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(Received November 20, 2008)

Abstract. The asymptotic and oscillatory behavior of solutions of Volterra summation
equation and second order linear difference equation are studied.

Keywords: Volterra summation equations, second order difference equations

MSC 2010 : 39A12, 45E99

1. Introduction

Qualitative properties of solutions of difference equations are of great importance

if we have no closed form solutions. Such properties which are widely applied are

the oscillation and asymptotic behavior.

The references [1], [2] present a fairly exhaustive list for the interested reader.

Some recent results for Volterra summation equations can be found in [5], [6], [7],

[9], [10].

In Section 2 we establish conditions for the oscillation of solutions of equations

y(n) = p(n) +
n−1
∑

s=0

L(n, s)y(s), n ∈ N0 = {0, 1, 2, . . .}

and

(I) ∆x(n) = p(n) −
n

∑

s=0

L(n, s)g(s, x(s)), n ∈ N0 = {0, 1, 2, . . .}.

Such problems have been handled in the papers [5], [7], [8]. What we hope to ac-

complish here is to present new assumptions [5] about the function L(n, s) (L(n, s)
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is nonincreasing in n for every s or L(n, s) is nondecreasing in s for every n or

L(n, s) = L1(n)L2(s)) to obtain oscillatory properties of solutions of Volterra sum-

mation equations.

In Section 3, we give conditions under which asymptotic properties (oscillation,

convergence) of the linear equation of Volterra type imply some asymptotic properties

of solutions of second order linear difference equations

(II) ∆2x(n) − a(n)x(n+ 1) = 0, n ∈ N0,

and

(III) a2(n)∆2x(n) + a1(n)∆x(n) + a0(n)x(n) = b(n), a2(n) 6= 0, n ∈ N0.

2. Oscillation of Volterra summation equations

In this part of the paper we establish sufficient conditions for the oscillation of

solutions of the equations (I) and

(2.1) y(n) = p(n) +

n−1
∑

s=0

L(n, s)y(s)

where

(i) {p(n)} is a sequence of real numbers,

(ii) L : N0 × N0 → R
+ and L(n, s) = 0 for s > n,

(iii) g : N0 × R → R is continuous and xg(n, x) > 0 for x 6= 0.

By a solution of equation (2.1) we mean a real sequence {y(n)} satisfying equation

(2.1) for all n ∈ N.

A nontrivial solution {y(n)} is said to be oscillatory (around zero) if for every

positive integer n0 there exists n > n0 such that y(n)y(n + 1) 6 0. Otherwise, the

solution is said to be nonoscillatory.

We need the following lemmas in our subsequent analysis.

Lemma 2.1. Suppose that {y(n)}, {q(n)} are nonnegative sequences defined on

N0 and L(n, s) is nonincreasing in n ∈ N0 for every s ∈ N0. If

(2.2) y(n) 6 q(n) +

n−1
∑

s=0

L(n, s)y(s),

42



then

(2.3) y(n) 6 Q(n)

{

1 +

n−1
∑

s=0

L(s, s) exp
(

n−1
∑

l=s+1

L(l, l)
)

}

for n ∈ N0, where Q(n) = max
06s6n

q(s).

P r o o f. Using the fact that L(n, s) is nonincreasing in n ∈ N0 for every s ∈ N0,

we arrive at

y(n) 6 q(n) +

n−1
∑

s=0

L(s, s)y(s), n ∈ N0.

Let v(n) =
n−1
∑

s=0

L(s, s)y(s) so that v(0) = 0 and

y(n) 6 q(n) + v(n),

∆v(n) = L(n, n)y(n).

Hence we may write

v(n+ 1) = (1 + L(n, n))v(n) + (q(n) + r(n))L(n, n), r(n) 6 0.

The solution of this equation with the initial condition v(0) = 0 is given by

v(n) =

n−1
∑

s=0

(q(s) + r(s))L(s, s)

n−1
∏

l=s+1

(1 + L(l, l)).

The proof of the lemma is completed by observing that 1 + L(n, n) 6 exp(L(n, n)),

r(n) 6 0 and y(n) 6 q(n) + v(n). �

R em a r k 1. If lim sup
n→∞

Q(n) < ∞ and lim sup
n→∞

n−1
∑

s=0

L(s, s) < ∞, then all {y(n)}

are bounded for n→ ∞.

Using Lemma 2.1, one may easily conclude the following lemmas.

Lemma 2.2. Suppose that {y(n)}, {q(n)} are nonnegative sequences defined on

N0 and L(n, s) is nondecreasing in s ∈ N0 for every n ∈ N0. If

(2.4) y(n) 6 q(n) +

n−1
∑

s=0

L(n, s)y(s),

then

(2.5) y(n) 6 q(n) + L(n, n)

n−1
∑

s=0

q(s) exp
( n−1

∑

l=s+1

L(l, l)
)

.
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Corollary 1. Let q(n) 6 L(n, n) for n ∈ N0, then

(2.6) y(n) 6 L(n, n)

[

1 +

n−1
∑

s=0

L(s, s) exp
( n−1

∑

l=s+1

L(l, l)
)

]

.

R em a r k 2. If lim sup
n→∞

L(n, n) <∞ and lim sup
n→∞

n−1
∑

s=0

L(s, s) < ∞, then all {y(n)}

are bounded for n→ ∞.

Lemma 2.3. Suppose that {y(n)}, {q(n)} are nonegative sequences defined on

N0 and

L(n, s) = L1(n)L2(s).

If

(2.7) y(n) 6 q(n) +

n−1
∑

s=0

L(n, s)y(s),

then

(2.8) y(n) 6 q(n) + L1(n)
n−1
∑

s=0

q(s)L2(s) exp
( n−1

∑

l=s+1

L1(l)L2(l)
)

.

R em a r k 3. Let q(n) 6 L1(n) for n ∈ N0, then

y(n) 6 L1(n)

{

1 +

n−1
∑

s=0

L1(s)L2(s) exp
( n−1

∑

l=s+1

L1(l)L2(l)
)

}

.

If lim sup
n→∞

L1(n) < ∞, lim sup
n→∞

n−1
∑

s=0

L1(s)L2(s) < ∞, then all {y(n)} are bounded for

n→ ∞.

Theorem 2.4. Assume that

1◦ L(n, s) is nonincreasing in n ∈ N0 for every s ∈ N0,

2◦ lim sup
n→∞

Q(n) <∞, Q(n) = max
06s6n

|p(s)|, lim sup
n→∞

n−1
∑

s=0

L(s, s) <∞.

Then all unbounded solutions of equation (2.1) are oscillatory.

P r o o f. Suppose there is an unbounded nonoscillatory solution {y(n)} of (2.1).

So there exists an n0 ∈ N0 such that either y(n) > 0 or y(n) < 0 for all n > n0. Now

from (2.1) we have

(2.9) 0 6 |y(n)| 6 |p(n)| +

n−1
∑

s=0

L(n, s)|y(s)|, n ∈ N0.
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From (2.9) we have for n > n0

|y(n)| 6 Q(n) +

n0−1
∑

s=0

L(s, s)|y(s)| +

n−1
∑

s=n0

L(s, s)|y(s)|

6 M +Q(n) +

n−1
∑

s=n0

L(s, s)|y(s)|,

where M =
n0−1
∑

s=0

L(s, s)|y(s)|.

Applying Lemma 2.1 and assumption 2◦ to the last inequality, we obtain that

{y(n)} is bounded as n→ ∞. This contradiction completes the proof of the theorem.

R em a r k 4. Suppose that the conditions of the theorem are satisfied. Then all

nonoscillatory solutions of (2.1) are bounded.

E x am p l e. Consider

x(n) =
1

(n+ 1)4(n+ 2)
+

1

(n+ 1)3

n−1
∑

s=0

(s+ 1)x(s), n ∈ N0.

Clearly, all conditions of Theorem 2.4 are satisfied. Hence all nonoscillatory solutions

of the equation are bounded.

In particular,

x(n) =
1

(n+ 1)2(n+ 2)

is a bounded nonoscillatory solution of the equation.

Theorem 2.5. Assume that

1◦ L(n, s) is nonincreasing in n ∈ N0 for every s ∈ N0,

2◦ lim sup
n→∞

n−1
∑

s=n0

L(s, s) <∞,

3◦ lim sup
n→∞

p(n) = ∞, lim inf
n→∞

p(n) = −∞.

Then all bounded solutions of (2.1) are oscillatory.

P r o o f. Let {y(n)}, n ∈ N, be bounded solutions of (2.1) such that |y(n)| 6 K

for n ∈ N. We claim that {y(n)} is oscillatory. If not, it is nonoscillatory. So, there

exists an n0 > 0, n0 ∈ N, such that for n > n0, either y(n) > 0 or y(n) < 0. Let
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y(n) > 0 for n > n0. From (2.1) we get for n > n0

(2.10) y(n) = p(n) +

n0−1
∑

s=0

L(n, s)y(s) +

n−1
∑

s=n0

L(n, s)y(s)

6 p(n) +K

n0−1
∑

s=0

L(s, s) +K

n−1
∑

s=n0

L(s, s).

The last two summations on the righthand side of (2.10) are finite.

Since y(n) > 0 and 3◦ holds, we obtain a contradiction. This completes the proof.

�

R em a r k 5. Theorem 2.5 may be formulated as follows:

Suppose that the conditions of Theorem 2.5 are satisfied. Then all nonoscillatory

solutions of (2.1) are unbounded.

R em a r k 6. It is not difficult to write the equation

(∗) y(n+ 1) = A(n)y(n) +

n
∑

s=0

K(n, s)y(s) + p(n)

as an equation of the form (2.1) and then to deduce the asymptotic properties of the

solutions of (∗) from the asymptotic properties of (2.1).

Denote

L(n+ 1, s) =

{

K(n, n) +A(n) for s = n,

K(n, s) for s < n.

Then

y(n+ 1) =

n
∑

s=0

L(n+ 1, s)y(s) + p(n).

Next, the asymptotic behavior of oscillatory and nonoscillatory solutions of equa-

tion (I) will be studied.

Theorem 2.6. Let g : N0 × R → R be continuous and xg(n, x) > 0 for x 6= 0.

Suppose that 0 < x1 6 x2 implies that g(n, x1) 6 g(n, x2) for fixed n ∈ N0 and

L(n, s) satisfies assumption (ii).

Let

(2.11)

n
∑

s=n1

n1−1
∑

l=0

L(s, l) and

n
∑

s=n1

s
∑

l=n1

L(s, l)g(l,K)

be bounded for n1 ∈ N and K > 0.
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If

(2.12) lim
n→∞

n
∑

s=n1

p(s) = ∞,

then all bounded solutions of (I) are oscillatory.

P r o o f. Let {x(n)}, n ∈ N0 be a bounded solution of (I) such that |x(n)| 6 K

for n ∈ N0. We claim that {x(n)} is oscillatory. If not, it is nonoscillatory. So there

exists an n1 > 0 such that for n > n1 either x(n) > 0 or x(n) < 0.

Let x(n) > 0 for n > n1. From (I) we get for n > n1

∆x(n) = p(n) −

n1−1
∑

s=0

L(n, s)g(s, x(s)) −

n
∑

s=n1

L(n, s)g(s, x(s))

> p(n) −M

n1−1
∑

s=0

L(n, s) −

n
∑

s=n1

L(n, s)g(s,K),

where M = sup
n∈〈0,n1−1〉

|g(n, x(n))|. So

x(n+ 1) > x(n1) +

n
∑

s=n1

p(s) −M

n
∑

s=n1

n1−1
∑

l=0

L(s, l)

−

n
∑

s=n1

s
∑

l=n1

L(s, l)g(l,K).

In view of conditions (2.11), the last two summations on the righthand side are finite.

Since x(n) > 0 and (2.12) holds, we obtain a contradiction.

Let x(n) < 0 for n > n1. Again from (I) we get for n > n1

∆x(n) > p(n) −M

n1−1
∑

s=0

L(n, s).

So

x(n+ 1) > x(n1) +

n
∑

s=n1

p(s) −M

n
∑

s=n1

n1−1
∑

l=0

L(s, l).

Hence x(n) > 0 for large n, a contradiction. This completes the proof. �
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Theorem 2.7. Let g(n, x) be monotonic increasing in x for fixed n ∈ N0. Let

L(n, s) satisfy condition (ii).

If for large n ∈ N0

p(n) −

n
∑

s=0

L(n, s)q(s, λ) > 0, λ > 0,

then all bounded solutions of (I) are nonoscillatory.

P r o o f. Let {x(n)} be a bounded solution of (I) on N0 such that |x(n)| 6 K,

n ∈ N0.

From the given condition it follows that there exists an n1 ∈ N0 such that

p(n) −

n
∑

s=0

L(n, s)g(s,K) > 0 for n > n1.

From (I) for n > n1 we obtain

∆x(n) = p(n) −

n
∑

s=0

L(n, s)g(s, x(s))

> p(n) −

n
∑

s=0

L(n, s)g(s,K) > 0.

Hence {x(n)} is monotonic increasing and consequently {x(n)} is nonoscillatory. �

Theorem 2.8. Assume that xg(n, x) > 0 for x 6= 0 and let L(n, s) satisfy condi-

tion (ii). Further assume that

n
∑

s=0

p(s) and

n
∑

s=n1

n1
∑

l=0

L(s, l)

are bounded. Then all unbounded solutions of (I) are oscillatory.

P r o o f. Let {x(n)} be an unbounded solutions of (I) on N0. Let {x(n)} be

nonoscillatory. So it is ultimately positive or ultimately negative. Let {x(n)} be

ultimately positive.

So there exists an n1 ∈ N such that x(n) > 0 for n > n1.
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For n > n1 we have by (I)

∆x(n) = p(n) −

n1−1
∑

s=0

L(n, s)g(s, x(s)) −
n

∑

s=n1

L(n, s)g(s, x(s))

6 p(n) +M

n1−1
∑

s=0

L(n, s)

where M = sup
06n6n1−1

|g(n, x(n))|.

So, for n > n1 we obtain

0 < x(n+ 1) 6 x(n1) +
n

∑

s=n1

p(s) +M
n

∑

s=n1

n1−1
∑

s=0

L(n, s).

Hence {x(n)} is bounded, a contradiction. Analogously for {x(n)} ultimately nega-

tive. Thus the theorem is proved. �

Theorem 2.9. Let 0 < x1 6 x2 imply that g(n, x1) 6 g(n, x2) for each fixed

n ∈ N0, let g(n,−x) = −g(n, x), and let L(n, s) satisfy condition (ii). Further

assume that
n

∑

s=0

p(n) and

n
∑

s=n1

n1−1
∑

l=0

L(s, l)

are bounded.

If lim
n→∞

n
∑

s=n1

s
∑

l=n1

L(s, l)g(l, λ) = ∞ for λ > 0, then there are no nontrivial bounded

solutions.

P r o o f. Let {x(n)} be a nonoscillatory solution of (I) on N0 that is bounded

away from zero as n→ ∞. So there exist an n0 ∈ N and ε > 0 such that for n > n0

we have |x(n)| > ε. Let {x(n)} be ultimately positive; then there exists an n1 > n0

such that x(n) > 0 for n > n1. Hence x(n) > ε for n > n1. Now for n > n1 we have

∆x(n) = p(n) −

n1−1
∑

s=0

L(n, s)g(s, x(s)) −

n
∑

s=n1

L(n, s)g(s, x(s))

6 p(n) +M

n1−1
∑

s=0

L(n, s) −

n
∑

s=n1

L(n, s)g(s, ε)

where M = sup
06s6n1−1

|g(s, x(s))|.
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Hence

x(n+ 1) 6 x(n1) +
n

∑

s=n1

p(s) +M
n

∑

s=n1

n1−1
∑

l=0

L(s, l)

−

n
∑

s=n1

s
∑

l=n1

L(s, l)g(l, ε).

It is easy to see that 0 6 lim sup
n→∞

x(n+1) < 0, a contradiction. The proof of the case

x(n) < 0 for n > n1 > n0 is similar. The theorem is proved. �

Theorem 2.10. Let g(n, x) be monotonic increasing in x for fixed n. Let L(n, s)

satisfy condition (ii). Let

n
∑

s=n0

n0−1
∑

l=0

L(s, l),

n
∑

s=n0

s
∑

l=n0

L(s, l)g(l, λ)

be bounded for n0 ∈ N and λ > 0.

If lim
n→∞

n
∑

s=0

p(s) = ∞, then no oscillatory solution of (I) such that the set {n ∈

N : x(n) = 0} is unbounded, goes to zero as n→ ∞.

P r o o f. Let {x(n)} be an oscillatory solution of (I) on N0 such that the set

{n ∈ N : x(n) = 0} is unbounded. Let lim
n→∞

x(n) = 0. So for every ε > 0 there exists

an n0 ∈ N such that |x(n)| < ε for n > n0.

Let mn ∈ N be a sequence of zeros of {x(n)} such that mn → ∞ as n → ∞.

Choose n large enough so that mn > n0. From (I) we get for n > n0

∆x(n) = p(n) −

n
∑

s=0

L(n, s)g(s, x(s))

= p(n) −

n0−1
∑

s=0

L(n, s)g(s, x(s)) −

n
∑

s=n0

L(n, s)g(s, x(s)),

so

x(n+ 1) > x(n0) +

n
∑

s=n0

p(s) −M

n
∑

s=n0

n0−1
∑

l=0

L(s, l)

−

n
∑

s=n0

s
∑

l=n0

L(s, l)g(s, ε)
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where M = sup
06s6n0−1

|g(s, x(s))|. Hence

x(mn) > x(n0) +

mn−1
∑

s=n0

p(s) −M

mn−1
∑

s=n0

n0−1
∑

l=0

l(s, l)

−

mn−1
∑

s=n0

s
∑

l=0

L(s, l)g(s, ε),

that is

mn−1
∑

s=n0

p(s) 6 M

mn−1
∑

s=n0

n0−1
∑

l=0

L(s, l) +

mn−1
∑

s=n0

s
∑

l=0

L(s, l)g(s, ε)− x(n0).

Consequently lim
n→∞

mn−1
∑

s=n0

p(s) <∞, a contradiction. This completes the proof of the

theorem. �

3. Main results

Proposition [7]. Suppose that there exist A(n), a0(n), a1(n), a2(n), B(n),

a2(n) 6= 0, A(n) 6= 1 for n > n0 > 0. Moreover, suppose that there exists a so-

lution {y(n)} of the equation

(3.1) y(n) = f(n) +

n−1
∑

s=n0

K(n, s)y(s)

where

f(n) = c+
c1
g(n)

+
1

g(n)

n−1
∑

s=n0

B(s)∆g(s),

g(n) =

n−1
∏

s=n0

(

1 +
1

A(s) − 1

)

,

K(n, s) =
∆g(s)

g(n)
ϕ(s) − ψ(s),(3.2)

ϕ(n) = A(n)
(

ψ(n) −
a1(n− 1)

a2(n− 1)

)

+ 1 + ∆A(n− 1),

ψ(n) = ∆2A(n− 1) +A(n+ 1)
a0(n)

a2(n)
− ∆

(

A(n)
a1(n− 1)

a2(n− 1)

)

,

c, c1 = const.
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Then {y(n)} satisfies the difference equation

(3.3) a2(n)∆2y(n) + a1(n)∆y(n) + a0(n)y(n) = b(n), b(n) =
a2(n)∆B(n)

A(n+ 1)
.

Theorem 3.1. Suppose that

1◦ K(n, s) satisfies condition (ii),

2◦ K(n, s) is nonincreasing in n ∈ N for every s ∈ N,

3◦ lim sup
n→∞

Q(n) <∞, Q(n) = max
n06s6n

|f(s)|,

4◦ lim sup
n→∞

n−1
∑

s=n0

K(s, s) <∞.

Then the difference equation (3.3) has unbounded oscillatory solutions.

P r o o f. See Theorem 2.4 and Proposition. �

Theorem 3.2. Suppose that

1◦ K(n, s) satisfies conditions 1◦, 2◦ of Theorem 3.1,

2◦ lim sup
n→∞

n−1
∑

s=n0

K(s, s) <∞,

3◦ lim sup
n→∞

f(n) = ∞, lim inf
n→∞

f(n) = −∞.

Then the difference equation (3.3) has bounded oscillatory solutions.

P r o o f. See Theorem 2.5 and Proposition.

Now we consider the equation

(3.4) ∆2x(n) − a(n)x(n + 1) = 0

n ∈ N, {a(n)} is a sequence defined for n ∈ N, a(n) 6= 0 for all n ∈ N. We shall prove

a theorem about asymptotic properties of solutions of equation (3.4). In the proof

of this theorem we shall use theorems from this part of the paper and the following

theorem. �

Theorem 3.3 [7]. Suppose that

1◦ there exist functions A, a2, a1, a0, b for n > n0,

2◦ A(n) > 1, a2(n) 6= 0 for n > n0,

3◦
∞
∑

n=n0

1/A(n) = ∞,

4◦ lim
n→∞

ϕ(n) = 0,

5◦
∞
∑

n=n0

A(n+ 1)b(n)/a2(n) = s (|s| <∞),

6◦
∞
∑

n=n0

|ψ(n)| <∞
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where ϕ, ψ are defined in part III (3.2). Then there exists a solution {y(n)} of

difference equation (3.3) such that lim
n→∞

y(n) = 1.

In equation (3.4) we represent the function x(n) in the form

xk(n) =
a−

1

4 (n)
n−2
∏

s=0

(

1 + εka
1

2 (n− s)
)

y(n)

where a(n) > 0 for n ∈ N, εk = ekπi, k = 1, 2, a(n) 6= 1, and we obtain the difference

equation

(3.5) a2(n)∆2y(n) + a1(n)∆y(n) + a0(n)y(n) = 0

where

a2(n) = a−
1

4 (n+ 1),

a1(n) = 2a−
1

4 (n+ 2) − (2 + a(n))a−
1

4 (n+ 1)(1 + εka
1

2 (n+ 2)),

a0(n) = (1 + εka
1

2 (n+ 2))[a−
1

4 (n)(1 + εka
1

2 (n+ 1)) − (2 + a(n))a−
1

4 (n+ 1)].

Theorem 3.4. Suppose that

1◦ A, a2, a1, a0 are defined for n > n0 > 0, A(n) > 1, A(n+ 1) = a2(n), b(n) = 0,

2◦
∞
∑

n=n0

1/a2(n− 1) = ∞,

3◦
∞
∑

n=n0

|ψ(n)| <∞, ψ(n) = ∆2a2(n− 2) + a0(n) − ∆a1(n− 1),

4◦ lim
n→∞

ϕ(n) = 0, ϕ(n) = a2(n− 1)ψ(n) − a1(n+ 1) + 1 + ∆a2(n− 2).

Then the difference equation (3.4) has for n > n0 > 0 solutions {x1(n)} and

{x2(n)} such that

xk(n) ∼
a−

1

4 (n)
n−2
∏

s=0

(

1 + εka
1

2 (n− s)
)

, k = 1, 2.

P r o o f. By Theorem 3.3 we obtain under our hypotheses that the difference

equation (3.5) has for n > n0 > 0 a solution {y(n)} such that

lim y(n) = 1 as n→ ∞.

Then the functions

xk(n) =
a−

1

4 (n)
n−2
∏

s=0

(

1 + εka
1

2 (n− s)
)

y(n)
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for k = 1, 2 satisfy difference equation (3.4) and we have

xk(n) ∼
a−

1

4 (n)
n−2
∏

s=0

(

1 + εka
1

2 (n− s)
)

as n→ ∞.

The proof is complete. �

One of the most effective techniques to study (3.4) is to make the change of

variables

x(n) = 2
(

−
1

2

)n+1
n−2
∏

s=n0

(2 + a(s))y(n), n0 > 0.

Then (3.4) is transformed to

a2(n)∆2y(n) + a1(n)∆y(n) + a0(n)y(n) = 0,

where

a2(n) = (2 + a(n))(2 + a(n− 1)),

a1(n) = 4(2 + a(n))(2 + a(n− 1)),

a0(n) = 4 + 3(2 + a(n))(2 + a(n− 1)).

Theorem 3.5. Suppose that

1◦ the assumptions of Theorem 3.4 are satisfied,

2◦ a(n) > −1 for n > n0.

Then the difference equation (3.4) has for n > n0 a solution {x1(n)} such that

x1(n) ∼ 2
(

−
1

2

)n+1
n−2
∏

s=n0

(2 + a(s)) for n→ ∞.

If in addition we have

(i)
∞
∑

n=n0

(1 + a(n)) <∞,

(ii) lim
n→∞

(− 1

2
)−2n

n−2
∏

s=n0

(2 + a(s))
−2

= ∞ then there exists a solution {x2(n)} of

equation (3.4) such that

x2(n) ∼
1

2
(

− 1

2

)n+1
n−2
∏

s=n0

(2 + a(s))

for n→ ∞.
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P r o o f. The proof of the first part of Theorem 3.5 is analogous to the proof

of Theorem 3.4, where x1(n) = 2
(

− 1

2

)n+1
n−2
∏

s=n0

(2 + a(s)) y(n). We shall prove part

two.

The function

x2(n) =
3

2
x1(n)

∞
∑

s=n

1

x1(s)x1(s+ 1)

is for n > n0 the solution of the difference equation (3.4) for which

x2(n)∆x1(n) − x1(n)∆x2(n) 6= 0.

Then

x2(n)

2−1
(

− 1

2

)−n−1
n−2
∏

s=n0

(2 + a(s))−1

=

3

2
x1(n)

∞
∑

s=n

1/x1(s)x1(s+ 1)

2−1
(

− 1

2

)−n−1
n−2
∏

s=n0

(2 + a(s))−1

∼

3

2
2

(

− 1

2

)n+1
n−2
∏

s=n0

(2 + a(s))
∞
∑

s=n

1/x1(s)x1(s+ 1)

2−1
(

− 1

2

)−n−1
n−2
∏

s=n0

(2 + a(s))−1

∼

3

2

∞
∑

s=n

1/x1(s)x1(s+ 1)

(

− 1

2

)−2n
n−2
∏

s=n0

(2 + a(s))−2

for n→ ∞.

�

Theorem A [6]. Let {sn}, {an}, {bn} be given sequences. The hypothesis

lim
n→∞

sn = s implies lim
n→∞

(an/bn) = s if

1a) |bn| → ∞ and
n−1
∑

s=0

|∆bs| 6 K|bn| or

1b) an → 0, bn → 0, bn 6= 0 for infinitely many indices n and
∞
∑

s=n

|∆bs| 6 K|bn|

(where the constant K does not depend on n),

2) ∆an = sn∆bn.

Now the assumption of Theorem 3.5 and Theorem A imply that

lim
n→∞

3

2

∞
∑

s=n

1/x1(s)x1(s+ 1)

(

− 1

2

)−2n
n−2
∏

s=n0

(2 + a(s))−2

= 3 · lim
n→∞

(2 + a(n− 1))

[−a(n− 1) (4 + a(n− 1))]
= 1
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and

x2(n) ∼
1

2
(

− 1

2

)n+1
n−2
∏

s=n0

(2 + a(s))

for n→ ∞,

hence the proof is complete.
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poznan.pl.

56


		webmaster@dml.cz
	2020-07-01T17:24:44+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




