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TRIBONACCI MODULO pt
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Abstract. Our research was inspired by the relations between the primitive periods of
sequences obtained by reducing Tribonacci sequence by a given prime modulus p and by
its powers p

t, which were deduced by M.E.Waddill. In this paper we derive similar results
for the case of a Tribonacci sequence that starts with an arbitrary triple of integers.
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1. Introduction—known results

Let (gn)∞n=1 be a Tribonacci sequence 0, 0, 1, 1, 2, 4, 7, 13, 24, 44, 81, . . . defined by

the recurrence gn+3 = gn+2+gn+1+gn and the triple [0, 0, 1] of initial values. Further,

let (Gn)∞n=1 be the Tribonacci sequence defined by an arbitrary triple of integers

[a, b, c]. It is well known that the sequences (gn mod m)∞n=1 and (Gn mod m)∞n=1 are

periodical for an arbitrary modulus m > 1. We denote by h(m) and h(m)[a, b, c]

the primitive periods of these sequences. In this paper we derive a relationship

between the numbers h(p)[a, b, c] and h(pt)[a, b, c] where p is an arbitrary prime,

p 6= 2, 11 and t ∈ N = {1, 2, 3, . . .}. The case of the primes p = 2, 11 is solved in

[2]. It can be proved that, if L is the splitting field of the Tribonacci polynomial

g(x) = x3 −x2−x−1 over the field Fp = Z/pZ, p 6= 2, 11 and α, β, γ are the roots of

g(x) in L, then h(p) = lcm(ordL(α), ordL(β), ordL(γ)) where the numbers ordL(α),

ordL(β), ordL(γ) are the orders of α, β, γ in the multiplicative group of L and lcm

is their least common multiple. See [5]. Let T be a Tribonacci matrix where

(1.1) T =





0 1 0

0 0 1

1 1 1



 and T n =





gn gn−1 + gn gn+1

gn+1 gn + gn+1 gn+2

gn+2 gn+1 + gn+2 gn+3



 for n > 1.
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Clearly, for an arbitrary n ∈ N and an arbitrary modulus m, T n assumes a unique

form T n = B + mA where A = [aij ], B = [bij ] are integer matrices such that

0 6 bij 6 m − 1 and aij are nonnegative integers. Specifically, if n = h(m), then

T h(m) ≡ E (mod m) where E is the identity matrix. Thus, we can express T h(m)

as T h(m) = E + mA. We will use this fact in an alternative proof of Theorem 1.1

published by M.E.Waddill in 1978, see [6], p. 349. The proof that we will submit

is based on matrix algebra. Its modification can also be used for the general case

of linear recurrences of order k. This particularly applies to the case of Fibonacci

sequences. For a proof of this, see [7], p. 527.

Theorem 1.1. Let p be an arbitrary prime and h(p) 6= h(p2). Then

(1.2) h(pt) = pt−1h(p)

for all t ∈ N.

P r o o f. We can write the matrix T h(pt) as T h(pt) = E + ptA. Using binomial

expansion, we have

T ph(pt) = (E + ptA)p =

p
∑

i=0

(

p

i

)

Ep−i(ptA)i.

Passing from equality to congruence by the modulus pt+1, we get

T ph(pt) ≡ E (mod pt+1).

Since h(pt+1) is the primitive period, we have h(pt+1) | ph(pt). Next, it is obvious

that h(pt) | h(pt+1), which means that exactly one of the following equations is true:

(1.3) h(pt+1) = h(pt) or h(pt+1) = ph(pt).

Now we use induction by t. For t = 1 the assertion is evident and for t = 2 it

follows from the assumption. Assuming that h(pt) = ph(pt−1) = pt−1h(p) holds for

a number t > 1, we will prove this equation for t + 1. The induction assumption

h(pt−1) 6= h(pt) implies T h(pt−1) = E + pt−1A where p ∤ A. Thus we have

T ph(pt−1) = (E + pt−1A)p =

p
∑

i=0

(

p

i

)

Ep−i(pt−1A)i.

Hence T h(pt) = T ph(pt−1) 6≡ E (mod pt+1) and h(pt) 6= h(pt+1). Next, from (1.3) we

have h(pt+1) = ph(pt) and h(pt+1) = pth(p). �

R em a r k 1.2. The congruence T ph(pt−1) ≡ E + ptA (mod pt+1) does not hold

for p = 2, t = 2. This fact, however, is irrelevant for the proof of 1.1. We omit the

details.
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Theorem 1.3. Let s ∈ N satisfy h(p) = h(p2) = . . . = h(ps) 6= h(ps+1). Then,

for an arbitrary t > s, we have h(pt) = pt−sh(p).

P r o o f. We proceed by analogy with 1.1. �

P r o b l e m 1.4. The question of whether the assumption h(p) 6= h(p2) is necessary

or whether the equality h(p) = h(p2) never occurs is open. Up to the present, no

instance of h(p) = h(p2) has been found. Neither is it proved that such an equality

can never hold. However, for sequences defined by a general linear recurrence of

order three, the condition h(p) 6= h(p2) need not be satisfied. If (gn)∞n=1 is a sequence

defined by the recurrence gn+3 = 2gn+2 − gn+1 + gn and the triple of initial values

[0, 0, 1], then h(2) = h(22) = 7. A similar problem has been discussed in the case of

a Fibonacci sequence. In [4] it is proved that the affirmative answer to the question

whether h(p) 6= h(p2) holds for all primes implies the validity of the first case of

Fermat’s last theorem. However, questions related to the validity of the equation

h(p) = h(p2) are not investigated in this paper. In the sequel, we will always assume

h(p) 6= h(p2).

2. Elementary observations

The primary aim of this paper is to prove theorems similar to 1.1 for the case

of a Tribonacci sequence beginning with an arbitrary triple [a, b, c] of integers. Ev-

idently, the relation h(pt)[a, b, c] = pt−1h(p)[a, b, c] is generally not valid. We have,

for instance, h(p)[0, 0, 0] = h(pt)[0, 0, 0] = 1 for arbitrary p, t. Put x0 = [a, b, c]τ and

xn = [Gn+1, Gn+2, Gn+3]
τ where τ is the transposition. Then xn can be expressed in

terms of x0 using the equation xn = T nx0. If a Tribonacci sequence is determined by

the triple [0, 0, 1], then h(m) is the smallest number h for which T h ≡ E (mod m).

In the following example, we will show that, to an arbitrary triple [a, b, c], this rule

need not apply.

E x am p l e 2.1. Let p = 7 and x0 = [1, 3, 2]τ . We can verify easily that T 6 6≡ E

(mod 7) while T 6x0 ≡ x0 (mod 7). Since the congruence T hx0 ≡ x0 (mod 7) holds

for no h < 6, we have h(7)[1, 3, 2] = 6. Assuming results analogous to 1.1, one could

expect that h(72)[1, 3, 2] = 42. However, h(72)[1, 3, 2] = 336.

The relationships between the numbers h(pt)[a, b, c] and h(p)[a, b, c] clearly seem

to be more complex and are worth closer study. First we will prove two simple but

important lemmas.
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Lemma 2.2. Let p be an arbitrary prime. Then, for every t ∈ N and 1 6 i 6 t,

we have

(2.1) h(pt)[pt−ia, pt−ib, pt−ic] = h(pi)[a, b, c].

P r o o f. (2.1) follows from the equality

(pt−iGn mod pt)∞n=1 = pt−i · (Gn mod pi)∞n=1.

�

Using (2.1), the investigation of the periods for general triples [a, b, c] can be

reduced to the case with [a, b, c] 6≡ [0, 0, 0] (mod p). Particularly, for i = 1, (2.1)

yields h(pt)[pt−1a, pt−1b, pt−1c] = h(p)[a, b, c].

Lemma 2.3. Let p be an arbitrary prime. For every triple [a, b, c] and every

s, t ∈ N where s 6 t we have h(ps)[a, b, c] | h(pt)[a, b, c]. In particular, we have

(2.2) h(p)[a, b, c] | h(pt)[a, b, c].

P r o o f. Put h = h(ps)[a, b, c], k = h(pt)[a, b, c] and x0 = [a, b, c]τ . Then, from

T kx0 ≡ x0 (mod pt), it follows that T kx0 ≡ x0 (mod ps). This means that k is a

period of the Tribonacci sequence beginning with the triple [a, b, c] reduced by the

modulus ps. Since the primitive period divides an arbitrary period, we have h | k.

�

Moreover, T h(pt) ≡ E (mod pt) implies T h(pt)x0 ≡ x0 (mod pt) for any x0 =

[a, b, c]τ and t ∈ N and therefore xh(pt) ≡ x0 (mod pt). Consequently, we have

(2.3) h(pt)[a, b, c] | h(pt).

Lemma 2.3 together with (2.3) restricts the form of the numbers h(pt)[a, b, c].

As we will see in the sequel, the relations between h(pt)[a, b, c] and h(p)[a, b, c] also

depend on the form of the factorization of the polynomial g(x) over the field Fp.
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3. Irreducible case

In the investigation of primitive periods of Tribonacci sequences beginning with

arbitrary triples [a, b, c], the cubic form

(3.1) D(a, b, c) = a3 + 2b3 + c3 − 2abc + 2a2b + 2ab2 − 2bc2 + a2c − ac2

plays an important role. By means of D(a, b, c), we can prove a theorem similar

to 1.1 for the case of g(x) being irreducible over Fp. (3.1) was studied in other

circumstances as well. See [1].

Theorem 3.1. If a triple of initial values [a, b, c] of a Tribonacci sequence

(Gn)∞n=1 satisfies (D(a, b, c), m) = 1, then h(m)[a, b, c] = h(m).

P r o o f. For n > 1, the sequences (gn)∞n=1 and (Gn)∞n=1 satisfy

(3.2) Gn+3 = bgn+1 + (a + b)gn+2 + cgn+3.

If we put h(m)[a, b, c] = h, we have [Gh+1, Gh+2, Gh+3] ≡ [a, b, c] (mod m). By

substituting into (3.2) and after some simplification, we get

(3.3)





c − b − a b − a a

a c − b b

b a + b c



 ·





gh+1

gh+2

gh+3



 ≡





a

b

c



 (mod m).

The system of congruences (3.3) can be further modified to the form

(3.4)





c − b − a b − a a

a c − b b

b a + b c



 ·





gh+1

gh+2

gh+3 − 1



 ≡





0

0

0



 (mod m),

where the determinant of the matrix of system (3.4) depends only on a, b, c and is

equal to D(a, b, c). System (3.4) has only one solution if and only if the numbers

D(a, b, c), m are coprime. In this case we have [gh+1, gh+2, gh+3] ≡ [0, 0, 1] (mod m)

and thus h(m) | h. Since also h | h(m), h = h(m) follows. �

Corollary 3.2. Let u1 = [a, b, c], u2 = [b, c, a+b+c], u3 = [c, a+b+c, a+2b+2c].

Then u1, u2, u3 are linearly independent over Fp if and only if D(a, b, c) 6≡ 0 (mod p).

Moreover, the linear independence of u1, u2, u3 implies h(p)[a, b, c] = h(p).

P r o o f. By elementary column transformations, the matrix of system (3.4) can

be converted to the form

M =





a b c

b c a + b + c

c a + b + c a + 2b + 2c



 where detM = −D(a, b, c).
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Hence, it follows that the rows of M are linearly independent over Fp if and only if

D(a, b, c) 6≡ 0 (mod p). Now, from 3.1 it follows that h(p)[a, b, c] = h(p). �

R em a r k 3.3. Generally, the equality of periods h(p)[a, b, c] = h(p) does not

imply linear independence of u1, u2, u3 over Fp.

Lemma 3.4. A triple [a, b, c] satisfies the congruence D(a, b, c) ≡ 0 (mod p) if

and only if the sequence (Gn mod p)∞n=1 determined by [a, b, c] can be defined by a

first or second order recurrence formula.

P r o o f. If D(a, b, c) ≡ 0 (mod p), then it follows from 3.2 that u1, u2, u3 are

linearly dependent. Let first u1, u2 be linearly dependent. Then there is a q ∈ Z

such that

(3.5) q[a, b, c] ≡ [b, c, a + b + c] (mod p).

Matching the terms, we obtain Gn ≡ aqn−1 (mod p) from (3.5) by induction, which

means that (Gn mod p)∞n=1 can be defined over Fp by the first order recurrence

Gn+1 ≡ qGn (mod p) where G1 = a. Suppose that u1, u2 are independent and u1,

u2, u3 dependent. This means that there are q1, q2 ∈ Z such that

(3.6) q1[a, b, c] + q2[b, c, a + b + c] ≡ [c, a + b + c, a + 2b + 2c] (mod p).

By analogy, it follows from (3.6) that (Gn mod p)∞n=1 can be defined over Fp by a

recurrence Gn+2 ≡ q1Gn + q2Gn+1 (mod p) where G1 = a, G2 = b.

Conversely, suppose that (Gn mod p)∞n=1 can be defined by a recurrence of order

at most two. This implies that u1, u2, u3 are dependent over Fp and, by 3.2, we have

D(a, b, c) ≡ 0 (mod p). �

R em a r k 3.5. There are sequences (Gn mod p)∞n=1 that can be defined over Fp

by a recurrence formula of order at most two and h(p)[a, b, c] = h(p).

Let us now investigate the number of all solutions of the congruence

(3.7) D(a, b, c) ≡ 0 (mod p).

As we shall see in Lemmas 3.6 and 3.7, the number of solutions of (3.7) depends

on the form of the factorization of g(x) = x3 − x2 − x − 1 over Fp.
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Lemma 3.6. Let g(x) be irreducible over Fp. Then the only solution of (3.7) is

[a, b, c] ≡ [0, 0, 0] (mod p).

P r o o f. Let L be the splitting field of g(x) over Fp. The irreducibility of g(x)

gives that [L : Fp] = 3. The Galois group of L/Fp is generated by the Frobenius

automorphism σ : L → L determined by σ(t) = tp for any t ∈ L. Let α ∈ L be a

root of g(x). Then β = σ(α) and γ = σ(β) are the other roots of g(x) and we have

αp = β, βp = γ, γp = α. There are unique A, B, C ∈ L such that

(3.8) Gn mod p = Aαn + Bβn + Cγn

for each n ∈ N. Moreover,Gn ∈ Z, and soAαn+Bβn+Cγn = σ(Aαn+Bβn+Cγn) =

σ(A)βn + σ(B)γn + σ(C)αn, which gives

(3.9) B = σ(A) = Ap, C = σ(B) = Bp, A = σ(C) = Cp.

It follows from (3.9) that A, B, C are either all non-zero or A = B = C = 0. Hence

by (3.8), the sequence (Gn mod p)∞n=1 cannot be, with the exception of the sequence

beginning with [0, 0, 0], defined by a recurrence formula of the first or second order.

Lemma 3.6 now follows from 3.4. �

Lemma 3.7. Let g(x) be factorized over Fp, p 6= 2, 11, into the product of a

linear factor and an irreducible quadratic factor. Then (3.7) has exactly p2 + p − 1

solutions. Let g(x) be factored over Fp, p 6= 2, 11, into the product of linear factors.

Then (3.7) has exactly 3p2 − 3p + 1 solutions.

P r o o f. If p 6= 2, 11 then g(x) has only simple roots in the splitting field L

of g(x) over Fp, and so a Tribonacci sequence can be expressed in the form Gn =

c1α
n + c2β

n + c3γ
n where α, β, γ are the roots of g(x) in L and ci ∈ L. It is evident

that D(a, b, c) ≡ 0 (mod p) if and only if ci = 0 for some i = 1, 2, 3. The assertion of

the lemma can now be proved by a suitable use of the inclusion-exclusion principle.

We leave the details to the reader. �

Corollary 3.8. Let p 6= 2, 11. Then the number of all triples [a, b, c] where

0 6 a, b, c 6 pt −1 such that D(a, b, c) 6≡ 0 (mod p) is equal to p3(t−1)(p3−1) if g(x)

is irreducible over Fp, p
3(t−1)(p3−3p2 +3p−1) if g(x) can be factorized over Fp into

the product of linear factors, and p3(t−1)(p3 − p2 − p + 1) otherwise.

P r o o f. Let D(a0, b0, c0) 6≡ 0 (mod p) for 0 6 a0, b0, c0 6 p − 1. Then also

D(a, b, c) 6≡ 0 (mod p) for arbitrary 0 6 a, b, c 6 pt−1 such that [a, b, c] ≡ [a0, b0, c0]

(mod p). The claim now follows from 3.6 and 3.7. �

273



R em a r k 3.9. The case of g(x) having multiple roots over Fp leads to the inves-

tigation of the primes p = 2, 11 (see [2]). For p = 2, (3.7) has exactly 4 solutions

and, for p = 11, it has exactly 231 solutions.

Theorem 3.10. Let p be an arbitrary prime such that g(x) is irreducible over

Fp. If [a, b, c] 6≡ [0, 0, 0] (mod p) and h(p) 6= h(p2), then

(3.10) h(pt)[a, b, c] = pt−1 h(p)[a, b, c] = pt−1h(p)

for an arbitrary t ∈ N.

P r o o f. The proof follows imediately from 1.1, 3.1 and 3.6. �

If g(x) is not irreducible, it is easy to find examples of triples [a, b, c] for which

(3.7) holds and h(pt)[a, b, c] = h(pt). Consequently, the form D(a, b, c) cannot be

expected to enable us to describe the relationships between the primitive periods if

g(x) has at least one root over Fp.

4. The case of an irreducible quadratic factor

Let us now deal with the case of a Tribonacci polynomial g(x) having over Fp a

factorization of the form

(4.1) g(x) ≡ (x − α1)(x
2 − s1x − r1) (mod p),

where the polynomial g1(x) = x2 − s1x − r1 is irreducible over Fp. Since α1 is a

unique solution to g(x) ≡ 0 (mod p), by Hensel’s lemma there is a unique solution

αt to the congruence g(x) ≡ 0 (mod pt). Moreover, for αt we have αt ≡ α1 (mod p).

This implies (x−αt) | g(x) and there is a unique polynomial gt(x) = x2 − stx− rt ∈

Z/ptZ[x] such that g(x) ≡ (x−αt)(x
2 − stx− rt) (mod pt) where αt, rt, st are units

of the ring Z/ptZ for which

(4.2) st ≡ 1 − αt (mod pt), rt ≡ 1 + αt − α2
t (mod pt).

Let us denote by ordpt(αt) the order of αt in the group of units of the ring Z/ptZ.

Clearly, ordpt(αt) | pt−1(p − 1).
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Lemma 4.1. Let (Gn)∞n=1 be the Tribonacci sequence determined by [a, aαt,

aα2
t ]. Then, for (Hn)∞n=1 defined by Hn+1 = αtHn and H1 = a, we have Gn ≡ Hn

(mod pt) for any n ∈ N.

P r o o f. Clearly, for n = 1, 2, 3 the claim holds. Let n > 3. Then Hn =

αtHn−1 ≡ α3
t Hn−3 ≡ (1 + αt + α2

t )Hn−3 ≡ Hn−3 + Hn−2 + Hn−1 ≡ Gn (mod pt).

�

R em a r k 4.2. Generally, the primitive period of a sequence (aαn
t mod pt)∞n=0

where a ∈ N does not depend only on the order of αt in Z/ptZ, but also on the

coefficient a. If p ∤ a, then the primitive period of this sequence is equal to ordpt(αt).

If pi | a where 0 6 i 6 t − 1, then the primitive period equals ordpt−i(αt−i).

Lemma 4.3. Let (Gn)∞n=1 be the Tribonacci sequence determined by [a, b,

rta + stb]. Then for (Hn)∞n=1 defined by Hn+2 = rtHn + stHn+1 with H1 = a

and H2 = b we have Gn ≡ Hn (mod pt) for any n ∈ N.

P r o o f. For n = 1, 2, 3, the congruence Gn ≡ Hn (mod pt) holds. Let n > 3.

Then

(4.3) Hn ≡ rtHn−2 + stHn−1 ≡ (rt + s2
t )Hn−2 + rtstHn−3 (mod pt).

The congruences (4.2) and α3
t ≡ α2

t + αt + 1 (mod pt) imply

(4.4) rtst ≡ 2 + αt − α2
t (mod pt), s2

t ≡ 1 − 2αt + α2
t (mod pt).

By substituting (4.4) into (4.3) we obtain Hn ≡ (2−αt)Hn−2 +(2+αt−α2
t )Hn−3 ≡

(1 + st)Hn−2 + (1 + rt)Hn−3 ≡ Hn−1 + Hn−2 + Hn−3 ≡ Gn (mod pt). �

R em a r k 4.4. It is easy to find triples [a, b, c] with 0 6 a, b, c 6 pt − 1 and

t > 1 such that D(a, b, c) ≡ 0 (mod pt) while (Gn mod pt)∞n=1 cannot be defined by

a recurrence of order one or two. Thus, an analogue of Lemma 3.4 for the rings Z/ptZ

cannot be proved. On the other hand, it is not difficult to prove that the sequences

in 4.1 and 4.3 are the only ones that can be defined by lower order recurrences. In

this case, of course, we have D(a, b, c) ≡ 0 (mod pt).

Theorem 4.5. Let p be an arbitrary prime, p 6= 2, 11 and let h = h(p) 6= h(p2).

Further, let A = p−1(T h − E). The system

(4.5) T pt−2hx ≡ x (mod pt)

has p3(t−1) trivial solutions [a, b, c] ≡ [0, 0, 0] (mod p). If p ∤ detA then (4.5) has no

nontrivial solution. If p | detA then (4.5) has (p−1)p3(t−1) non-congruent nontrivial

solutions.
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P r o o f. From h(p) 6= h(p2) and 1.1 we can show by induction that, for an

arbitrary t > 1, we have

(4.6) T pt−2h ≡ E (mod pt−1), T pt−2h ≡ E + pt−1A (mod pt)

and p ∤ A. By (4.6), the system (4.5) is equivalent to the system (E + pt−1A)x ≡ x

(mod pt) and thus to the system Ax ≡ 0 (mod p). Clearly, this system has a unique

solution x ≡ 0 (mod p) if and only if p ∤ detA. In this case, the solution of (4.5) is

formed exactly by triples of the form [a, b, c] ≡ [0, 0, 0] (mod p) and the number of

non-congruent solutions of this form is equal to p3(t−1).

Let A = [aij ]. It follows form (4.6) that detT
pt−2h can be written as

detT pt−2h ≡ 1 + pt−1(a11 + a22 + a33) + p2(t−1)
3

∑

i=1

detAi + p3(t−1)detA (mod pt),

where Ai is the submatrix of A obtained by deleting the i-th row and i-th column

in A. For t > 1, this implies

(4.7) detT pt−2h ≡ 1 + pt−1(a11 + a22 + a33) (mod pt).

Since detT = 1, by the Cauchy theorem we have detT n = 1 for an arbitrary n ∈ N.

This yields detT pt−2h ≡ 1 (mod pt). Combining this with (4.7), we get

(4.8) a11 + a22 + a33 ≡ 0 (mod p).

From (1.1) it follows that each of the entries of A = [aij ] reduced by modulus p can

be expressed using only the three values a11, a21, a31 so that

(4.9) A ≡





a11 a31 − a21 a21

a21 a11 + a21 a31

a31 a21 + a31 a11 + a21 + a31



 (mod p).

Now it follows from (4.8) that

(4.10) 3a11 + 2a21 + a31 ≡ 0 (mod p).

Using (4.10) we can simplify (4.9) to

(4.11) A ≡





a11 −3a11 − 3a21 a21

a21 a11 + a21 −3a11 − 2a21

−3a11 − 2a21 −3a11 − a21 −2a11 − a21



 (mod p).
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Suppose that p | detA. Then the rows ofA are linearly dependent over Fp. Suppose

first that the first two rows of A are dependent. Then there is q ∈ Z such that

(4.12) q[a11,−3a11 − 3a21, a21] ≡ [a21, a11 + a21,−3a11 − 2a21] (mod p).

Matching the terms and using p ∤ A, we obtain

(4.13) 3q2 + 4q + 1 ≡ 0 (mod p) and q2 + 2q + 3 ≡ 0 (mod p).

It follows from (4.13) that 2q + 8 ≡ 0 (mod p). As p 6= 2, we have q ≡ −4 (mod p).

Substituting into the second congruence in (4.13) yields 11 ≡ 0 (mod p). Hence

p = 11, and we get a contradiction.

Next, suppose that the first two rows of A are independent and p | detA. It follows

from (4.11) and from p ∤ A that at least one of the relations p ∤ a11 and p ∤ a21 is true.

Suppose p | a11 and p ∤ a21. Then from (4.11) we have detA ≡ −14a3
21 (mod p) and

thus 14 ≡ 0 (mod p). As p 6= 2, we have p = 7. We can verify that h(7) = 48. Then

for the corresponding matrix A we have

A ≡
1

7
(T 48 mod 72 − E) ≡





4 2 0

0 4 2

2 2 6



 (mod 7).

Hence a11 ≡ 4 (mod 7), which is a contradiction with p | a11. It follows now from

the above that there is ε ∈ Z such that

(4.14) a21 ≡ a11ε (mod p).

Substituting (4.14) into (4.11) then yields

(4.15) detA ≡ a3
11(14ε3 + 58ε2 + 78ε + 38) (mod p).

Since p ∤ a11, p 6= 2 and p | detA, it follows from (4.15) that

(4.16) 7ε3 + 29ε2 + 39ε + 19 ≡ 0 (mod p).

The facts that p | detA and that the two rows of A are independent prove the

existence of a linear combination of the first and second rows of A which can be used

to eliminate the third row. Using (4.14), Ax ≡ 0 (mod p) can now be reduced to

(4.17)
a − 3(1 + ε)b + εc ≡ 0 (mod p),

εa + (1 + ε)b − (3 + 2ε)c ≡ 0 (mod p).
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Substituting a ≡ 3(1 + ε)b − εc into the second congruence of (4.17) we have (3ε2 +

4ε+1)b ≡ (ε2 +2ε+3)c. Using (4.16) and p 6= 2, 11 it is easy to show that p divides

neither 3ε2 + 4ε + 1 nor ε2 + 2ε + 3. This means that every solution of (4.17) is

congruent modulo p to a solution of the form

(4.18) [q(5ε2 + 14ε + 9), q(ε2 + 2ε + 3), q(3ε2 + 4ε + 1)], where q ∈ Z.

Thus, exactly p − 1 non-congruent solutions [a, b, c] exists to system (4.17) that

satisfy [a, b, c] 6≡ [0, 0, 0] (mod p) and therefore (p−1)p3(t−1) noncongruent solutions

satisfying [a, b, c] 6≡ [0, 0, 0] (mod p) exist to (4.5). �

For a t ∈ N, denote by Spt(T ) the set of roots of g(x) in Z/ptZ, i.e., the spec-

trum of the Tribonacci matrix T over Z/ptZ. Next, for λ ∈ Spt(T ) denote by

Ept(λ) = {[a, aλ, aλ2], a ∈ Z/ptZ} the eigenspace corresponding to the eigenvalue λ.

Specifically for this paragraph, due to Hensel’s lemma, the spectrum T consists of

a single element with Spt(T ) = {αt}. The elements of the spectrum Spt(T ) play

an important role in further considerations. Regarding their orders in the group of

units of Z/ptZ, the following lemma can easily be proved by modifying the proof of

Theorem 1.1.

Lemma 4.6. Let p > 2 be an arbitrary prime, λ ∈ Z, λ 6= ±1 and p ∤ λ. If

ordp(λ) 6= ordp2(λ), then, for any t ∈ N,

(4.19) ordpt(λ) = pt−1ordp(λ).

More generally, if s ∈ N is the largest number such that ordps(λ) = ordp(λ), then,

for any t > s, ordpt(λ) = pt−s ordp(λ).

Theorem 4.7. Let p be an arbitrary prime, p 6= 2, 11 and h = h(p) 6= h(p2).

The solution [a, b, c] of the system T pt−2hx ≡ x (mod pt) for t > 1 satisfies [a, b, c] 6≡

[0, 0, 0] (mod p) if and only if [a, b, c] (mod p) ∈ Ep(α1) where α1 ∈ Sp(T ).

P r o o f. By 4.5 it is sufficient to prove that there exists a q ∈ Z such that

[q(5ε2+14ε+9), q(ε2+2ε+3), q(3ε2+4ε+1)] ≡ [1, α1, α
2
1] (mod p), where α1 ∈ Sp(T ).

Using (4.16) and p 6= 2, 11, it is easy to show that p ∤ 5ε2 + 14ε + 9. This implies

q = (5ε+9)−1(ε+1)−1 and α1 = (5ε+9)−1(ε+1)−1(ε2 +2ε+3). Let us now prove

that α2
1 = q(3ε2 + 4ε + 1). As α2

1 = (5ε + 9)−2(ε + 1)−2(ε2 + 2ε + 3)2, it is sufficient

to prove that

(5ε + 9)−2(ε + 1)−2(ε2 + 2ε + 3)2 ≡ (5ε + 9)−1(ε + 1)−1(3ε2 + 4ε + 1) (mod p).
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However, this congruence is equivalent to (4.16) which holds. What remains to be

proved is that α1 ∈ Sp(T ). Now α3
1 can be expressed in terms of α1 and α2

1 to derive

the congruence (5ε+9)2(ε+1)(α3
1−α2

1−α1−1) ≡ −6(7ε3+29ε2+39ε+19) (mod p).

Hence α3
1 − α2

1 − α1 − 1 ≡ 0 (mod p) and thus α1 ∈ Sp(T ). �

Let us denote by Qp the field of p-adic numbers and by Zp the ring of p-adic

integers.

Theorem 4.8. Let p be an arbitrary prime, p 6= 2, 11 and h = h(p) 6= h(p2).

Further, let g(x) be factorized over Fp into the product of a linear factor and an

irreducible quadratic factor. Then p | detA if and only if ordp(α2) = ordp2(α2)

where α2 ∈ Sp2(T ).

P r o o f. Let Lp be the splitting field of g(x) over Qp and let α, β, γ be the roots

of g(x) in Lp. Clearly, α, β, γ are in the ring Op of integers of the field Lp. It follows

from the form of the factorization of g(x) over Fp that exactly one of the roots α, β, γ

is in Zp. As the primes p 6= 2, 11 do not divide the discriminant g(x), which is equal

to −44, Lp/Qp does not ramify and so the maximal ideal Op is generated by p and α,

β, γ are mutually different. Further, let L = Op/(p) be the residue field and α1, β1,

γ1 be the images of α, β, γ in L. Over the field Lp the Tribonacci matrix T is similar

to D, whose diagonal is formed by α, β, γ. Thus, there exists an invertible matrix

H such that T = HDH−1 and thus T h = HDhH−1. Next, h(p) 6= h(p2) implies

that T h = E + pA where p ∤ A. Thus, over Lp we have E + pA = HDhH−1, which

yields pH−1AH = Dh − E. By the Cauchy theorem and other known properties of

determinants we obtain

(4.20) p3 · detA = (αh − 1)(βh − 1)(γh − 1).

As h = lcm(ordL(α1), ordL(β1), ordL(γ1)), we have αh
1 = 1, βh

1 = 1, γh
1 = 1, which

implies that p divides each of the differences αh − 1, βh − 1, γh − 1 in Op. Now

using p | detA and equality (4.20) we deduce that at least one of such differences

is divisible by p2. Suppose that α ∈ Zp and p2 ∤ αh − 1. Then p2 divides at

least one of the differences βh − 1, γh − 1. Assume, without loss of generality, that

p2 | βh − 1. Applying the Frobenius automorphism yields p2 | γh − 1. From this

fact it follows that p2 | βhγh − 1. Next, raising the Viète equation αβγ = 1 to the

h-th power in Op yields αhβhγh = 1. Since p2 | βhγh − 1, we have p2 | αh − 1.

Consequently, if α ∈ Zp, then p2 | αh − 1. Let us now denote by α2 the image of

α in Op/(p2). As α ∈ Zp, we have that α2 ∈ Z/p2Z, which means α2 ∈ Sp2(T ).

It follows from p2 | αh − 1 in Op that p2 | αh
2 − 1 in Z/p2Z and so ordp2(α2) | h.

Next we prove that ordp(α2) = ordp2(α2). By 4.6, exactly one of the equations
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ordp2(α2) = p · ordp(α2) and ordp2(α2) = ordp(α2) holds. Put h0 = ordp(α2) and

suppose that ordp2(α2) = ph0. Then ph0 | h. However, this is not possible because

p ∤ h for p 6= 2, 11. In this case, p ∤ h because of the fact that h divides the order of

the multiplicative group of L, which is equal to p2 − 1.

Conversely, suppose that ordp(α2) = ordp2(α2). Since α1 ≡ α2 (mod p), we have

ordp(α1) = ordp(α2). Moreover, it is evident that ordp(α1) = ordL(α1). Combining

it with ordp(α2) = ordp2(α2) we find that ordp2(α2) = ordL(α1). Therefore from

h = lcm(ordL(α1), ordL(β1), ordL(γ1)) it follows that ordp2(α2) | h. Thus p2 | αh
2 −1

in Op/(p2) and p2 | αh−1 in Op. Next, h = lcm(ordL(α1), ordL(β1), ordL(γ1)) yields

that p | βh − 1 and p | γh − 1 in Op. Combining p2 | αh − 1, p | βh − 1, p | γh − 1

with (4.20) we get p | detA, as required. �

Lemma 4.9. Let g(x) be factorized over Fp, into the product of a linear factor

and an irreducible quadratic factor. If h(p) = h(p2) then ordp(α2) = ordp2(α2).

P r o o f. Put h0 = ordp(α2) and suppose that ordp(α2) 6= ordp2(α2). Then, by

4.6, we have ordp2(α2) = ph0. Consider now any triple of the form [a, aα2, aα2
2]

where p ∤ a. Obviously, h(p2)[a, aα2, aα2
2] = ph0 and, by (2.3), ph0 | h(p2). Hence,

using the hypothesis h(p) = h(p2), we deduce that p | h(p). However, this is not

possible as (h(p), p) = 1. �

P r o b l e m 4.10. No prime p and λ ∈ Spt(T ) where t > 1 are known such that

(4.19) does not hold. Neither is there a proof of (4.19) holding for any λ ∈ Spt(T ).

However, 4.8 implies that (4.19) is not a consequence of h(p) 6= h(p2). It may be

extremely difficult either to prove that (4.19) is generally true or find a counter-

example. This means that we cannot even show a prime p 6= 2, 11 for which the

system Ax ≡ 0 (mod p) has a non-trivial solution. For p = 2, 11, however, p | detA

and Ax ≡ 0 (mod p) does have a non-trivial solution. Unfortunately, not even for

p = 2, 11 there is a counter-example to (4.19). In the remaining part of this paper we

shall no longer deal with issues whether (4.19) holds in general and, when formulating

assertions, we will assume that (4.19) is true for any λ ∈ Spt(T ).

Theorem 4.11. Let g(x) be factored over Fp as in (4.1) and let, for any t ∈ N,

Spt(T ) = {αt}. Further, let h0 = ordp(αt). Then h(pt)[a, b, c] | pt−1h0 if and only if

[a, b, c] (mod pt) ∈ Ept(αt). Moreover, for t > 1, h(pt)[a, b, c] = pt−1h0 if and only if

[a, b, c] (mod pt) ∈ Ept(αt), [a, b, c] 6≡ [0, 0, 0] (mod p) and ordp(αt) 6= ordp2(αt).

P r o o f. Let L be the splitting field of g(x) over Fp. Considering that [L : Fp] = 2

and using the Frobenius automorphism we can prove, in a way similar to that used

in 3.6, that the Tribonacci sequence (Gn)∞n=1 defined by the initial conditions [a, b, c]
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can be written over L as

(4.21) Gn = Aαn
1 + Bβn

1 + Bp(βp
1 )n,

where α1, β1, β
p
1 are different roots of g(x) in L and the coefficients A, B are uniquely

determined by [a, b, c]. Clearly, A, α1 ∈ Fp and β1 ∈ L. Moreover, for the orders

of α1, β1, βp
1 in the multiplicative group of L we have ordL(β1) = ordL(βp

1 ) and

ordL(α1) | ordL(β1) with ordL(α1) < ordL(β1) because the multiplicative group

of L is cyclic. From h(p) = lcm(ordL(α1), ordL(β1), ordL(βp
1 )) it now follows that

h(p) = ordL(β1). Further, we have from (4.21) that

(4.22) h(p)[a, b, c] =











1 if A = 0, B = 0,

h0 = ordp(α1) if A 6= 0, B = 0,

h(p) = ordL(β1) if B 6= 0.

Thus the only primitive periods (Gn mod p)∞n=1 possible are 1, h0, and h(p). From

(4.21) and (4.22) we have that h(p)[a, b, c] | h0 if and only if [a, b, c] ≡ [0, 0, 0] (mod p)

or [a, b, c] ≡ [a, aα1, aα2
1] (mod p), i.e., if [a, b, c] (mod p) ∈ Ep(α1).

Suppose now that the assertion is true for any t > 1 and let us prove it for t + 1.

Let h(pt+1)[a, b, c] | pth0. By 4.2 and 4.6, h(pt+1)[a, aαt+1, aα2
t+1] | pth0 and so

(4.23) h(pt+1)[0, b − aαt+1, c − aα2
t+1] | pth0.

It also follows from h(pt+1)[a, b, c] | pth0 that h(p)[a, b, c] | h0. Therefore we have

[a, b, c] (mod p) ∈ Ep(α1). This yields [a, b, c] ≡ [a, aαt+1, aα2
t+1] (mod p) and thus

[0, b−aαt+1, c−aα2
t+1] ≡ [0, 0, 0] (mod p). Hence [0, p−1(b−aαt+1), p

−1(c−aα2
t+1)] ∈

Z3. From (4.23) we have h(pt)[0, p−1(b − aαt+1), p
−1(c − aα2

t+1)] | pth0. As h(pt)[0,

p−1(b − aαt+1), p
−1(c − aα2

t+1)] | h(pt) and h(pt) | pt−1h(p), where p ∤ h(p), we

obtain h(pt)[0, p−1(b−aαt+1), p
−1(c−aα2

t+1)] | pt−1h0. By the induction hypothesis,

[0, p−1(b − aαt+1), p
−1(c − aα2

t+1)] (mod pt) ∈ Ept(αt). Thus, there is a q ∈ Z such

that

(4.24)
[

0, p−1(b − aαt+1), p
−1(c − aα2

t+1)
]

≡ q[1, αt, α
2
t ] (mod pt).

From (4.24) we obtain q ≡ 0 (mod pt) and so p−1(b − aαt+1) ≡ p−1(c − aα2
t+1) ≡ 0

(mod pt). This yields b ≡ aαt+1 (mod pt+1), c ≡ aα2
t (mod pt+1) and therefore

[a, b, c] (mod pt+1) ∈ Ept+1(αt+1).

Conversely, let [a, b, c] (mod pt) ∈ Ept(αt) for any t > 1. Then [a, b, c] ≡

[a, αt, aα2
t ] (mod pt) and, by 4.1, for the sequence defined by this triple we have
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Gn ≡ aαn−1
t (mod pt). From 4.2 it follows that h(pt)[a, b, c] | ordpt(αt) and, by 4.6,

this means that h(pt)[a, b, c] | pt−1h0.

Let us now prove the second part of 4.11. Let t > 1 and h(pt)[a, b, c] = pt−1h0.

Suppose first that [a, b, c] ≡ [0, 0, 0] (mod p). Then [a/p, b/p, c/p] ∈ Z3. From 2.2 and

from h(pt−1)[a, b, c] | pt−2h(p) it follows that h(pt)[a, b, c] = h(pt−1)[a/p, b/p, c/p] |

pt−2h(p). Since (h(p), p) = 1, we get a contradiction. Suppose next that ordp(αt) =

ordp2(αt). From h(pt)[a, b, c] = pt−1h0 we have that [a, b, c] (mod pt) ∈ Ept(αt) and

so, for any n ∈ N, Gn ≡ aαn−1
t (mod pt). By 4.2, for a primitive period of this

sequence we have h(pt)[a, b, c] | ordpt(αt). Next, from 4.6 and from ordp(αt) =

ordp2(αt) it follows that ordpt(αt) | pt−2 ordp(αt) = pt−2h0, a contradiction.

Conversely, let t > 1, [a, b, c] (mod pt) ∈ Ept(αt), [a, b, c] 6≡ [0, 0, 0] (mod p) and

ordp(αt) 6= ordp2(αt). From the hypothesis [a, b, c] (mod pt) ∈ Ept(αt) it follows

that for the sequence determined by this triple, Gn ≡ aαn−1
t (mod pt) and [a, b, c] 6≡

[0, 0, 0] (mod p) implies p ∤ a. Thus, by 4.2, h(pt)[a, b, c] = ordpt(αt). From 4.6

and from ordp(αt) 6= ordp2(αt) we now obtain h(pt)[a, b, c] = pt−1h0. The proof is

complete. �

Let us now formulate the main theorem of this section.

Theorem 4.12. Let p be an arbitrary prime such that g(x) is factorized over

Fp into the product of a linear factor and an irreducible quadratic factor. Further,

let h(p) 6= h(p2), ordp(α2) 6= ordp2(α2) and [a, b, c] 6≡ [0, 0, 0] (mod p). Then, for any

t ∈ N, the following assertions are true.

If [a, b, c] (mod pt) ∈ Ept(αt) then

(4.25) h(pt)[a, b, c] = ordpt(αt) = pt−1 ordp(αt).

If [a, b, c] (mod p) /∈ Ep(α1) then

(4.26) h(pt)[a, b, c] = pt−1h(p) = pt−1h(p)[a, b, c].

If [a, b, c] (mod p) ∈ Ep(α1) and [a, b, c] (mod pt) /∈ Ept(αt) then

(4.27) h(pt)[a, b, c] = pt−1h(p) 6= pt−1h(p)[a, b, c].

P r o o f. The validity of (4.25) follows from 4.11.

Let [a, b, c] (mod p) /∈ Ep(α1). Then, by 4.11 and [a, b, c] 6≡ [0, 0, 0] (mod p), we

have h(p)[a, b, c] = h(p) and, by (2.2), we have h(p) | h(pt)[a, b, c]. Next, from

h(p) 6= h(p2), 1.1 and (2.3) it follows that h(pt)[a, b, c] | pt−1h(p). Combining these

equations yields h(pt)[a, b, c] = pih(p) for some i ∈ {0, 1, . . . t − 1}. Next, from
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ordp(α2) 6= ordp2(α2) and 4.8 we have p ∤ detA. Therefore, by 4.5, there exists

no solution [a, b, c] 6≡ [0, 0, 0] (mod p) of T pt−2h(p)x ≡ x (mod pt) for t > 1, which

implies that h(pt)[a, b, c] ∤ pt−2h(p). Thus we conclude that (4.26) holds.

Let [a, b, c] (mod p) ∈ Ep(α1) and [a, b, c] (mod pt) /∈ Ept(αt). From 4.11 and

[a, b, c] (mod pt) /∈ Ept(αt) it follows that h(pt)[a, b, c] ∤ pt−1h0 where h0 = ordp(αt).

Moreover, by 4.11, for [a, b, c] 6≡ [0, 0, 0] (mod p) exactly one of the equalities

h(pt)[a, b, c] = pih(p) and h(pt)[a, b, c] = pih0 holds for some i ∈ {0, . . . , t − 1}.

Combining the above, we obtain h(pt)[a, b, c] = pih(p). We shall show that

h(pt)[a, b, c] ∤ pt−2h(p). Indeed, suppose that h(pt)[a, b, c] | pt−2h(p). Theo-

rem 4.5 and [a, b, c] 6≡ [0, 0, 0] (mod p) then give p | detA. By 4.8 we have

ordp(α2) = ordp2(α2), a contradiction. Since h(pt)[a, b, c] | pt−1h(p), we ob-

tain h(pt)[a, b, c] = pt−1h(p). In addition, it follows from 4.11 and from [a, b, c]

(mod p) ∈ Ep(α1) that h(p)[a, b, c] = ordL(α1) 6= ordL(β1) = h(p), which, together

with the preceding facts, proves (4.27). �

5. The case of factorization into the product of linear terms

What remains to be investigated is the case of the Tribonacci polynomial g(x)

being factorized over Fp into the product of linear terms, i.e.,

(5.1) g(x) ≡ (x − α1)(x − β1)(x − γ1) (mod p) and Sp(T ) = {α1, β1, γ1}.

The assumption p 6= 2, 11 implies that α1, β1, γ1 are distinct, thus g(x) has nonzero

first derivatives over Fp at these points. From Hensel’s lemma it follows that g(x) can

be factorized over Qp as g(x) = (x−α)(x−β)(x− γ) where α, β, γ ∈ Zp. Let us put

αt := α mod pt, βt := β mod pt, γt := γ mod pt for every t ∈ N. Thus, over the ring

Z/ptZ we have g(x) ≡ (x − αt)(x − βt)(x − γt) (mod pt) and Spt(T ) = {αt, βt, γt}.

Since Z ⊂ Zp ⊂ Qp, the terms of the triple [a, b, c] can be viewed as elements of

the field Qp. Thus, over Qp, the terms of the Tribonacci sequence (Gn)∞n=1 can be

uniquely written as

(5.2) Gn = Aαn + Bβn + Cγn, where A, B, C ∈ Qp.

The equation (5.2) defines a 1-1 corespondence between the triples of initial values

[a, b, c] ∈ Q3
p and the triples of p-adic numbers [A, B, C] ∈ Q3

p.
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Lemma 5.1. Let g(x) be factorized over Fp, p 6= 2, 11, into the product of linear

terms. Then the terms of the sequence (Gn mod pt)∞n=1 defined by an arbitrary triple

of initial values [a, b, c] can be uniqely written as

(5.3) Gn mod pt ≡ Atα
n
t + Btβ

n
t + Ctγ

n
t (mod pt),

where 0 6 At, Bt, Ct 6 pt − 1 are nonnegative integers.

P r o o f. Let us first show that [A, B, C] ∈ Z3
p. By substituting n = 1, 2, 3 into

(5.2) we obtain the system of equations over Qp

(5.4)





α β γ

α2 β2 γ2

α3 β3 γ3









A

B

C



 =





a

b

c



 .

The determinant of the matrixM of the system (5.4) is the well-known Vandermonde

determinant, for which we have detM = αβγ(α − β)(α − γ)(γ − β). Since α, β, γ

are pairwise incongruent modulo p, none of the differences α − β, α − γ, γ − β is

divisible by p. From this fact and from αβγ = 1, it follows that p ∤ detM . Thus,

detM is an invertible element of the ring Zp and the matrixM is invertible over Zp.

Multiplying (5.4) by M−1 we obtain [A, B, C] as a Zp-linear combination of [a, b, c]

and so [A, B, C] ∈ Z3
p. Let us now put At := A mod pt, Bt := B mod pt, Ct :=

C mod pt. It is not difficult to prove that [A, B, C] ≡ [A′, B′, C′] (mod pt) if and

only if [a, b, c] ≡ [a′, b′, c′] (mod pt). Thus there exists a 1-1 corespondence between

the triples [a, b, c] ∈ (Z/ptZ)3 and the triples [At, Bt, Ct] ∈ (Z/ptZ)3. Congruence

(5.3) is now obtained by reducing (5.2) by pt. �

Lemma 5.2. Let the primitive periods of the sequences (Atα
n
t mod pt)∞n=1,

(Btβ
n
t mod pt)∞n=1, (Ctγ

n
t mod pt)∞n=1 be k1, k2, k3. Then the primitive period of the

sequence (Atα
n
t + Btβ

n
t + Ctγ

n
t mod pt)∞n=1 is lcm(k1, k2, k3).

P r o o f. Clearly, lcm(k1, k2, k3) is a period of (Atα
n
t + Btβ

n
t + Ctγ

n
t mod pt)∞n=1

and, therefore, it is sufficient to prove that this period is primitive. Suppose there is

a primitive period k < lcm(k1, k2, k3). Since k is a period, we have

[Atα
k+1
t +Btβ

k+1
t +Ctγ

k+1
t , Atα

k+2
t +Btβ

k+2
t +Ctγ

k+2
t , Atα

k+3
t +Btβ

k+3
t +Ctγ

k+3
t ]

≡ [Atαt +Btβt +Ctγt, Atα
2
t +Btβ

2
t +Ctγ

2
t , Atα

3
t +Btβ

3
t +Ctγ

3
t ] (mod pt).

This system of congruences can be reduced to the equivalent form

(5.5)





αt βt γt

α2
t β2

t γ2
t

α3
t β3

t γ3
t









At(α
k
t − 1)

Bt(β
k
t − 1)

Ct(γ
k
t − 1)



 ≡





0

0

0



 (mod pt).
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As the determinant of the system matrix of (5.5) is not divisible by p, (5.5) has only

one solution

(5.6) At(α
k
t −1) ≡ 0 (mod pt), Bt(β

k
t −1) ≡ 0 (mod pt), Ct(γ

k
t −1) ≡ 0 (mod pt).

Next, from (5.6) we have Atα
k+1
t ≡ Atαt (mod pt), Btβ

k+1
t ≡ Btβt (mod pt),

Ctγ
k+1
t ≡ Ctγt (mod pt). This implies that k is a period for each of the sequences

(Atα
n
t mod pt)∞n=1, (Btβ

n
t mod pt)∞n=1, (Ctγ

n
t mod pt)∞n=1. Consequently, we have

k1 | k, k2 | k, k3 | k, which contradicts the hypothesis k < lcm(k1, k2, k3). �

Lemma 5.3. Let p 6= 2, 11 be an arbitrary prime and let Sp(T ) = {α1, β1, γ1}.

Further, let ordp(α1) = h1, ordp(β1) = h2 and ordp(γ1) = h3. Then

(5.7) lcm(h1, h2) = lcm(h1, h3) = lcm(h2, h3) = lcm(h1, h2, h3) = h(p).

P r o o f. Put k = gcd(h1, h2). Then there exist r, s ∈ N such that h1 = kr,

h2 = ks with (r, s) = 1. Thus, we have lcm(h1, h2) = krs. Next, the Viète equation

α1β1γ1 ≡ 1 (mod p) yields (α1β1γ1)
krs ≡ (αkr

1 )s · (βks
1 )r · γkrs

1 ≡ γkrs
1 ≡ 1 (mod p).

Then we have h3 | krs, which implies lcm(h1, h2) = lcm(h1, h2, h3). By analogy,

we can prove that lcm(h1, h3) = lcm(h1, h2, h3) and lcm(h2, h3) = lcm(h1, h2, h3).

Next, using (5.4) and Cramer’s rule, we can show that, for the coefficients At, Bt,

Ct corresponding to [0, 0, 1], we have At ≡ ε ·βγ(γ−β) (mod pt), Bt ≡ ε ·αγ(α− γ)

(mod pt), Ct ≡ ε · αβ(β − α) (mod pt), where ε ≡ (detM)−1 (mod pt). Hence none

of the coefficients At, Bt, Ct is divisible by p. Applying now (5.3) to the module p

and the triple [0, 0, 1], we can use Lemma 5.2 to show that h(p) = lcm(h1, h2, h3).

This proves (5.7). �

R em a r k 5.4. Investigating the orders h1, h2, h3 for the first several hundreds of

primes might lead to a hypothesis that there are always two of the orders h1, h2, h3

that divide the third. That is, if h1 < h2 < h3, all the terms in (5.7) are equal to h3.

The first counter-example that disproves this hypothesis is p = 4481. Over F4481,

g(x) can be written as g(x) = (x− 2661)(x− 2677)(x− 3625). Denoting α1 = 2661,

β1 = 2677, γ1 = 3625, we arrive at ordp(α1) = 2240, ordp(β1) = 640, ordp(γ1) = 896

and h(p) = lcm(2240, 640, 896) = 4480. Further, if two of the roots α1, β1, γ1 are of

the same order in the multiplicative group of Fp different from the order of the third

root, the following two situations may, theoretically, occur:

ordp(α1) < ordp(β1) = ordp(γ1) and ordp(α1) = ordp(β1) < ordp(γ1).

Let us prove that the second case can never occur.
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Lemma 5.5. If ordp(α1) = ordp(β1) = h, then ordp(γ1) | h.

P r o o f. By raising the Viète equation α1β1γ1 ≡ 1 (mod p) to the h-th power

we obtain γh
1 ≡ αh

1βh
1 γh

1 ≡ 1 (mod p) and so ordp γ1 | h. �

R em a r k 5.6. Without loss of generality we can denote the roots of g(x) over Fp

by α1, β1, γ1 so that, for their orders h1, h2, h3 and h(p) = lcm(h1, h2, h3), exactly

one of the four following cases occurs:

(5.8)

h1 = h2 = h3 = h(p), p = 103,

h1 < h2 = h3 = h(p), p = 47,

h1 < h2 < h3 = h(p), p = 311,

h1 < h2 < h3 < h(p), p = 4481.

The values of the primes p shown in (5.8) are the least values for which the situation

in question occurs.

Theorem 5.7. Let g(x) be factorized over Fp into the product of linear terms and

let p 6= 2, 11. If h = h(p) 6= h(p2), then there is at most one eigenvalue λ ∈ Spt(T )

satisfying

(5.9) ordp(λ) = ordp2(λ).

P r o o f. Supose that in Spt(T ) there are two eigenvalues satisfying (5.9). With-

out loss of generality, let ordp(αt) = ordp2(αt) = h1 and ordp(βt) = ordp2(βt) = h2.

From (5.7) we obtain lcm(h1, h2) = h and thus ordp2(α2) = ordp2(β2) | h. By raising

the Viète equation α2β2γ2 ≡ 1 (mod p2) to the h-th power, we obtain αh
2βh

2 γh
2 ≡ 1

(mod p2), which implies γh
2 ≡ 1 (mod p2). Applying (5.3) to the triple [0, 0, 1] and

the module p2, we obtain

[Gh+1, Gh+2, Gh+3](5.10)

≡ [A2α2 + B2β2 + C2γ2, A2α
2
2 + B2β

2
2 + C2γ

2
2 , A2α

3
2 + B2β

3
2 + C2γ

3
2 ]

≡ [G1, G2, G3] (mod p2).

From (5.10) we conclude h(p2) | h. By (2.2), also h | h(p2), which yields h = h(p2).

�

R em a r k 5.8. By slightly modifying the proof of Theorem 4.8 we can show that

ordp(λ) = ordp2(λ) if and only if p | detA. We can also prove that it is not possible

that h(p) = h(p2) if there is a λ ∈ Spt(T ) = {αt, βt, γt} such that ordp(λ) 6= ordp2(λ).

Thus, h(p) = h(p2) implies ordp(λ) = ordp2(λ) for every λ ∈ Spt(T ). The proof can

be done by analogy with 4.9.
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Theorem 5.9. Let g(x) be factorized over Fp, where p 6= 2, 11, into the product

of linear terms. Further, let [a, b, c] 6≡ [0, 0, 0] (mod p) and, for any t ∈ N, let

Spt(T ) = {αt, βt, γt}. If λ ∈ Spt(T ) and [a, b, c] (mod pt) ∈ Ept(λ) then

(5.11) h(pt)[a, b, c] = ordpt(λ).

Moreover, if, for t > 1, λ ∈ Spt(T ) fulfils the condition ordp(λ) 6= ordp2(λ), then

(5.12) h(pt)[a, b, c] = pt−1 ordp(λ) = pt−1h(p)[a, b, c].

If [a, b, c] (mod pt) 6∈ Ept(αt) ∪ Ept(βt) ∪ Ept(γt) and, for every λ ∈ Spt(T ), t > 1,

ordp(λ) 6= ordp2(λ), then

(5.13) h(pt)[a, b, c] = h(pt) = pt−1h(p).

P r o o f. By (5.3) we have [a, b, c] ≡ [0, 0, 0] (mod p) if and only if [At, Bt, Ct] ≡

[0, 0, 0] (mod p). Thus [a, b, c] 6≡ [0, 0, 0] (mod p) implies that at least one of the

coefficients At, Bt, Ct is not divisible by p. If [a, b, c] (mod pt) ∈ Ept(λ) for some

λ ∈ Spt(T ), then exactly two of the coefficients At, Bt, Ct are divisible by pt. Now,

from (5.3) it follows that h(pt)[a, b, c] = ordpt(λ), which proves (5.11). Moreover, if

ordp(λ) 6= ordp2(λ), then (4.19) implies (5.12).

Let [a, b, c] (mod pt) 6∈ Ept(αt) ∪ Ept(βt) ∪ Ept(γt). Then at least two of the

coefficients At, Bt, Ct in (5.3) are not divisible by pt and at least one of them is not

divisible by p. Without loss of generality we can denote αt, βt, γt so that p ∤ At

and pt ∤ Bt. Hence (4.19) implies that the primitive period of (Atα
n
t mod pt)∞n=1

is k1 = ordpt(αt) = pt−1 ordp(αt) and the primitive period of (Btβ
n
t mod pt)∞n=1 is

k2 = pi ordp(βt) for some i ∈ {0, . . . , t − 1}. If we put h1 = ordp(αt), h2 = ordp(βt),

then lcm(k1, k2) = pt−1 lcm(h1, h2). By (5.7) we have lcm(h1, h2) = h(p) and thus

lcm(k1, k2) = pt−1h(p) = h(pt). Now, from 5.2 we conclude that h(pt)[a, b, c] =

lcm(k1, k2, k3). As lcm(k1, k2) | lcm(k1, k2, k3), we have h(pt) | h(pt)[a, b, c]. This

fact together with (2.3) yields (5.13). �

R em a r k 5.10. If [a, b, c] (mod p) 6∈ Ep(α1) ∪ Ep(β1) ∪ Ep(γ1), then in (5.13)

we have h(p) = h(p)[a, b, c]. In the opposite case, we have h(p)[a, b, c] = ordp(λ)

for some λ ∈ Spt(T ) and the equality h(p)[a, b, c] = h(p) need not hold in general.

See (5.8).

We will use the results obtained in this paper along with the results proved in [2] to

solve a problem in combinatorics which is closely related to the modular periodicity

of Tribonacci sequences. See [3].
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