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Abstract. The two-point boundary value problem

u
′′ + h(x)up = 0, a < x < b, u(a) = u(b) = 0

is considered, where p > 1, h ∈ C1[0, 1] and h(x) > 0 for a 6 x 6 b. The existence of
positive solutions is well-known. Several sufficient conditions have been obtained for the
uniqueness of positive solutions. On the other hand, a non-uniqueness example was given
by Moore and Nehari in 1959. In this paper, new uniqueness results are presented.
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1. Introduction and main results

We consider the two-point boundary value problem

(1.1)

{

u′′ + h(x)up = 0, a < x < b,

u(a) = u(b) = 0,

where p > 1, h ∈ C1[a, b] and h(x) > 0 for x ∈ [a, b].

The Emden-Fowler equation

(1.2) u′′ + h(x)up = 0
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is classical. It is the origin of various equations such as the equation with one-

dimensional p-Laplacian (|u′|p−2u′)′ + h(x)f(u) = 0 and elliptic partial differential

equations of the form ∆u +K(|x|)up = 0. It is well-known that if p > 0 and p 6= 1,

then problem (1.1) has at least one positive solution. See, for example, [6], [8] and

[14]. It is also well-known that if 0 < p < 1, then the positive solution is unique. See,

for example, [9]. A number of studies have been made on the uniqueness of positive

solutions in the case p > 1. However, there are still cases for which it is not known

whether the positive solution is unique or not. Moore and Nehari [6] presented a

function h(x) such that (1.1) has at least three positive solutions. See also [12].

Sufficient conditions for the uniqueness of positive solutions were obtained in [1], [2],

[4], [5], [7], [10], [11], [12] and [15]. If one of the following conditions (1.3)–(1.10) is

satisfied, then the positive solution of problem (1.1) is unique:

h(c− x) = h(c+ x), h′(x) 6 0 on [c, b];(1.3)

a > 0, h(x) = xl, l ∈ R;(1.4)

a > 0, −4m > m(p− 1) + xg(x) > −2 on [a, b] for some m 6 0;(1.5)

a > 0, −4m 6 m(p− 1) + xg(x) 6 −2 on [a, b] for some m > 1;(1.6)

−2/(x− a) 6 g(x) 6 2/(b− x) on (a, b);(1.7)

g(x) is nonincreasing on [a, b];(1.8)

−2/(x− a) 6 g(x) on (a, c], h′(x) 6 0 on [a, b];(1.9)

h ∈ C2[a, b], ([h(x)]−1/2)′′ = 4−1(h(x))−1/2
[

(g(x))2 − 2(g(x))′
]

6 0,(1.10)

where c = (a + b)/2 and g(x) = h′(x)/h(x). By the result of Moroney [7], we

can obtain (1.3). See also Dalmasso [2]. Conditions (1.4)–(1.6) were established

by Coffman [1]. For condition (1.4), see also Ni and Nussbaum [10, Theorem 3.8].

Kwong [4] obtained condition (1.7), and later, in [5], he generalized it as follows: there

exist concave functions ϕ, ψ : (a, b) → (0,∞) such that [ϕ(t)]2h(t) is nonincreasing

and [ψ(t)]2h(t) is nondecreasing. Using the result of Yanagida [15], we have condition

(1.8). Condition (1.9) was established by Korman [3]. Condition (1.10) was obtained

in [12].

It should be noted that (1.3) and (1.5)–(1.10) are conditions for more general

equations such as u′′ + h(x)f(u) = 0 or u′′ + f(x, u) = 0. On the other hand, there

are only a few uniqueness results for the special problem (1.1). In this paper we study

only the special problem (1.1), and then we can obtain new sufficient conditions for

the uniqueness of positive solutions.
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Theorem 1.1. Assume that

− 2

x− a
− d 6

h′(x)

h(x)
, a < x 6

a+ b

2
,(1.11)

h′(x)

h(x)
6 −d, a 6 x 6 b(1.12)

for some d > 0. Then the positive solution of (1.1) is unique.

In the case d = 0, (1.11) and (1.12) become (1.9).

Let λk be the k-th eigenvalue of

ϕ′′ + λh(x)ϕ = 0, a < x < b, ϕ(a) = ϕ(b) = 0,

and let ϕk be an eigenfunction corresponding to λk. Then

0 < λ1 < λ2 < . . . < λk < λk+1 < . . . , lim
k→∞

λk = ∞,

and ϕk has exactly k − 1 zeros in (a, b). (See, for example, [13, Chap. VI, Sec. 27].)

Define the constant Mh by

Mh = max
a6x6b

min

{

(x− a)p

∫ x

a
(s− a)p+1h(s) ds

,
(b− x)p

∫ b

x
(b − s)p+1h(s) ds

}

.

Theorem 1.2. If pMh 6 λ2, then the positive solution of (1.1) is unique.

Now set

h∗ = min
a6x6b

h(x), h∗ = max
a6x6b

h(x).

We can estimate λ2 and Mh by h∗ and h
∗. It is easy to see that

(1.13) λ2 >
1

h∗

( 2π

b− a

)2

.

Assume to the contrary that λ2h
∗ < (2π)2/(b − a)2. Since the eigenfunction ϕ2 has

three zeros in [a, b], the Sturm comparison theorem shows that every solution of

(1.14) ψ′′ +
( 2π

b− a

)2

ψ = 0

has at least two zeros in (a, b). This contradicts the fact that sin(2π(x− a)/(b− a))

is a solution of (1.14) which has exactly one zero in (a, b). Hence we obtain (1.13).
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Using h(x) > h∗, we can see that

Mh 6
p+ 2

h∗

( 2

b− a

)2

.

Therefore, by Theorem 1.2, we find that if

(1.15)
h∗

h∗
6

π
2

p(p+ 2)
,

then the positive solution of (1.1) is unique. However, we have the following better

result.

Theorem 1.3. If
h∗

h∗
6

2π
2

p(p+ 1)[T (p)]2
,

then the positive solution of (1.1) is unique, where T (p) =
∫ 1

0
(1 − tp+1)−1/2 dt.

We can express the function T (p) by the beta function or the gamma function.

Since T (p) is decreasing for p > 1, we see that 1 < T (p) < T (1) = π/2 for p > 1.

Therefore we obtain the following corollary of Theorem 1.3.

Corollary 1.1. If

(1.16)
h∗

h∗
6

8

p(p+ 1)
,

then the positive solution of (1.1) is unique.

Unfortunately, since h∗/h∗ > 1, there is a restriction 1 < p 6 (
√

33 − 1)/2 =

2.37 . . . in Corollary 1.1. We also obtain 1 < p 6
√

π
2 + 1− 1 = 2.29 . . . when (1.15)

is satisfied. We easily see that π
2/[p(p + 2)] < 8/[p(p + 1)] for 1 < p < 3, so that

(1.16) is a better condition than (1.15).

Roughly speaking, if p > 1 is close to 1 and the function h(x) changes slowly,

then the positive solution is unique. On the other hand, by [6] or [12], problem

(1.1) has at least three positive solutions for some function h(x) such that h(x) > 0

on [a, b] and h∗/h∗ is sufficiently large. It is emphasized here that the condition

concerning h′(x)/h(x) is not needed in Corollary 1.1. Therefore, the uniqueness of

positive solutions does not depend on only the behavior of the function h′(x)/h(x).

In fact, we have the next example.
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E x am p l e 1.1. We consider the case where p = 3/2 and h(x) = 3 + sin(nx),

n > 1. Then
h∗

h∗
6

3 + 1

3 − 1
= 2 <

32

15
=

8

p(p+ 1)
.

Hence Corollary 1.1 implies that the positive solution of (1.1) is unique. On the

other hand, we observe that

h′(x)

h(x)
=

n cos(nx)

3 + sin(nx)
,

so that

lim
n→∞

max
x∈[a,b]

h′(x)

h(x)
= ∞, lim

n→∞

min
x∈[a,b]

h′(x)

h(x)
= −∞.

Hence we cannot apply conditions (1.3)–(1.10) if n is sufficiently large.

We can apply the technique of this paper to the study of radially symmetric

solutions of the Dirichlet problem

∆u+K(|x|)up = 0 in B, u = 0 on ∂B,

where B = {x ∈ R
N : |x| < 1}, N > 3, p > 1, K ∈ C1[0, 1] and K(r) > 0 for

0 6 r 6 1. However, as own space is limited, it cannot be discussed here. We leave

the details to another paper.

2. Proof of theorem 1.1

Let u be a positive solution of problem (1.1) and let w be the solution of the

linearized problem

(2.1) w′′ + ph(x)up−1w = 0, w(a) = 0, w′(a) = 1.

The next proposition follows by the standard argument of the Kolodner-Coffman

method. See, for example, Kwong [4].

Proposition 2.1. For each positive solution u of (1.1), if the solutionw of problem

(2.1) satisfies w(b) < 0, then problem (1.1) has at most one positive solution.
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Lemma 2.1. Let u be a positive solution of problem (1.1). Then the solution w

of problem (2.1) has at least one zero in (a, b).

P r o o f. We note that u is a solution of

u′′ + h(x)up−1u = 0, u(a) = u(b) = 0.

Since ph(x)up−1 > h(x)up−1 on (a, b), the Sturm comparison theorem implies that

w has at least one zero in (a, b). �

Lemma 2.2. Let u be a positive solution of problem (1.1), and let d > 0 be a

constant. Then y := u′ − [d/(p− 1)]u satisfies

y′′ + ph(x)up−1y = −h(x)
(

d+
h′(x)

h(x)

)

up, x ∈ [a, b].

P r o o f. A direct calculation shows that Lemma 2.2 follows immediately, by

noting that u′′′ = −(h(x)up)′ = −h′(x)up − ph(x)up−1u′. �

Lemma 2.3. Let u be a positive solution of problem (1.1), and let d > 0 be a

constant. Then Y := (x − a)(u′ − [d/(p− 1)]u) satisfies

(2.2) Y ′′ + ph(x)up−1Y = − 2d

p− 1
u′ − h(x)

(

2 + d(x− a) + (x− a)
h′(x)

h(x)

)

up

for x ∈ [a, b].

P r o o f. Set y = u′ − [d/(p− 1)]u. Then Y = (x− a)y and

Y ′′ + ph(x)up−1Y = 2y′ + (x− a)(y′′ + ph(x)up−1y), x ∈ [a, b].

By Lemma 2.2, we see that

Y ′′ + ph(x)up−1Y = 2y′ − (x− a)h(x)
(

d+
h′(x)

h(x)

)

up, x ∈ [a, b].

This implies (2.2). �

Every positive solution u of (1.1) admits only one point of maximum, since u′′ =

−h(x)up < 0 for x ∈ (a, b). We denote by m the point of maximum of the positive

solution u. Then we see that u′(m) = 0, u′(x) > 0 on [a,m), and u′(x) < 0 on (m, b].

The following result was obtained by Korman [3, Lemma 2.2].
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Lemma 2.4. Assume that h′(x) 6 0 for x ∈ [a, b]. Then a < m 6 (a+ b)/2.

P r o o f of Theorem 1.1. Let u be a positive solution of (1.1). Set y = u′ −
[d/(p− 1)]u. Then y′ = u′′ − [d/(p− 1)]u′ = −h(x)up − [d/(p− 1)]u′ < 0 on [a,m].

Since y(a) = u′(a) > 0 and y(x) < 0 on [m, b], there exists z ∈ (a,m) such that

y(z) = 0, y(x) > 0 on [a, z) and y(x) < 0 on (z, b].

We claim that w(x) > 0 for x ∈ (a, z). Assume to the contrary that there exists

a number x0 ∈ (a, z) such that w(x0) = 0 and w(x) > 0 on (a, x0). We note that

w′(x0) < 0. From (1.11) and Lemmas 2.3 and 2.4, it follows that Y := (x − a)y

satisfies

Y ′′ + ph(x)up−1Y 6 − 2d

p− 1
u′, x ∈ [a, z].

Hence we see that

wY ′′ − w′′Y 6 − 2d

p− 1
u′w, x ∈ [a, x0],

so that
∫ x0

a

(wY ′′ − w′′Y ) dx 6 0, x ∈ [a, x0].

On the other hand, since w′(x0) < 0 and Y (x0) > 0, we find that

∫ x0

a

(wY ′′ − w′′Y ) dx = wY ′ − w′Y
∣

∣

∣

x0

a
= −w′(x0)Y (x0) > 0.

This is a contradiction. Therefore w(x) > 0 for x ∈ (a, z) as claimed.

By Lemma 2.1, there exists x1 ∈ [z, b) such that w(x1) = 0 and w(x) > 0 on

(a, x1). We show that w(x) < 0 for (x1, b]. Suppose that there exists x2 ∈ (x1, b]

such that w(x2) = 0 and w(x) < 0 on (x1, x2). Lemma 2.2 and (1.12) imply that

∫ x2

x1

(wy′′ − w′′y) dx = −
∫ x2

x1

h(x)
(

d+
h′(x)

h(x)

)

upw dx 6 0.

Since w′(x1) < 0, w′(x2) > 0 and y(x) < 0 on (z, b], we see that

∫ x2

x1

(wy′′ − w′′y) dx = −w′(x2)y(x2) + w′(x1)y(x1) > 0.

This is a contradiction. Hence w(x) < 0 for (x1, b]. Proposition 2.1 shows that the

positive solution of (1.1) is unique. �
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3. Proofs of theorems 1.2 and 1.3

Lemma 3.1. Assume that there exists M > 0 such that u(x) 6 M1/(p−1) on

[a, b] for each positive solution u of (1.1). If pM 6 λ2, then the positive solution of

(1.1) is unique.

P r o o f. Let u be a positive solution of (1.1). (Recall that the existence of

positive solutions is well-known.) We see that

ph(x)[u(x)]p−1
6 ph(x)M 6 λ2h(x), x ∈ [a, b],

and ph(x)[u(x)]p−1 6≡ λ2h(x) for x ∈ [a, b]. Since ϕ2, which is an eigenfunction

corresponding to λ2, has exactly one zero in (a, b) and satisfies ϕ2(a) = ϕ2(b) = 0,

the Sturm comparison theorem implies that w has at most one zero in (a, b]. By

Lemma 2.1, we see that w has at lest one zero in (a, b), hence w has exactly one zero

in (a, b) and w(b) < 0. From Proposition 2.1 it follows that the positive solution of

(1.1) is unique. �

Lemma 3.2. Let u be a positive solution of problem (1.1). Then [u(x)]p−1 < Mh

for x ∈ [a, b].

P r o o f. Since u is concave, we see that

(3.1) u(x) >
u(m)

m− a
(x− a), x ∈ (a,m)

and

(3.2) u(x) >
u(m)

b−m
(b− x), x ∈ (m, b),

where m ∈ (a, b) is the point of maximum of u. Integrating (1.2) over [t,m] and

integrating it again over [a,m], we obtain

(3.3) u(m) =

∫ m

a

∫ m

t

h(x)[u(x)]p dxdt =

∫ m

a

(x− a)h(x)[u(x)]p dx.

From (3.1) and (3.3) it follows that

u(m) >

∫ m

a

(x− a)h(x)
( u(m)

m− a
(x− a)

)p

dx =
[u(m)]p

(m− a)p

∫ m

a

(x− a)p+1h(x) dx,

that is,

(3.4) [u(m)]p−1 <
(m− a)p

∫ m

a (x− a)p+1h(x) dx
.
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In the same way, integrating (1.2) over [m, t] and integrating it again over [m, b], and

using (3.2), we have

(3.5) [u(m)]p−1 <
(b−m)p

∫ b

m
(b− x)p+1h(x) dx

.

Combining (3.4) and (3.5), we see that [u(x)]p−1 6 [u(m)]p−1 < Mh on [a, b]. �

Lemma 3.3. Let u be a positive solution of problem (1.1). Then

[u(x)]p−1 6
2(p+ 1)[T (p)]2

h∗(b − a)2
, x ∈ [a, b].

P r o o f. We denote by m the point of maximum of the positive solution u. Then

we see that u′(m) = 0, u′(x) > 0 on [a,m), and u′(x) < 0 on (m, b]. Multiplying

u′′ + h∗u
p 6 0 by 2u′, we find that

(3.6) [(u′)2]′ + C(up+1)′ 6 0, x ∈ [a,m],

where C = 2h∗/(p+ 1). Integrating (3.6) over [x,m], we have

−(u′)2 + C
(

[u(m)]p+1 − up+1
)

6 0, x ∈ [a,m],

which implies that

(3.7) C1/2 6 ([u(m)]p+1 − up+1)−1/2u′, x ∈ [a,m).

Integrating (3.7) over [a,m) and substituting t = u(x)/u(m), we see that

(3.8) C1/2(m− a) 6

∫ m

a

([u(m)]p+1 − up+1)−1/2u′ dx = [u(m)]−(p−1)/2T (p).

Multiplying u′′ + h∗u
p 6 0 by 2u′, we have

(3.9) [(u′)2]′ + C(up+1)′ > 0, x ∈ [m, b].

Integrating (3.9) over [m,x], we obtain

(3.10) C1/2
6 −([u(m)]p+1 − up+1)−1/2u′, x ∈ (m, b].

Integrating (3.10) over (m, b], we have

(3.11) C1/2(b−m) 6 [u(m)]−(p−1)/2T (p).
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From (3.8) and (3.11) it follows that

C1/2(b − a) = C1/2(b−m) + C1/2(m− a) 6 2[u(m)]−(p−1)/2T (p),

which means

[u(m)]p−1 6
2(p+ 1)[T (p)]2

h∗(b− a)2
.

This completes the proof. �

P r o o f of Theorems 1.2 and 1.3. Theorem 1.2 follows from Lemmas 3.1 and 3.2.

Combining Lemmas 3.1, 3.3 and (1.13), we can obtain Theorem 1.3. �
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