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Integrability for solutions to quasilinear elliptic systems

Francesco Leonetti, Pier Vincenzo Petricca

Abstract. In this paper we prove an estimate for the measure of superlevel sets of

weak solutions to quasilinear elliptic systems in divergence form. In some special
cases, such an estimate allows us to improve on the integrability of the solution.
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1. Introduction

We deal with regularity properties for weak solutions u : Ω ⊂ R
n → R

N of
quasilinear systems in divergence form

(1.1) −

n
∑

i=1

Di





n
∑

j=1

N
∑

β=1

aαβ
ij (x, u(x))Dju

β(x)



 = 0, x ∈ Ω, α = 1, . . . , N.

The coefficients aαβ
ij (x, u) are only measurable with respect to x; they are contin-

uous with respect to u; moreover, they are bounded and elliptic. We assume that
the solution u of (1.1) is bounded on ∂Ω:

(1.2) u ∈ L∞(∂Ω).

De Giorgi’s counterexample [1] shows that, in general, boundedness on ∂Ω does
not imply boundedness inside Ω for weak solutions u of elliptic systems (1.1); see
also [8]. In order to get boundedness inside Ω, we need additional assumptions

on the coefficients. If aαβ
ij (x, u) are diagonal

(1.3) aγβ
ij (x, u) = 0 for β 6= γ

then the N equations (1.1) are decoupled and maximum principle applies to every
component uγ of u = (u1, . . . , uN):

(1.4) sup
Ω

uγ ≤ sup
∂Ω

uγ .
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In [7] the authors assume that coefficients are diagonal only for large values of uγ :

(1.5) θγ ≤ uγ =⇒ aγβ
ij (x, u) = 0 for β 6= γ;

then it results that

(1.6) sup
Ω

uγ ≤ max

[

θγ ; sup
∂Ω

uγ

]

,

see also [6] and [5]. In this paper we no longer assume that off-diagonal coefficients
vanish; we only know that they are small when uγ is large: there exists q > 0
such that

(1.7) 0 < θγ ≤ |uγ | =⇒ |aγβ
ij (x, u)| ≤

c1

|uγ |q
for β 6= γ;

then we are able to estimate the measure of superlevels as follows

(1.8) |{|uγ | > s}| ≤
c2

s2∗(1+q)

for every s > 0; note that 2∗ = 2n/(n − 2) is the Sobolev exponent. Such an
inequality is a special case of a general estimate that we prove for every system
(1.1): in the special case (1.7) we get (1.8). Then uγ turns out to be in the weak
Lebesgue (or Marcinkiewicz) space with exponent 2∗(1 + q):

(1.9) uγ ∈ L
2∗(1+q)
weak (Ω).

Note that weak solutions u of system (1.1) are taken from the Sobolev space
W 1,2(Ω; RN ); the embedding guarantees that the integrability of u reaches 2∗:
our result (1.9) improves such integrability, since 2∗ < 2∗(1 + q). In Section 2
we collect precise assumptions and results; Section 3 is devoted to the proof.
We end this introduction by recalling that [4] deals with the linear case and the
author proves L∞ bounds under an assumption on the dispersion of eigenvalues.
Eventually, we thank the referee for valuable remarks.

2. Assumptions and results

Let Ω be a bounded open subset of R
n, n ≥ 3. For N ≥ 2, let aαβ

ij : Ω×R
N → R

be Carathéodory functions, that is, aαβ
ij (x, y) are measurable with respect to x

and continuous with respect to y. We assume that coefficients are bounded: there
exists c3 ∈ (0, +∞) such that

(2.1) |aαβ
ij (x, y)| ≤ c3

for almost every x ∈ Ω, for every y ∈ R
N , for all i, j ∈ {1, . . . , n}, for any

α, β ∈ {1, . . . , N}. Let ν ∈ (0, +∞); we assume ellipticity of diagonal coefficients
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aγγ
ij for large values of the corresponding component of y: for every γ ∈ {1, . . . , N}

there exists θγ ∈ (0, +∞) such that

(2.2) θγ ≤ |yγ | =⇒ ν|ξ|2 ≤

n
∑

i,j=1

aγγ
ij (x, y)ξjξi

for almost every x ∈ Ω, for any ξ ∈ R
n. In order to deal with off-diagonal

coefficients aγβ
ij we need to introduce the following supremum: for every γ ∈

{1, . . . , N}, for every L ∈ (0, +∞) we define

(2.3) gγ(L) = max
i,j

max
β 6=γ

sup
|yγ |>L

sup
x

|aγβ
ij (x, y)|,

where maxi,j is taken over all i, j ∈ {1, . . . , n}; maxβ 6=γ is taken over all β ∈
{1, . . . , N} \ {γ}; sup|yγ |>L is taken over all y ∈ R

N with |yγ | > L; supx is the

essential supremum taken over almost every x ∈ Ω. Note that L → gγ(L) is
decreasing; moreover, assumption (2.1) guarantees that 0 ≤ gγ(L) ≤ c3.
We prove the following

Theorem 2.1. Under the previous assumptions (2.1), (2.2), let u = (u1, . . . , uN)
be a weak solution of the system (1.1), that is, u ∈ W 1,2(Ω, RN ) and

(2.4)

∫

Ω

N
∑

α,β=1

n
∑

i,j=1

aαβ
ij (x, u(x))Dju

β(x)Div
α(x) dx = 0 ∀ v ∈ W 1,2

0 (Ω, RN ).

Then every component uγ of u = (u1, . . . , uN) satisfies

(2.5) |{x ∈ Ω : |uγ(x)| > 2L}| ≤ c4

(

gγ(L)

L

)2∗

,

where

(2.6) c4 = 2

(

2(n − 1)(N − 1)n2

(n − 2)ν
||Du||L2(Ω)

)2∗

,

|E| is the Lebesgue measure of E ⊂ R
n and 2∗ = 2n/(n− 2) is the Sobolev expo-

nent. Inequality (2.5) holds true for every L ≥ max{θγ ; sup∂Ω uγ ;− inf∂Ω uγ}.

Remark 2.1. With no extra assumption, gγ(L) ≤ c3 and decay (2.5) does not
improve on Sobolev embedding W 1,2 ⊂ L2∗

.

Remark 2.2. When off-diagonal coefficients aγβ
ij vanish for large values of |yγ |

(2.7) 0 < θγ ≤ |yγ | =⇒ aγβ
ij (x, y) = 0 for β 6= γ,

then gγ(L) = 0 for L ≥ θγ and decay (2.5) says that some superlevel has zero
measure, thus we have L∞ estimates: this is already known since [7] and [6].
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Remark 2.3. Now we assume that off-diagonal coefficients aγβ
ij (x, y) do not van-

ish any more, but they are small when the corresponding component yγ is large:
there exist q, c5 ∈ (0, +∞) such that

(2.8) 0 < θγ ≤ |yγ | =⇒ |aγβ
ij (x, y)| ≤

c5

|yγ |q
for β 6= γ;

then gγ(L) ≤ c5/Lq for L ≥ θγ and (2.5) gives us

(2.9) |{|uγ | > 2L}| ≤
c6

L2∗(1+q)

for every L ≥ max{θγ ; sup∂Ω uγ ;− inf∂Ω uγ}. This allows us to improve the inte-
grability of u as follows:

Theorem 2.2. Under the previous assumptions (2.1), (2.2), let u = (u1, . . . , uN)
be a weak solution of the system (1.1), that is, u ∈ W 1,2(Ω, RN ) and (2.4) holds

true. In addition, we assume that off-diagonal coefficients satisfy (2.8). Moreover,

we require that

(2.10) −∞ < inf
∂Ω

uγ and sup
∂Ω

uγ < +∞,

for every γ = 1, . . . , N ; then u attains higher integrability:

(2.11) u ∈ L
2∗(1+q)
weak

(Ω; RN ).

Remark 2.4. Please, note that assumption (2.10) implies
max{θγ ; sup∂Ω uγ ;− inf∂Ω uγ} < +∞, thus we can use (2.9): such an estimate
and boundedness of Ω guarantee (2.11). Since we aim at higher integrability of
u, it would be nice to have the same result only assuming enough integrability
of the boundary datum, instead of requiring boundedness on the boundary of Ω
as in (2.10). It would also be interesting to have a local version of the previous
Theorem without any restriction on the boundary datum.

Remark 2.5. Note that reverse Hölder inequality gives us higher integrability
of the gradient: Du ∈ L2+ǫ, see [2] and Chapter 6 in [3]; this improves on the

integrability of u by means of Sobolev embedding: u ∈ L(2+ǫ)∗ . In order to have
global higher integrability, both the boundary of Ω and the boundary datum have
to be regular enough, see Theorem 6.8 at page 209 in [3]. Moreover, it seems that

strong ellipticity of aαβ
ij is required; in the present paper we need ellipticity only

for diagonal entries aγγ
ij and only for large values of uγ . Please, note that we do

not assume ellipticity for small values of uγ : on such a set uγ is bounded but it
might oscillate very much and the gradient Duγ might lose regularity.

3. Proof of Theorem 2.1

We fix γ ∈ {1, . . . , N} and we take L ∈ R with L ≥ max{θγ ; sup∂Ω uγ} > 0,
where uγ is the γ-th component of u = (u1, . . . , uN ). Since L ≥ sup∂Ω uγ , we
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have max{uγ − L; 0} ∈ W 1,2
0 (Ω). We define v = (v1, . . . , vN ) as follows

(3.1)

{

vα = 0 if α 6= γ

vγ = max{uγ − L; 0} otherwise.

Note that

(3.2)

{

Dvα = 0 if α 6= γ

Dvγ = 1{uγ>L}Duγ otherwise

where 1E is the characteristic function of the set E, that is, 1E(x) = 1 if x ∈ E
and 1E(x) = 0 if x /∈ E. We insert such a test function v into (2.4):

(3.3)

0 =

∫

Ω

n
∑

i,j=1

N
∑

α,β=1

aαβ
ij (x, u(x))Dju

β(x)Div
α(x) dx

=

∫

Ω

n
∑

i,j=1

N
∑

β=1

aγβ
ij (x, u(x))Dju

β(x)1{uγ>L}(x)Diu
γ(x) dx

=

∫

{uγ>L}

n
∑

i,j=1

aγγ
ij (x, u(x))Dju

γ(x)Diu
γ(x) dx

+

∫

{uγ>L}

n
∑

i,j=1

∑

β 6=γ

aγβ
ij (x, u(x))Dju

β(x)Diu
γ(x) dx.

Then

(3.4)

∫

{uγ>L}

n
∑

i,j=1

aγγ
ij (x, u(x))Dju

γ(x)Diu
γ(x) dx

= −

∫

{uγ>L}

n
∑

i,j=1

∑

β 6=γ

aγβ
ij (x, u(x))Dju

β(x)Diu
γ(x) dx.

Since L ≥ θγ , we can use ellipticity (2.2) and we get

(3.5) ν

∫

{uγ>L}

|Duγ |2 dx ≤

∫

{uγ>L}

n
∑

i,j=1

aγγ
ij (x, u(x))Dju

γ(x)Diu
γ(x) dx.

We keep in mind the definition (2.3) for gγ(L) and we have

(3.6)

−

∫

{uγ>L}

n
∑

i,j=1

∑

β 6=γ

aγβ
ij (x, u(x))Dju

β(x)Diu
γ(x) dx

≤ n2(N − 1)gγ(L)

∫

{uγ>L}

|Du||Duγ | dx.
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Equality (3.4) and estimates (3.5), (3.6) merge into

(3.7) ν

∫

{uγ>L}

|Duγ |2 dx ≤ n2(N − 1)gγ(L)

∫

{uγ>L}

|Du||Duγ | dx.

We use Hölder inequality on the right hand side in order to get

(3.8)

ν

∫

{uγ>L}

|Duγ |2 dx

≤ n2(N − 1)gγ(L)

(

∫

{uγ>L}

|Du|2 dx

)1/2(
∫

{uγ>L}

|Duγ |2 dx

)1/2

.

We divide both sides by (
∫

{uγ>L}
|Duγ |2 dx)1/2 and we get

(3.9)

(

∫

{uγ>L}

|Duγ |2 dx

)1/2

≤
n2(N − 1)gγ(L)

ν

(

∫

{uγ>L}

|Du|2 dx

)1/2

.

We keep in mind that vγ = max{uγ − L; 0} ∈ W 1,2
0 (Ω) and n ≥ 3, thus Sobolev

inequality and (3.9) allow us to write

(3.10)

∫

{uγ>L}

(uγ − L)2
∗

dx = ||vγ ||2
∗

L2∗ (Ω) ≤

(

2(n − 1)

n − 2
||Dvγ ||L2(Ω)

)2∗

=





2(n − 1)

n − 2

(

∫

{uγ>L}

|Duγ |2 dx

)1/2




2∗

≤

(

2(n − 1)

n − 2

n2(N − 1)

ν
[gγ(L)]||Du||L2(Ω)

)2∗

.

Since L > 0, it turns out that {uγ > 2L} ⊂ {uγ > L}, thus

(3.11)

L2∗

|{uγ > 2L}| =

∫

{uγ>2L}

(2L − L)2
∗

dx

≤

∫

{uγ>2L}

(uγ − L)2
∗

dx ≤

∫

{uγ>L}

(uγ − L)2
∗

dx.

Inequalities (3.10) and (3.11) merge into

(3.12) |{uγ > 2L}| ≤

(

2(n − 1)n2(N − 1)

(n − 2)ν
||Du||L2(Ω)

[gγ(L)]

L

)2∗

.

This estimate holds true for every L ≥ max{θγ ; sup∂Ω uγ} > 0. Since − inf∂Ω uγ =
sup∂Ω(−uγ), if L ≥ max{θγ ;− inf∂Ω uγ} > 0, then we can apply the previous in-
equality (3.12) to −u. This ends the proof of Theorem 2.1.
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