous mapping. For a certain
class of L the approach of finite dimensional approximations of Leray Schauder
type has been succesfully applied by K. Gȩba and his students ([13]). On the
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other hand, M. Mrozek [20] developed cohomological Conley index theory for
multivalued flows in locally compact spaces. We present briefly the definition
of a topological invariant called Conley index for multivalued flows generated
by differential inclusions in Hilbert spaces. This generalizes the one defined in
[13], [16] and is an infinite-dimensional version of the index considered in [20].
Let us mention that homotopy version of this index in Rn for flows generated
by differential inclusions was also used by other authors (see [19], [12]).

Let us remark that we chose the cohomological definition of the index as
in [20] because of its generality. The continuation is then easily proved for usc
families of flows. However for flows generated by inclusions one can work also
with the homotopical notions (see [19], [12]), which are, at least formally, more
subtle. In a forthcoming paper [8] we prove that our index is the same up to a
cohomology functor.

As an application we describe a result on the existence of nontrivial periodic
solutions of asymptotically linear Hamiltonian systems with the Hamiltonian
merely locally Lipschitz. This generalizes a classical theorem of H. Amann and
E. Zehnder [1] (comp. e.g. [18]). The Leray -Schauder version of Conley theory
seems especially well-fitted to such examples, where L is a selfadjoint operator
with both positive and negative part of its’ spectrum having infine-dimensional
eigenspaces (finite-dimensional for a given eigenvalue). But it can be applied
also in a simpler situation, where one of these two parts is finite dimensional,
e.g. L = Identity . Definitions simlify in that case (we do not need suspension
isomorphisms), i.e. our Conley index becomes the Conley index for a finite di-
mensional approximation with the dimension large enough. Such an approach
was used in [2], [10] in a single-valued smooth case with additional assump-
tions. Our results on Hamiltonian inclusions can be viewed as a straightforward
generalization of theorems for classical smooth systems with Hamiltonian of C2-
class to the locally Lipshitz case, where Clarke generalized gradients [5] stand
in place of the usual one. Notice that results of [4], where variational methods
are not exactly comparable with ours. F. Clarke uses a dual action functional
and obtains its critical points as local minima. In our approach critical points of
the functional are stationary points in an invariant set of an associated single-
valued flow, for which it is a Lyapunov function (comp. the proof of 5.4 and
5.5).

We end with a computational example illustrating the result. Other exam-
ples can be easily produced as non-smooth perturbations of examples given in
[13], [16].

2 Multivalued flows

All spaces considered here are metric.
A nonempty compact space X is acyclic if H0(X) = Z and Hn(X) = 0

for n > 0, where H∗ denotes the Alexander–Spanier cohomology functor. A
continuous mapping f : X → Y is called Vietoris iff it is proper and f−1(y) is
acylic for every y ∈ Y .
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A multivalued mapping ϕ : X � Y is usc iff ϕ(x) ⊂ Y is nonempty compact,
and for every open U ⊂ Y the preimage ϕ−1(U) = {x ∈ X : ϕ(x) ⊂ U} is open
in X .

An usc mapping ϕ : X � Y is admissible provided there exist: a space Γ,
and continuous mappings p : Γ → X , q : Γ → Y such that p is Vietoris and
for x ∈ X ϕ(x) = q(p−1(x)). The main feature of Vietoris mappings is the
following.

Theorem 2.1 (Vietoris, Begle) A Vietoris map f : X → Y induces an isomor-
phism f∗ : H∗(Y ) → H∗(X).

The class of admissible maps is a rich one: for example any acyclic map
ϕ : X � Y is admissible (ϕ is acyclic if it is upper semicontinuous and, for any
x ∈ X , ϕ(x) is acyclic); it is determined by the pair (pϕ, qϕ) where pϕ : Gr(ϕ) →
X and qϕ : Gr(ϕ) → Y are the restrictions of the projections X × Y → X and
X × Y → Y , respectively.

It is easy to see that the class of admissible maps is closed under superpo-
sition. If Y is a metric (real) vector space, ϕ1, ϕ2 : X � Y are admissible and
f, g : X → R are continuous, then the linear combination ϕ = f · ϕ1 + g · ϕ2 :
X � Y (given by ϕ(x) := {f(x)y1 + g(x)y2 | yi ∈ ϕi(x), i = 1, 2} for x ∈ X) is
also admissible. For more details concerning admissible maps – see [14].

Definition 2.2 An usc mapping π : X × R � X is a multivalued flow on X
provided for any s, t ∈ R, x, y ∈ X

(i) π(x, 0) = {x}
(ii) st ≥ 0 =⇒ π(x, t+ s) = π(π(x, t), s)

(iii) y ∈ π(x, t) ⇐⇒ x ∈ π(y,−t).
(iv) the map ϕ(x, ·) : R � X is continuous.

The flow is admissible iff there exists T > 0 such that the restriction of π to
X × [0, T ] is an admissible mapping in the above sense.

Let Δ ⊆ R. A Δ-trajectory is a continuous mapping σ : Δ → X such that
σ(t) ∈ π(σ(s), t − s) for all t, s ∈ Δ. The set of all Δ-trajectories in N ⊆ X
originating in x (i.e. 0 ∈ Δ, σ(0) = x) is denoted by TrN(Δ, x).

A connection from x to y in N is a [0, t]-trajectory σ in N such that σ(0) = x,
σ(t) = y.

For N compact we define πN : N × R → N by

πN (x, t) = {y : ConnN (t, x, y) 	= ∅}.

Then πN is a partial multivalued flow on N (i.e. πN (x, t) may be empty).
Let A ⊆ X . Denote

InvA := {x ∈ A : TrA(R, x) 	= ∅}
Inv+A := {x ∈ A : TrA(R+, x) 	= ∅}
Inv−A := {x ∈ A : TrA(R−, x) 	= ∅}
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Definition 2.3 A subset A ⊆ X is invariant (resp. positively (negatively)
invariant) iff InvA = A (resp. Inv+A = A (Inv−A = A)).

For a subset A ⊂ X the set InvA is a maximal invariant subset of A.
A is strongly invariant (positively, negatively) iff ∀x ∈ A π(x,R) ⊆ A

(π(x,R+) ⊆ A, π(x,R−) ⊆ A resp.).
The following is a version of the generalized Barbashin theorem.

Proposition 2.4 [9] Let Λ be a metric space, N ⊂ X be closed and let η : X×
R × Λ � X be a family of multivalued flows (i.e. η is upper semicontinuous
and, for each λ ∈ Λ, η(·, λ) : X × R � X is a multivalued flow). Then the
graph of the set-valued map

Λ � λ 
→ Inv(N, η(·, λ))

is closed, i.e. for any sequence (xn, λn) ∈ N×Λ such that xn ∈ Inv(N, η(·, λn)),
if (x, λ) = limn→∞(xn, λn), then x ∈ Inv(N, η(·, λ)).

Let us remind the notion of Conley index in the case of X locally compact.

Definition 2.5 (see [20]) A compact set N ⊂ X is an isolating neighborhood
for ϕ if Inv(N,ϕ) ⊂ intN . We say that a set K invariant with respect to ϕ is
isolated if there is an isolating neighborhood N such that K = Inv(N,ϕ).

Observe that, in view of Proposition 2.4, isolated invariant sets are compact.

Definition 2.6 A pair (P1, P2) of subsets of N is an index pair in N iff

(i) P1, P2 are compact and strongly positively invariant with respect to πN ,

(ii) Inv−N ⊆ intN P1, Inv+N ⊆ N \ P2,

(iii) cl(P1 \ P2) ⊆ intN .

Theorem 2.7 [20] Let π be a multivalued flow on locally compact X and K
an isolated invariant set with an isolating neighbourhood N . Then for every
neighbourhood W of K there exists an index pair in N such that cl(P1\P2) ⊆W .

Theorem 2.8 [20] If the flow is admissible and K is an isolated invariant,
then the Aleksander–Spanier cohomology groups H∗(P1, P2) do not depend on
the isolating neighborhood and on the choice of index pair.

The graded group in Theorem 2.8 is called the cohomological Conley index
CH(K) of the set K. This index has the following properties:

Theorem 2.9 (i) (Ważewski) If CH(K) is nontrivial, then K 	= ∅.
(ii) (Continuation) Assume that η : X × R × [0, 1] � X is a family of ad-

missible flows and let N ⊂ X be an isolating neighbourhood for all flows η(·, t),
t ∈ [0, 1]*. Then

CH(Inv(N, η(·, 0)) = CH(Inv(N, η(·, 1)).
*One easily sees that the parameter space can be any compact metric path connected space

instead of [0,1].
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(iii) (Additivity) Let K1,K2 be disjoint isolated invariant sets for an admis-
sible flow ϕ. Then CH(K1 ∪K2) = CH(K1)⊕ CH(K2).

Example If f : Rn � Rn is usc with compact convex images and of sublinear
growth, then solutions of the differential inclusion

x′(t) ∈ f(x(t))

form an admissible flow in Rn. This follows from the Aronszajn type theorem
that the set of solutions to a Cauchy problem is Rδ-set, in particular it is acyclic
(see e.g. [14]).

3 L-flows in Hilbert spaces

Let H = (H, 〈·, ·〉) be a real Hilbert space and L : H → H a linear bounded
operator with spectrum σ(L). We assume the following

• H =
⊕∞

k=0 Hk with all subspaces Hk being mutually orthogonal and of
finite dimension;

• L(H0) ⊂ H0 where H0 is the invariant subspace of L corresponding to the
part of spectrum σ0(L) = iR ∩ σ(L) lying on the imaginary axis,

• L(Hk) = Hk for all k > 0,

• σ0(L) is isolated in σ(L), i.e. σ0(L) ∩ cl(σ(L) \ σ0(L)) = ∅.

Definition 3.1 A multivalued flow ϕ : H×R � H is called an L-flow if it has
the form

ϕ(x, t) = etLx+ U(t, x),

where U : H× R � H is an admissible map which is completely continuous.
Let Λ be a metric space. By a family of L-flows we understand a set-valued

map η : H× R× Λ � H of the form

η(x, t, λ) = etLx+ U(x, t, λ),

where U : H×R×Λ � H is an admissible completely continuous mapping, such
that, for each λ ∈ Λ, η(·, λ) : H× R � H is a multivalued flow.

It is clear that if η : H × R × Λ � H is a family of L-flows, then, for each
λ ∈ Λ, η(·, λ) : H × R � H is an L-flow. Moreover each L-flow is an admissible
flow.

Proposition 3.2 Let η : H × R× Λ � H be a family of L-flows. If X ⊂ H is
bounded and closed then S = Inv(X×Λ, η) = {(x, λ) : x ∈ Inv(X)} is a compact
subset of X × Λ.

Definition 3.3 A bounded and closed subset X ⊂ H is an isolating neighbour-
hood for a flow π if Inv(X) ⊂ int(X).
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Proposition 3.4 If X ⊂ H is closed and bounded, then the set-valued map
Λ � λ 
→ Inv(X, ηλ) ⊂ X is usc and has compact (possibly empty) values.

Proof In view Proposition 2.4, it is sufficient to show that, given a sequence
(λn, xn) in Λ × X such that xn ∈ Inv(X, ηλn) and λn → λ0 ∈ Λ, (xn) has
a convergent subsequence, i.e., the set S := {xn}∞n=1 is relatively compact.
Suppose it is not so.

Denote by H− (resp. H+) the closed L-invariant subspace corresponding to
the part of the spectrum σ(L) of L with negative (resp. positive) real part. In
view of the above assumptions, H splits into the direct sum H = H−⊕H0⊕H+.
Let P± : H → H± and P0 : H → H0 be the orthogonal projections. Since σ0(L)
is isolated in σ(L), for each � > 0, there is t0 > 0 such that, for all x ∈ H+ and
t ≥ t0

‖etLx‖ ≥ �‖x‖ (3.1)

and, for x ∈ H− and t ≤ −t0,

‖etLx‖ ≥ �‖x‖. (3.2)

Clearly S ⊂ clP−(S) × clP0(S) × clP+(S). The set clP0(S) is compact as
a closed bounded subset of a finite-dimensional space H0. Therefore either
clP−(S) or clP+(S) is noncompact. Assume that P+(S) is not relatively com-
pact. Hence there exists an ε > 0 such that P+(S) does not admit a finite ε-net
and we can choose a sequence (xi) ∈ S such that zi := P+(xi), i ≥ 1, satisfy
‖zi − zj‖ ≥ ε whenever i 	= j. Choose δ > 0 and t0 > 0 such that X ⊂ B(0, δ)
and the inequality (3.1) holds for � = 3δ

ε . For i ≥ 1, set ui := et0Lxi and take
an arbitrary vi ∈ U(xi, t0, λn); then

ui + vi ∈ et0Lxi + U(xi, t0, λi) = ηλi(xi, t0) ⊂ X ⊂ B(0, δ).

Thus, for i 	= j,

3δ ≤ ‖ui − uj‖ ≤ ‖ui + vi‖+ ‖vi − vj‖+ ‖uj + vj‖ < 2δ + ‖vi − vj‖

and, consequently,
‖vi − vj‖ > δ.

But, for each i ≥ 1, vi belongs to the set
⋃∞

j=1 U(xj , t0, λj) being relatively
compact in view of the complete continuity of U . Thus (vi) has a convergent
subsequence: a contradiction. �

Proposition 3.5 Let Λ be a compact metric space let η : H × R × Λ � H be
a family of L-flows. If X is an isolating neighbourhood for some ηλ0 then it is
an isolating neighbourhood for λ in some open neighbourhood V of λ0 in Λ.

Definition 3.6 An usc mapping f : H � H is an L-vector field if it is of the
form f(x) = Lx + K(x), where K : H � H is completely continuous with
compact convex values, and if f induces an L-flow π on H .
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Denote by Pn : H → H the orthogonal projection onto Hn =
⊕n

k=0Hk.
Define

fn : H
n � Hn by fn(x) = Lx+ Pn(K(x))

and

Fn : H
n+1× [0, 1] � Hn+1 by Fn(x, s) = Lx+(1− s)Pn(K(x))+ sPn+1(K(x)).

Denote by πn the flow induced by fn and by ξn the family of flows induced
by Fn. The following is the basis of the definition of our index.

Proposition 3.7 Let X ⊂ H be an isolating neighbourhood for π. There exists
n0 ∈ N such that if n ≥ n0 then Xn = X ∩ Hn is an isolating neighbourhood
for πn and ξn.

Proof Define a family of L-vector fields h : H× [0, 1] � H by

h(x, s) = Lx+ (1 + n)(1− ns)Pn+1(F (x)) + n[(n+ 1)s− 1]Pn(F (x))

for
1

n+ 1
< s ≤ 1

n

and h(x, 0) = f(x). One checks h generates a family η : H × R × [0, 1] � H of
L-flows. By Proposition 3.4, the graph S of the map [0, 1] � s 
→ Inv(X, ηs) is
compact in [0, 1] × X and S ∩ ({0} × X) ⊂ {0} × intX . Therefore, for some
s0 > 0, we have S∩ ([0, s0]×X) ⊂ [0, s0]× intX ; in other words, for 0 ≤ s ≤ s0,
Inv(X, ηs) ⊂ intX . One takes n0 > 1/s0. �

The invariant set Sn = Inv(Xn, πn) admits an index pair(Yn, Zn) and its
Conley index is H∗(Yn, Zn).

Denote ν(k) = dimH+
k+1, where H+

k = Hk ∩H+.
One proves (by continuation) that there exists an isomorphism on cohomol-

ogy
c∗ : H∗(Yn+1/Zn+1) → H∗(Sν(n)(Yn/Zn)),

where S denotes the topological suspension construction. Thus we have an
isomorphism

γn : H
k+ν(n)(Yn+1, Zn+1) → Hk(Yn, Zn).

Define ρ : N ∪ {0} → N ∪ {0}, ρ(0) = 0 and ρ(n) =
∑n−1

i=0 ν(i).

Definition 3.8 CHq(X) = lim
←−

{Hq+ρ(n)(Yn, Zn), γ̃n}, where γ̃n are composi-

tions of the above homomorphisms.

The following properties are proved anlogously to the single-valued versions
(using Theorem 2.9).

Proposition 3.9 Let X be an isolating neighbourhood for an L-flow ϕ gen-
erated by an L-vector field f . If CH∗(X,ϕ) 	= {0}, then Inv(X,ϕ) 	= ∅. In
particular there is a bounded solution (lying in X) to problem ẋ ∈ f(x).
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Proposition 3.10 (continuation) Let Λ be a compact, connected and locally
contractible metric space. Assume that η : H × R × Λ � H is a family of
L-flows generated by a family of L-vector fields f : H × Λ � H. Let X be an
isolating neighborhood for the flow η(·, λ) for some λ ∈ Λ. Then there exists a
compact neighborhood C ⊂ Λ of λ such that CH∗(X, η(·, μ)) = CH∗(X, η(·, ν))
for all μ, ν ∈ C.

Proposition 3.11 Let X,X ′ be two isolating neighborhoods for an L-flow ϕ
generated by an L-vector field f . Assume that X ⊂ X ′ and Inv(X ′, ϕ) ⊂ intX.
Then CH∗(X,ϕ) = CH∗(X ′, ϕ).

4 Clarke’s generalized gradient

Let E be a Banach space, U ⊂ E open , f : U → R locally Lipschitz function.
Let x ∈ U and u ∈ E; for small h > 0 and y ∈ U from a neighborhood of x,
h−1[f(y+hu)−f(y)] ≤ Lx‖u‖ where Lx is the Lipschitz constant of f around x.
Therefore the Clarke generalized directional derivative of f at x in the direction
of u

f◦(x;u) := lim sup
y→x, h→0+

f(y + hu)− f(y)

h
.

is well-defined and f◦(x;u) ≤ Lx‖u‖.
Given x ∈ U , the generalized gradient of f at x is defined by

∂f(x) := {p ∈ E∗ | ∀u ∈ E 〈p, u〉 ≤ f◦(x;u)}.

Clearly ∂f(x) is nonempty, weak∗-closed and convex; if p ∈ ∂f(x), then ‖p‖ ≤
Lx. By the Alaoglu theorem, ∂f(x) is weak∗-compact.

Let us collect some important properties of the generalized gradient.

Theorem 4.1 Suppose that f : U → R is locally Lipschitz and let x ∈ U . Then:

(i) ∂(−f)(x) = −∂f(x); if g : U → R is continuously Fréchet differentiable,
then ∂(f + g)(x) = ∂f(x) +∇g(x) (i.e. ∂(f + g)(x) = {p+∇g(x) | p ∈ ∂f(x)},
where ∇g stands for the Fréchet derivative of g at x);
(ii) if F is a Banach space and A : F → E is a bounded linear operator, then

f ◦ A : A−1(U) → R is locally Lipschitz and ∂(f ◦ A)(x) ⊂ A∗(∂f(x)) where
A∗ : E∗ → F∗ is the adjoint of A;
(iii) if f has an extremum at x, then 0 ∈ ∂f(x);

(iv) (Mean value theorem) if y ∈ U and [x, y] := {(1−λ)x+λy | λ ∈ [0, 1]} ⊂
U, then there is λ ∈ (0, 1) and p ∈ ∂f((1− λ)x+ λy) such that

f(y)− f(x) = 〈p, y − x〉.

For the proofs see e.g. [5].
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5 Hamiltonian systems

Let G : R × R2N → R be 2π-periodic with respect to the first variable and
locally Lipschitz with respect to the second one. We consider the Hamiltonian
differential inclusion

ż ∈ J∂G(t, z) (5.1)

where

J =

[
0 −IN
IN 0

]

(IN stands for the unit (N × N) matrix) is the standard symplectic matrix
and ∂G(t, z) denotes the Clarke generalized gradient with respect to z ∈ R2N .
We shall look for nontrivial 2π-periodic solutions, i.e. 2π-periodic absolutely
continuous functions z : R → R2N such that the inclusion is satisfied for almost
all t ∈ R.

We shall consider the corresponding action functional on the fractional Sobolev
space H := H1/2(S1,R2N ) (here S1 := R/2πZ is the circle parameterized over
[0, 2π]), and study its critical points.

Recall that u ∈ H if and only u ∈ L2(S1,R2N ) (i.e. u : R → R2N is 2π-
periodic and locally square integrable) such that

∑

k∈Z
|k||ûk|2 <∞

where

ûk := (2π)−1
∫ 2π

0

e−iktu(t) dt ∈ C2N , k ∈ Z,

is the k-th Fourier coefficient of u:

u(t) =
∑

k∈Z
eiktûk, û−k = ûk, k ∈ Z.

Then H is a real Hilbert space with the inner product:

〈u, v〉H = 2πû0 · v̂0 + 2π
∑

k∈Z\{0}
|k|ûk · v̂k,

where · is the standard Hermitian product in C2N .
For any a ∈ R, eaJ = cos a · I2N + sin a · J . Therefore, for u ∈ L2(S1,R2N ),

we may write

u(t) =
∑

k∈Z
ektJuk,

where uk := (2π)−1
∫ 2π

0 e−ktJu(t) dt for k ∈ Z. Then

uk + u−k = 2Reûk, J(uk − u−k) = −2Imûk.
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Hence u ∈ H if and only if u ∈ L2(S1,R2N ) and

∑

k∈Z
|k||uk|2 <∞.

Using this notation we see that, for u, v ∈ H, v(t) :=
∑

k∈Z e
ktJvk,

〈u, v〉H = 2πu0 · v0 + 2π
∑

k∈Z∗

|k|uk · vk

Consider a map L : H → H given by

Lu(t) :=
∑

k∈Z
(sgn k)ektJuk

for u(t) =
∑

k∈Z e
ktJuk, i.e. (Lu)k = (sgnk)uk for all k ∈ Z (sgn 0 := 0).

We suppose that:

(G1) for all u ∈ R2N , G(·, u) : R → R is measurable and 2π-periodic;
G(·, 0) ∈ L1

loc;

(G2) there exists k ∈ Lq([0, 2π],R) such that, for almost all t ∈ [0, 2π] and
all u, v ∈ R2N , |G(t, u)−G(t, v)| ≤ k(t)|u − v|, or

(G2)
′ for almost all t ∈ R, G(t, ·) : R2N → R is locally Lipschitz and there

are α ∈ Lq([0, 2π],R) and β ≥ 0 such that, for almost all t ∈ [0, 2π]
and all u ∈ R2N ,

sup
y∈∂G(t,u)

|y| ≤ α(t) + β|u|p−1.

Finally we define ψ : H → R by the formula

ψ(u) := −
∫ 2π

0

G(t, u(t)) dt, u ∈ H.

In order to obtain the existence of periodic solutions we shall study a func-
tional Φ: H → R given by

Φ(u) :=
1

2
〈Lu, u〉H + ψ(u), u ∈ H.

Using the compact embedding of H into L2 and special properties of the
Clarke gradient for integral functional we prove the following:

Proposition 5.1 [9] The map ∂Φ = L+ ∂ψ : H � H is an L-vector field.

Proposition 5.2 Suppose that in z ∈ H is a critical point of Φ, (i.e. 0 ∈
∂Φ(z)), then z ∈ H1(S1,R2N ) ⊂ H and z is a solution to (5.1).
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The following crucial abstract result is not as straightforward as in the
smooth case. The reason is that we do not know that an invariant set of a
multivalued flow generated by a (generalized) gradient vector field has to con-
tain critical points as it is true in a smooth case.

Theorem 5.3 [9] Let ϕ be the L-flow generated by the L-vector field ∂Φ. As-
sume that N is an isolating neighbourhood for ϕ and CH∗(N,ϕ) 	= 0. Then the
set of critical points K(Φ) ∩N 	= ∅.

In the proof we use the following two ingredients.

Theorem 5.4 For any ε > 0, there exists a locally Lipschitz L-field W : H \
K(Φ) → H of the form W (y) = Ly+V (y) where V : H\K(Φ) → H is completely
continuous with sublinear growth such that, for each y ∈ H and q ∈ ∂Φ(y),

〈W (y), q〉H ≥ 1

2
δ(y) > 0,

where δ is a certain continuous function. Moreover V (y) ∈ conv ∂ψ(Bε(y)) for
every y ∈ H \K(Φ).

Proof For any u ∈ H, define

|||∂Φ(u)||| = inf
v∈∂Φ(u)

Φ◦(u; v).

Define a function δ : H → R by the formula

δ(x) := inf
u∈H

(|||∂Φ(u)||| + ‖u− x‖H), x ∈ H.

Observe that for u ∈ H \ K(Φ) we have |||∂Φ(u)||| ≥ δ(u) > 0. Hence there is
vu ∈ ∂ψ(u) such that

inf
q∈∂Φ(u)

〈q, Lu+ vu〉H >
1

2
δ(u).

Observe now that

inf
q∈∂Φ(u)

〈q, Lu+ vu〉H = −Φ◦(u;−Lu− vu).

The function

H � y 
→ inf
q∈∂Φ(y)

〈q, Ly + vu〉H − 1

2
δ(y)

is lower semicontinuous and takes a positive value for y = u. Hence there is a
open neighborhood Nu ⊂ Bε(u) of u such that, for all y ∈ Nu,

inf
q∈∂Φ(y)

〈q, Ly + vu〉H >
1

2
δ(y).
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Consider a locally finite partition of unity {λs}s∈S consisting of locally Lipschitz
functions with supports {suppλs} refining the cover {Nu}u∈H\K(Φ) of H\K(Φ),
i.e. for any s ∈ S, there is us ∈ H such that suppλs ⊂ Nus . For each s ∈ S, let
vs := vus and define

V (y) :=
∑

s∈S
λs(y)vs, y ∈ H \K(Φ).

It is clear that V is well-defined, locally Lipschitz and maps bounded sets in
H \K(Φ) into compact ones. Moreover, V has sublinear growth since so does
∂ψ.

Let y ∈ H \ K(Φ) and let Sy := {s ∈ S | λs(y) 	= 0}. If s ∈ Sy, then
y ∈ Nus ⊂ Bε(us); hence us ∈ Bε(y) and vs ∈ ∂ψ(Bε(y)). Therefore V (y) ∈
conv ∂ψ(Bε(y)) and

inf
q∈∂Φ(y)

〈q, Ly + vs〉H >
1

2
δ(y).

Hence, for any q ∈ ∂Φ(y)

〈q, Ly + V (y)〉H =
∑

s∈Sy

λs(y)〈q, Ly + vs〉H ≥ 1

2
δ(y).

Putting W (y) := Ly + V (y), y ∈ H \K(Φ) we complete the proof. �

Theorem 5.5 Suppose that y belongs to the ω-limit set ω(x) of the point x ∈
H \K(Φ) with respect to the local dynamical system η generated by W . Then
y ∈ K(Φ).

Proof Recall that, by definition y ∈ ω(x) if and only if y = limt→t+(x) η(x, t)
where η̇(x, t) =W (η(x, t)) for t ∈ Jx := (t−(x), t+(x)). As above we see that Φ
increases along η. We show that Φ is constant on ω(x). Indeed, let z ∈ ω(x).
Hence there are sequences tn → t+(x), sn → t+(x) such that η(x, tn) → y and
η(x, sn) → z. We may assume that · · · < tn < sn < tn+1 < sn+1 < . . . t+(x).
Hence · · · < Φ(η(x, tn)) < Φ(η(x, sn)) < Φ(η(x, tn+1)) < Φ(η(x, sn+1)) < . . . .
By continuity, Φ(y) = Φ(z).

Suppose to the contrary that y 	∈ K(Φ), i.e. δ(y) > 0, and consider the
trajectory η(y, ·) : Jy → H. It is easy to see that {η(y, t) | t ∈ Jy} ⊂ ω(x).
But then (at least locally) Φ is strictly decreasing along η(y, ·)and we have a
contradiction. �

Proof of Theorem 5.3 Suppose to the contrary that K(Φ) ∩N = ∅ and let
ε0 > 0 be sufficiently small. Then by the continuation property (Proposition
3.10), CH(N,ϕε) = CH(N,ϕ) 	= 0 for any 0 < ε ≤ ε0, where ϕε is actually a
flow generated by the field fε := L+ conv ∂ψ(Bε(·)).

Fix 0 < ε ≤ ε0 and let λ : H → [0, 1] be given by

λ(x) =
d(x,K(Φ))

d(x,N) + d(x,K(Φ))
, x ∈ H.
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Then λ|N ≡ 1 and λ|K(Φ) ≡ 0. Take a map V : H \ K(Φ) → H given by

Proposition 5.4 and let Ṽ (x) = λ(x)V (x) for x ∈ H \K(Φ) and Ṽ (x) = 0 for
x ∈ K(Φ). Then Ṽ : H → H is locally Lipschitz, completely continuous and
has sublinear growth. Let η̃ be an LS-flow generated by W̃ := L+ Ṽ .

Observe that W̃ is a selection of fε. Thus a linear homotopy h : H× [0, 1] �
H , where

h(x, t) = tfε(x) + (1− t)W̃ (x), t ∈ [0, 1], x ∈ H,

generates a family of LS-flows θ : H × R × [0, 1] � H . For each t ∈ [0, 1] and
x ∈ H , h(x, t) ⊂ fε(x). Thus, for all t ∈ [0, 1], N is an isolating neighborhood
for θ(·, t). Therefore

CH(N, η̃) = CH(N, θ(·, 1)) = CH(N, θ(·, 0)) = CH(N,ϕε) 	= 0.

By Proposition 3.9, the invariant part Inv(N, η̃) is nonempty. Hence, for x ∈
Inv(N, η̃), ∅ 	= ω(x) ⊂ N since Inv(N, η̃) is compact. By Theorem 5.5 we obtain
that there is y ∈ K(Φ) ∩N . This contradiction proves the theorem. �

Now we apply the index to asymptotically linear Hamiltonians.
Given a symmetric 2N × 2N -matrix A with real (constant) coefficients, con-

sider the following Hamiltonian system

ż = JAz.

For a symmetric (real) matrix B, let M±(B) and M0(B), denote the number
(with multiplicity) of positive (resp. negative) eigenvalues of B and the dimen-
sion of its kernel, respectively, and define the generalized Morse index

i±(A) :=M±(−A) +
∞∑

k=1

(M±(Tk(A)) − 2N),

and the generalized nullity

i0(A) :=M0(−A) +
∞∑

k=1

M0(Tk(A)).

where

Tk(A) =

[
− 1

kA −J
J − 1

kA

]

Now let us assume that G : R × R2N → R satisfies condition (G1) with
G(·, 0) ≡ 0 and (G2) with k(·) ≡ k ≥ 0 or (G2)

′ with α(·) ≡ α ≥ 0. Moreover
let us assume that there are symmetric 2N×2N -matrices A0 and A∞ such that:

(G3) supy∈∂G(t,u) |y − A0u| = o(|u|) as u → 0 uniformly with respect to

t ∈ [0, 2π];

(G4) supy∈∂G(t,u) |y−A∞u| = o(|u|) as |u| → ∞ uniformly with respect to

t ∈ [0, 2π].
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The following theorem constitutes a multivalued version of the result due to
H. Amann and E. Zehnder [1] (see also [22], [18]).

Theorem 5.6 [9] Let us consider the Hamiltonian system (5.1) with asymptot-
ically linear G, i.e. satisfy (G1)–(G4). Assume that i0(A0) = i0(A∞) = 0 and
i+(A0) 	= i+(A∞) or i−(A0) 	= i−(A∞). Then the system (5.1) has a nontrivial
solution (in addition to the trivial one x = 0).

The idea of proof is standard: the assumptions assure that there are two iso-
lating neighborhoods of 0 with different indices. The non-resonance assumption
simplifies the proof. However there are many results in the smooth case with
resonance, see e.g. [3], [11], [15], [18], [23] and references therein. Some of them
can be generalised to our generality. Let us finish with an illustrating example.

Example 5.7 Suppose α : R+ → [0, 1] is such that α|[0,1] ≡ 0, α|[3,+∞) ≡ 2 and
α(t) = t − 1 for 1 ≤ t ≤ 3. Let η ∈ C1(R2,R) be bounded with the bounded
∇η, η(0) = 0 and |∇η(x)| = o(|x|) as |x| → 0. Suppose that g : R× R2 → R is
bounded, measurable and 2π-periodic with respect to t ∈ R and Lipschitz with
respect to x ∈ R2. Finally suppose that g(·, 0) ≡ 0. Let G : R × R2 → R be
given by

G(t, x) :=
1 + α(|x|)

5
|x|2 + η(x)g(t, x), t ∈ R, x ∈ R2. (5.2)

Then, for |x| ≤ 1,

G(t, x) =
1

2
A0x · x+ η(x)g(t, x)

and, for |x| ≥ 2,

G(t, x) =
1

2
A∞x · x+ η(x)g(t, x)

where A0 := 2
5I2 and A∞ := 6

5I2. It is clear that G satisfies (G1) and (G2) and,
for any t ∈ R,

∂G(t, x) =

{
A0x+ g(t, x)∇η(x) + η(x)∂g(t, x) for |x| < 1;

A∞x+ g(t, x)∇η(x) + η(x)∂g(t, x) for |x| > 2.

Thus conditions (G3) and (G4) are satisfied, too. One easily verifies that
i0(A0) = i0(A∞) = 0, i−(A0) = 2 and i−(A∞) = 4; therefore the last theo-
rem provides a nontrivial periodic solution to (5.1) with G given by (5.2).

Notice that if we assume in the above example some symmetry, we obtain
more nontrivial solutions. For instance, assume additionally, that the functions
η hand g are even with respect to x, i.e. η(−x) = η(x) and g(t,−x) = g(t, x).
Then one can easily verify that the induced multivalued flow in the Hilbert
space is Z2-equivariant and we obtain at least two non-trivial solutions. The
similar schedule can be used with more involved symmetries.
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[19] Kunze, M., Küpper, T., Li, Y.: On Conley index theory for non-smooth dynamical
systems. Differential Integral Equations 13 (2000), 479–502.

[20] Mrozek, M.: A cohomological index of Conley type for multivalued admissible flows. J.
Differential Equations 84 (1990), 15–51.

[21] Rybakowski, K.: The Homotopy Index and Partial Differential Equations. Springer,
Berlin, 1987.

[22] Szulkin, A.: Cohomology and Morse theory for strongly indefinite functionals. Math. Z.
209 (1992), 375–418.

[23] Szulkin, A., Zhou, W.: Infinite dimensional cohomology groups and periodic solutions
of asymptotically linear Hamiltonian systems. J. Differential Equations 174 (2001), 369–
391.


		webmaster@dml.cz
	2013-09-18T14:55:45+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




