Mathematica Bohemica

Jifi Janacek
On calculation of zeta function of integral matrix
Mathematica Bohemica, Vol. 134 (2009), No. 1, 49-58

Persistent URL: http://dml.cz/dmlcz/140639

Terms of use:

© Institute of Mathematics AS CR, 2009

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized

documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This document has been digitized, optimized for electronic delivery and
O stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz


http://dml.cz/dmlcz/140639
http://dml.cz

134 (2009) MATHEMATICA BOHEMICA No. 1, 49-58

ON CALCULATION OF ZETA FUNCTION OF INTEGRAL MATRIX

Jikf JANACEK, Praha

(Received July 18, 2007)

Abstract. Values of the Epstein zeta function of a positive definite matrix and the knowl-
edge of matrices with minimal values of the Epstein zeta function are important in various
mathematical disciplines. Analytic expressions for the matrix theta functions of integral
matrices can be used for evaluation of the Epstein zeta function of matrices. As an example,
principal coefficients in asymptotic expansions of variance of the lattice point count in the
random ball are calculated for some lattices.

Keywords: Epstein zeta function, Riemann theta function, variance of volume estimate,
Rankin-Sobolev problem

MSC 2010: 33F05, 60D05

1. INTRODUCTION

Let M € R**9 be a positive definite matrix and let T = M~1/27% be the corre-
sponding point lattice. The sum of the powers of the lattice point norms

Z(M,s) = Z (z' Mx)~%/2,
0£z€7?

convergent for Res > d, is the Epstein zeta function of the matrix, which is of
considerable importance in various fields of mathematics. For example, the error
of the d-dimensional numerical integration with the point lattice T for functions in
the unit ball of the Sobolev space of T-periodic functions is proportional to the zeta
function of the matrix M [6]. The volume of a d-dimensional random hypersphere By
may be estimated by counting the lattice points in B, [4]. The matrix zeta function is
then included in the asymptotic term of the estimate variance, where the asymptotics
relates to homothetic transforms of the lattice by a scaling factor v — 0+4. A similar
asymptotic expansion applies also to many other randomly positioned bounded sets
in R9 [3].
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Especially interesting are matrices that have the least value of Z (M, s) (are opti-
mal) for real values s > d among all matrices with the same determinant. Rankin
[5] proved such optimality for triangular matrices. It follows from [2] that matrices
critical for s > d are (proportional to) integral matrices and that there is only a finite
number of critical matrices in any dimension. The optimality of the zeta function
changes to the sphere packing problem [1] when s — +oo.

Many properties of integral matrices can be deduced from their theta series. An-
alytic expressions for the theta function of many integral matrices are known [1].
The aim of this paper is the calculation of the Epstein zeta function of such integral
matrices.

2. AN EXPRESSION FOR THE MATRIX ZETA FUNCTION

The Riemann theta function of a positive definite matrix M € R4*? is

d
@(M, 7.) _ Zenirx’M:c.

zel

From n—*/2I" (%) r% = fooo e~ Tts/2-1 dt, where I" is the Euler gamma function,

we have for Re s > d (by the Mellin transform)
s o0
n*S/ZF(§)Z(M, s) = / (O (M, it) — 1) t*/>~L dt
0
and the Poisson summation formula (or the Jacobi identity for ©)
O (M., it) = |M|~Y/?t=%%0 (M, it 1)

then yields

1
/ (O(M,it) — 1)t>/>~ 1 dt
0
! 2 2
- |M|—1/2/ (6 (M,it™") = 1) =D de — = + m|M|‘1/2
. -

2 2 o
= m|M|‘1/2 -+ |M|—1/2/ (O (M, it) — 1) tld==)/2=1 4.
- 1

As floo e Y=l dt = b=TI'(a, b), the Riemann transform of the zeta function follows

by the theorem of Lebesgue on dominated convergence (the sums are dominated by
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integrable functions (©(M,it) —1)t*~!, where a is Re s/2 or Re (d — s)/2 for the first
and second sum, respectively):

(2.1) F(%)n_S/QZ(M,s)

_ 2 —-1/2 2 s ’ ’ —s/2
_m|M| —g—l— Z F(E,m:Mx>(m:Ma:)
0£zE74
d— o
+ |M|71/2 Z F( 5 S,m:’M‘%) (m:’M_lx)( 92
0£ze7?

We can group the terms with the same value of '’ Mx together in the first sum in
(2.1) and analogously we can transform also the second sum. Let N (M, a) = #{x €
74: ¥'Mx = o}, a€ R, let K be a positive definite integral matrix and let 3 > 0 be
such that M = K. Then we can express (2.1) as

(2.2) r(g)fs/?Z(M, )
) .

2
= M7 = S ST N (M, BT (5w ) (<6m) /2

n=1

< - (s=d)/
+ |M|_1/2nZlN(M_1’ m?m)r(d 7 5?%)(5?}7\20 o

3. AN APPROXIMATION OF THE ZETA FUNCTION AND ITS PRECISION

If the summations in (2.1) are restricted only to the lattice points with moduli
((#'Mx)=Y/2, (' M~'z)~'/?) bounded by R the resulting error will be equal to the
sums over the lattice points with moduli greater than R. Let |M| = 1. Approx-

imating the latter sums by integrals (i.e. replacing > f(M*1/22) by
zeZd,|M*1/2z|>R
I8 R, jz[> R f(z)dx) we obtain the following approximate expression for the error:

(3.1)
dkq < AOO F(%, 7'[7’2) (1‘[7’2)—3/2 ri—ldr + /Roo F(d ; s ’ 7'[7“2) (7‘[7“2)_((1_3)/2 -1 d?")
T o (%d-i- 1) (d E s (F(g’ TERQ) - (ERQ)(dis)/z F(%, TERQ))

2 d 2 2\ S/2 d—s 2
+5 (5o - (B (S w))).
where rg = 1%?T'(d/2 +1)~! is the volume of the unit ball B4(1) in RZ.
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The functions under the integral signs in (3.1) are subharmonic in the neighbor-
hood of infinity. Hence the approximate expression with argument R — D /2, where
D is the maximum of the diameters of the Voronoi cells of the lattices M ~1/27¢ and
M*'/274 is an upper bound of the error for R sufficiently large.

4. THETA FUNCTION IDENTITIES

For the calculation of N (M, Gn) we can use the identity

O(M,7) —1=Y N (M,pBn)e™"

n=1

and the known relations for © for particular M’s with Jacobi theta functions with
zero argument defined by

o0 oo

ba(0l) = 3 ) g0l = S e a0l = 3 (1)

n—=—oo n—=—oo n—=—oo

The relations (those following immediately and those listed in Appendix A) are
adopted from [1]. We shall use the notation 6;(r) for 6;(0|7), ¢ = 2,3,4. For the
identity matrix I; generating the cubic lattice Z¢ consisting of points in R? with
integral coordinates we have

G(Id, T) = 93(’7’)(1.

Let p € N. The matrix 7T, generating the triangular lattice with the quadratic
form z'Tpz = 23 + 122 + 1 (p + 1)23 in R? satisfies

O(Tp, 7) = 03(7)03(p7) + O2(7)02(p).-

The integral matrices corresponding to lattices generated by root systems of Lie al-
gebras are of interest, namely the zero sum d-dimensional matrices A,, d-dimensional
checkerboard matrices D4, Gosset matrices Fg, E7 and Es and their duals [1].

For the d-dimensional checkerboard root matrix D, generating the lattice consist-
ing of points of the cubic lattice Z¢ with an even sum of coordinates, the determinant
|Da| = 4,

O(Da,) = 5 (65(r)" + 4(r)")

and for its dual,
O(D; ', 1) = 05(7)" + Oa(7)™.
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Other important integral lattices in dimensions 12,16, 24, 32 are generated by the
Coxeter-Todd matrix Ko, the Barnes-Wall matrix Ajg, the Leech matrix Aoy and
the Quebbemann’s lattice Q32 [1] (Appendix A).

The Leech matrix is an example of an extremal even unimodular (|M| = 1) matrix.
The extremality means that the theta series have the maximum number of zero
leading coefficients. Theta functions of such matrices are very strongly constrained
as they are modular forms invariant to transformations 2 — 2+ 1, 2 — —1/2, and
it follows from the Hecke theorem that they can be expressed using special modular
functions O(Es, 7) and Agy(7) [1] (Appendix A). Thus it is easy to calculate the theta
functions for small dimensions d. Extremal even unimodular matrices corresponding
to the theta functions 24 < d < 80, 8 | d, except d = 72, are already known. For large
values of d (about d > 41000) extremal even unimodular matrices do not exist, as
the constraints on their theta functions would imply negative coefficients in the theta
series [1]. The extremal theta functions can be either adopted from [1] or calculated
from the above constraints (Appendix A).

5. VARIANCE OF LATTICE POINTS NUMBER IN RANDOM BALL

If T = M~1/27¢ is a d-periodical point lattice in the d-dimensional Euclidean
space R? with spatial intensity o = |M|~'/? then the mean value of

(card((Bq(r) + ) N 'T) — aA?(Ba(r)))?,

i.e., the variance of the lattice point count in the ball with radius r with uniform
random position, is

CrHYY(dBy(r))®(r),

where

(5.1) Crp = Z(M,d+1)

2n2drq
is a lattice constant; kg = n%?T (3d+ 1)_1 is the volume of the unit ball By(1)
in R?, H9 ! is the surface measure, and & defined by the above equality fulfils
lim o1 an: ®(x) dx = 1. Hence the variance of the lattice point count in the ball has

xTr— 00

asymptotics “in the mean” CpoH9~1(0B4(1))r?~! and is O(r¢~1), » — oco. This re-
sult holds also for bounded sets with smooth isotropic covariogram (i.e., such that has
the fractional derivation of order 1(d + 1) with bounded variation) and sufficiently
regular boundary (full-dimensional locally finite union of sets of finite reach [3]).
The values of coefficients (5.1) for cubic lattices are in Table 1. Coefficients (5.1)
of various integral lattices are in Table 2. The values of the zeta functions for some
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integral matrices with known analytic expressions of the Riemann theta functions
rescaled to unit density (JM| = 1) were calculated from (2.2) using the values of
N (M, n) from the Taylor series of the theta functions and a sufficient number of
coefficients, according to (3.1). The numerical values were rounded.

Czd, d Czd
0.083333333 | 7 | 0.061828449
0.072837040 | 8 | 0.064852630
0.066649070 | 12 | 0.116517998
0.062959415 | 16 | 0.480456123
0.061045829 | 24 | 52.76720063
0.060656899 | 48 | 7.35885-1010

DO | W ||

Table 1. Coefficients (5.1) of cubic point lattices in RY.

M Ct d| M Ct
Az | 0.071701169 | 12 | K12 | 0.039608249
D3 | 0.064350404 | 12 | D12 | 0.050000883
D;l 0.064389706 | 16 | A | 0.035067857
Dy | 0.058670401 | 24 | Aay | 0.028950578
Ds | 0.054722140 | 24 | Doy | 0.463897082
Dgl 0.054818805 | 32 | Q32 | 0.026945374
0.051197993 | 32 | As2 | 0.028838712
Egl 0.051262375 | 40 | Aso | 0.028873965
D¢ | 0.051932950 | 48 | Ays | 0.022561504
E7 | 0.048337049 | 48 | Dys | 2.957919-10°
E;l 0.048541494 | 56 | Ass | 0.022535527
D7 | 0.049997583 | 64 | Ags | 0.022541824
Eg | 0.045596961 | 72 | Azy | 0.019164428
Dg | 0.048752920 | 80 | Agp | 0.019095025

[0 |N[([N| [ | OO x| W [W| N[,
&

Table 2. Coefficients (5.1) of point lattices (rescaled to unit density) in R%. Ay, d =
32,40, 48, 56,64, 72, 80, are extremal even unimodular lattices (hypothetic for d =
72). Notation of the other lattices was defined in Section 4.

The errors of the approximate values of coefficients of lattices in 24 dimensions
calculated using approximate values of the zeta function obtained by summing the
first n terms of the series in (2.2) can be estimated either from (3.1) or by summing
the terms in (2.2) from n + 1 to 2n. The estimates are shown in Table 3.
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n | est. 7% Doy Aoy

5 | =345 | —3.82 | —3.41 | —3.61
10| —7.61 | —=8.18 | —7.89 | —8.91
15| —12.8 | —134 | —12.4 | —13.1
20 | —18.4 | —19.1 | —18.4 | —20.0
25 | —24.3 | —25.0 | —24.4 | —24.7

Table 3. Estimated precision (decadic logarithm of error, est.—using (3.1) and the values
obtained by summing the terms in (2.2) from n + 1 to 2n) of coefficients (5.1) for
cubic, checkerboard and Leech lattices in R24.

6. DISCUSSION

The formulas enable one to calculate matrix zeta functions using theta series
expansions in symbolic algebra packages that allow feasible manipulations with co-
efficients of formal series (in our case it was the program Mathematica—see Ap-
pendix B).

Table 3 shows that our simplistic estimate of the error of calculation of the matrix
zeta function by finite series gives reasonable results for d = 24. According to our
calculations (data not shown) this holds also for d up to 80.

The comparison of Tables 1 and 2 shows that differences between the best lattice
and cubic (and also checkerboard) lattices grow rapidly with the dimension. This
is caused by holes in the cubic lattice the size of which grows with dimension. The
big difference between the cubic and optimal lattices can also be expected in other
criteria, e.g. in performance of numerical quadrature.

Acknowledgement. This study was supported by the Academy of Sciences
of the Czech Republic, grant No. A100110502 and AV0Z 50110509.
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APPENDIX A

The matrix A, coincides with the matrix T, with p = 3.
For the 6-dimensional Gosset matrix Fg, |Fg| = 3, we have

o) ot 27+ o5 ) om0

and for its dual

o 7) = %(@(Tg, 27)3 + %(3@(7“3, 2r) - O(T, §T>)3>
Further, for the 7-dimensional Gosset matrix E7, |E7| = 2, we have
O (E7,7) = 05(27)7 + 705(27)%0(27)*
and for its dual
O (B7 ', 7) = 05(27)7 + T05(27)302(27)* + 02(27)7 + T02(27)303(27)".
For the 8-dimensional Gosset matrix Fs, |Eg| =1,

1
O(FEs,T) = 5(92(7)8 +03(7)8 + 04(7)®).
For the Coxeter-Todd matrix K12, |K12| = 3%, we have

O (Ki2,7) = (02(47)05(127) + 05(47)05(127))°
+ 45 (92 (47‘)92(127‘) + 93(47’)93(127’))2 (92 (47‘)93(127‘) + 93(47’)92(127’))4
+ 18 (02(47)05(127) + 03(47)02(127))° .

For the Barnes-Wall matrix A, |A16| = 28,
O (Ag6,7) = %(92 (27)' + 05 (27)"° + 04 (27)'° + 3005 (27)° 03 (27)°).
Let Agy(T) = 555 (02(7)03(7)04(7))®, then for the Leech matrix Agq we have
O(Agy,7) = O(Eg, 7)3 — T20A24(T).

Let A1g(7) = 55(0(D4,7)* — O(A16,7)), then for Quebbemann’s matrix Qsz,
|Q32| = 216, we have

O(Qs32,7) = O(Dy, )8 — 1920(Dy, 7)* A16(7) + 576 A16(7)%.
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For extremal theta functions ©(Ag4, 7) either adopted from [1] or calculated from
the modular functions constraints we have:

For d = 32,
@(Eg, 7)4 — 960A24(T)@(E8, T);
d = 40,
@(Eg, ’7')5 - 1200A24(’7’)@(E8, 7')2;
d = 48,

O(Es, 7)° — 1440A04(r)O (B, 7)° + 125280 A04(7)%;

d = 56,64, 72, 80:

@(Eg, T)7 — 1680A24(T)@(E8, T)4 —+ 347760A24(T)2®(E8, T),

O(Es, 7)% — 1920A04(7)O(Es, 7)° + 627840 A04(7)?O(Eg, 7)2,

O(Eg)? — 2160A40(E3)® + 965520A2,0(Fg)® — 27302400A3,,
(

O(Fg)™ — 2400A2,0(Es)™ 4 1360800A2,0(Fg)* — 103488000A3,0(Fs).

APPENDIX B

Calculation of the coefficient (5.1) of the bee (Ds3) lattice in Mathematica (Wol-
fram Research, Inc., USA).
Determinants of D3 ' and D3 lattices:

DdDet :=4
DdSDet := 3

Theta series of D3 ' and Dj lattices:

DdThetald_, z_] := 1(E1lipticTheta[3,0,2]? + EllipticTheta[4,0,z]?)
DdSTheta[d_, z_] := E1lipticTheta[3,0,z%]? + E1lipticTheta[2, 0, z*]?

Coefficients of the theta series:

DdThetaN[d_, m.]
:= CoefficientList[Series[DdThetald, z], {z,0, Ceiling[m] + 2}], z]
DdStep:=1
DdSThetaN[d_, m._]
:= CoefficientList[Series[DdSTheta[d, z], {z, 0, Ceiling[m] + 2}], z]
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DdSStep :=4

Formula (2.2) for the Zeta function:

ZThetald_, Num_, mult_, NumS_, multS_, s_,m_]

/2 9 9 mult m Gamma[§ fiae} ]
T )
=Re| ———| ————-+ Num/[n + 1] —— 2 mult-
[Gammab] <s —d s n§=:1 (ZB)s/2
multSm d—s on
Ga“mma[ 2 multS]
+ Z NumS|[n+ 1]] (B2
n=1 multS
Formula (5.1) for the coefficient:
d
Coeff[d_, Num_, mult_., NumS_ multS_m.] = #%ZTheta

[d, NumS|[d, multS m], mulS, Numl[d, mult m], mult,d + 1, m]
The coefficient of the checkerboard lattice:

DdSCoeff[d_,m.]
:= Coeff[d, DdSThetaN, DdSStep DdSDet'/?, DdThetaN, DdStep DdDet'/2, m)]

Finally, the coefficient of the bee (Ds) lattice:

DASCoeff[3,10] ~ N ~ 12
0.0643504041372
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