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ASYMPTOTIC BEHAVIOUR OF SOLUTIONS OF THIRD ORDER

NONLINEAR DIFFERENCE EQUATIONS OF NEUTRAL TYPE

Anna Andruch-Sobi lo, Andrzej Drozdowicz, Poznań

(Received January 29, 2007)

Abstract. In the paper we consider the difference equation of neutral type

(E) ∆3[x(n)− p(n)x(σ(n))] + q(n)f(x(τ (n))) = 0, n ∈ N(n0 ),
where p, q : N(n0 ) → R+ ; σ, τ : N → Z, σ is strictly increasing and lim

n→∞

σ(n) = ∞; τ is

nondecreasing and lim
n→∞

τ (n) = ∞, f : R → R, xf(x) > 0. We examine the following two
cases:

0 < p(n) 6 λ
∗

< 1, σ(n) = n − k, τ (n) = n − l,

and
1 < λ∗ 6 p(n), σ(n) = n+ k, τ (n) = n+ l,

where k, l are positive integers. We obtain sufficient conditions under which all nonoscilla-
tory solutions of the above equation tend to zero as n → ∞ with a weaker assumption on q

than the usual assumption
∞∑

i=n0

q(i) =∞ that is used in literature.

Keywords: neutral type difference equation, third order difference equation, nonoscilla-
tory solutions, asymptotic behavior

MSC 2010 : 39A10

1. Introduction

Consider the third order neutral difference equation

(E) ∆3[x(n) − p(n)x(σ(n))] + q(n)f(x(τ(n))) = 0, n ∈ N(n0),

where N(n0) = {n0, n0 + 1, . . .}, n0 is fixed in N = {0, 1, 2, . . .} such that σ(n0) >

0, τ(n0) > 0. Let ∆ denote the forward difference operator defined by ∆x(n) =
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x(n + 1) − x(n), ∆i+1x(n) = ∆(∆ix(n)) for i = 1, 2, . . ., ∆0x(n) = x(n). We examine

the following two cases:

0 < p(n) 6 λ∗ < 1, σ(n) = n − k, τ(n) = n − l,

and

1 < λ∗ 6 p(n), σ(n) = n + k, τ(n) = n + l,

where k, l are positive integers. Let Z denote the set of integers. We introduce the

following hypotheses:

(H1) p, q : N(n0) −→ R+;

(H2) σ : N −→ Z, σ is strictly increasing and lim
n−→∞

σ(n) = ∞;

(H3) τ : N −→ Z, τ is nondecreasing and lim
n−→∞

τ(n) = ∞;

(H4) f : R −→ R, with xf(x) > 0 for x 6= 0 and such that there exists a constant

M > 0 such that |f(x)| > M |x| for all x.

For k ∈ N we use the usual factorial notation

nk = n(n − 1) . . . (n − k + 1) with n0 = 1.

By a solution of equation (E) we mean a real sequence which is defined for all n ∈ N

and satisfies equation (E) for n sufficiently large. We consider only such solutions

which are nontrival for all large n. As usual a solution x of equation (E) is called

oscillatory if for any L > n0 there exists n > L such that x(n)x(n+1) 6 0. Otherwise

it is called nonoscillatory.

In recent years there has been increasing interest in the study of the qualitative

theory of neutral difference equations. For example, the first and second order dif-

ference equations of neutral type have been investigated in [5], [6], [8], [9], [12], [14].

For higher order difference equations we refer to [4], [10], [11], [13], [15]. In most of

the papers [5], [6], [7], [8], [10], [11] it is assumed that the coefficient q satisfies the

divergent condition of the series

(1)

∞∑

i=n0

q(i) = ∞.

Our aim in this paper is to study the asymptotic behavior of solutions of equation

(E) when (1) does not neccesarily hold.
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2. Some basic lemmas

To prove our results we need the following lemmas which can be found in [9].

Lemma 1. Suppose conditions (H1), (H2) and

0 < p(n) 6 1 for n > n0

hold. Let x be a nonoscillatory solution of the inequality

x(n)[x(n) − p(n)x(σ(n))] < 0.

(i) Suppose that σ(n) < n for n > n0. Then x is bounded. If, moreover,

(2) 0 < p(n) 6 λ∗ < 1 for n > n0

for some positive constant λ∗, then lim
n−→∞

x(n) = 0.

(ii) Suppose that σ(n) > n for n > n0. Then x is bounded away from zero. If,

moreover, (2) holds, then lim
n−→∞

|x(n)| = ∞.

Lemma 2. Suppose conditions (H1), (H2) and

p(n) > 1 for n > n0

hold. Let x be a nonoscillatory solution of the inequality

x(n)[x(n) − p(n)x(σ(n))] > 0.

(i) Suppose that σ(n) > n for n > n0. Then x is bounded. If, moreover,

(3) 1 < λ∗ 6 p(n) for n > n0

for some positive constant λ∗, then lim
n−→∞

x(n) = 0.

(ii) Suppose that σ(n) < n for n > n0. Then x is bounded away from zero. If,

moreover, (3) holds, then lim
n−→∞

|x(n)| = ∞.

The next lemma can be found in [1], [12].
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Lemma 3. Assume g is a positive real sequence and m is a positive integer. If

lim inf
n→∞

n+m−1∑

i=n

g(i) >
( m

m + 1

)m+1

,

then

(i) the difference inequality

∆u(n) − g(n)u(n + m) > 0

has no eventually positive solution,

(ii) the difference inequality

∆u(n) − g(n)u(n + m) 6 0

has no eventually negative solution.

3. Main results

We begin by classifying all possible nonoscillatory solutions of equations (E) on

the basis of the well known Kiguradze’s Lemma [15] (also see [1, Theorem 1.8.11]).

Lemma 4. Let y be a sequence of real numbers and let y(n) and ∆my(n) be of

constant sign with ∆my(n) not eventually identically zero. If

(4) δy(n)∆my(n) < 0,

then there exist integers ℓ ∈ {0, 1, . . . , m} and Ñ > 0 such that (−1)m+ℓ−1δ = 1 and

y(n)∆jy(n) > 0 for j = 0, 1, . . . , ℓ,

(−1)j−ℓy(n)∆jy(n) > 0 for j = ℓ + 1, . . . , m,

for n > Ñ.

A sequence y satisfying (5) is called Kiguradze’s sequence of degree ℓ.

Let x be a nonoscillatory solution of equation (E) and let

(6) u(n) = x(n) − p(n)x(σ(n)), n ∈ N(n0).

It is clear that u is eventually of one sign, so that either

(7) x(n)[x(n) − p(n)x(σ(n))] > 0
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or

(8) x(n)[x(n) − p(n)x(σ(n))] < 0

for all sufficiently large n.

Let N+
ℓ [or N

−

ℓ ] denote the set of solutions x of equation (E) satisfying (7) [or (8)]

and for which u(n) = x(n) − p(n)x(σ(n)) is of degree ℓ. One can observe that if (7)

holds that the condition (4) is fulfilled with δ = 1. Since m = 3, so (−1)m+ℓ−1δ = 1

if ℓ is even. But ℓ ∈ {0, 1, . . . , m}. Therefore ℓ = 0 or ℓ = 2. Similarly, if (8) holds,

then ℓ = 1 or ℓ = 3. Hence we have the following classification of the set N of all

nonoscillatory solutions of equation (E):

(9) N = N+
0 ∪ N+

2 ∪ N−

1 ∪ N−

3 .

First we will consider the case when σ(n) = n − k, τ(n) = n − l.

Theorem 1. Assume (H1)–(H4) hold. Let 0 < p(n) 6 λ∗ < 1, where λ∗ is a

positive constant, σ(n) = n − k, τ(n) = n − l, where k, l are positive integers and

k > l. If

∞∑

i=n0

i2q(i) = ∞,(10)

lim sup
n→∞

(n − 1)2
∞∑

i=n+1+l

q(i) >
8

M
,(11)

then every nonoscillatory solution of equation (E) tends to zero as n → ∞.

P r o o f. By our assumptions, equation (E) takes on the form

(E1) ∆3(x(n) − p(n)x(n − k)) + q(n)f(x(n − l)) = 0, n ∈ N(n0).

Let x denote a nonoscillatory solution of (E1). Without loss of generality we may

assume that x is an eventually positive solution of equation (E1). So, there exists

an integer n1 > n0 such that x(n − l) > 0 for all n > n1. One can observe that if

u(n) < 0 then Lemma 1 implies that lim
n−→∞

x(n) = 0. Then lim
n−→∞

u(n) = 0, too. It

means that the sequence u is increasing. Therefore N−

1 = ∅ and N−

3 = ∅. By (9),

there are two cases to consider:

(A) u(n) > 0, ∆u(n) > 0, ∆2u(n) > 0, ∆3u(n) < 0,

(B) u(n) > 0, ∆u(n) < 0, ∆2u(n) > 0, ∆3u(n) < 0,

eventually.
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C a s e (A). Let

u(n) > 0, ∆u(n) > 0, ∆2u(n) > 0, ∆3u(n) < 0 for n > n1.

From (6) we have u(n) < x(n). Summing equation (E1) from n to ∞ we get

∆2u(n) >

∞∑

i=n

q(i)f(x(i − l)) > M
∞∑

i=n

q(i)x(i − l).

Since x(n − l) > u(n − l) we get

(12) ∆2u(n) > M

∞∑

i=n

q(i)u(i − l).

Summing by parts we obtain the identity

(13)

n−1∑

i=N

i2∆3u(i) = n2∆2u(n) − 2n∆u(n + 1) + 2u(n + 2)

−N2∆2u(N) + 2N∆u(N + 1) − 2u(N + 2).

Hence, using (E1) we arrive at

n−1∑

i=N

i2q(i)f(x(i − l)) 6 −n2∆2u(n) + 2n∆u(n + 1) + N2∆2u(N) + 2u(N + 2).

By (H4)

M

n−1∑

i=N

i2q(i)u(i − l) 6 −n2∆2u(n) + 2n∆u(n + 1) + N2∆2u(N) + 2u(N + 2)

and

Mu(N − l)

n−1∑

i=N

i2q(i) 6 −n2∆2u(n) + 2n∆u(n + 1) + N2∆2u(N) + 2u(N + 2).

In view of (10) this implies that

(14) lim
n→∞

[2n∆u(n + 1) − n2∆2u(n)] = ∞.

Thus

(15) ∆u(n + 1) >
n − 1

2
∆2u(n)
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for n > n2 where n2 is sufficiently large. One can calculate:

n−1∑

i=n2

2i∆u(i + 1) = [2iu(i + 1)]
n

n2
−

n−1∑

i=n2

∆2iu(i + 2)

= 2nu(n + 1) − 2n2u(n2 + 1) − 2

n−1∑

i=n2

u(i + 2)

and

n−1∑

i=n2

i2∆2u(i) =
[
i2∆u(i)

]n

n2

−
n−1∑

i=n2

2i∆u(i + 1)

= n2∆u(n) − n
2
2∆u(n2) −

n−1∑

i=n2

2i∆u(i + 1).

Hence

n−1∑

i=n2

[2i∆u(i + 1) − i2∆2u(i)]

= 4nu(n + 1) − 4n2u(n2 + 1)−4

n−1∑

i=n2

u(i + 2) − u2∆u(n) + u
2
2∆u(n2)

6 −n2∆u(n) + 4nu(n + 1) + n
2
2∆u(n2).

It means that 4nu(n + 1) > n2∆u(n) and by (15) we get

4nu(n + 1) >
n(n − 1)(n − 2)

2
∆2u(n − 1),

which implies

lim
n→∞

[−n2∆u(n) + 4nu(n + 1) + n
2
2∆u(n2)] = ∞.

Hence u(n + 1) > 1
8 (n − 1)2∆2u(n − 1) for sufficiently large n. From the above

inequality and (12) we get

u(n + 1) >
(n − 1)2

8
M

∞∑

i=n+1+l

q(i)u(i − l) >
(n − 1)2

8
Mu(n + 1)

∞∑

i=n+1+l

q(i).

Therefore 8 > (n − 1)2M
∞∑

i=n+1+l

q(i), which contradicts (11).
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C a s e (B). Let

u(n) > 0, ∆u(n) < 0, ∆2u(n) > 0, ∆3u(n) < 0 for n > n3 > n1.

Then there exists lim
n→∞

u(n) = L > 0. We claim that L = 0. Otherwise L > 0, then

L 6 u(n − l) 6 x(n − l). From (12) we have ∆2u(n) > ML
∞∑

i=n

q(i).

Summing the above inequality from n to ∞ we get

−∆u(n) > ML

∞∑

j=n

∞∑

i=j

q(i).

Summing once again from n4 to ∞ we obtain

u(n4) > ML
∞∑

s=n4

∞∑

j=s

∞∑

i=j

q(i) = ML
∞∑

s=n4

(i − n + 2)

2!

2

q(i),

which contradicts (10). Therefore lim
n→∞

u(n) = 0. Then u(n) 6 1 for n > n5 > n3,

where n5 is large enough.Then

(16) x(n) = p(n)x(n − k) + u(n) 6 p(n)x(n − k) + 1 6 λ∗x(n − k) + 1

for n > n6.

We claim that x is bounded and lim
n→∞

x(n) = 0.

First suppose that x is unbounded. Then there exists a sequence (ns)
∞

s=1 such

that lim
s→∞

ns = ∞, lim
s→∞

x(ns) = ∞ and x(ns) = max
n06s6ns

x(s).

Using (16) we get x(ns) 6 λ∗x(ns−k)+1 6 λ∗x(ns)+1, then x(ns) 6 (1−λ∗)−1,

which contradicts the unboundedness of x.

Now, suppose that lim sup
n→∞

x(n) = c > 0. Then there exists a sequence (nt)
∞

t=1

such that lim
t→∞

nt = ∞, lim
t→∞

x(nt) = c. This implies that for sufficient large t we

have

x(nt − k) >
x(nt) − u(nt)

λ∗
>

x(nt)

λ∗
.

Choose ε > 0 such that ε < (1 − λ∗)c/λ∗. Then c/λ∗ 6 lim sup
t→∞

x(nt − k) 6 c + ε,

hence ε > c(1 − λ∗)/λ∗, which is a contradiction. This completes the proof.

Now we will consider the case when σ(n) = n + k, τ(n) = n + l.
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Theorem 2. Let 1 < λ∗ 6 p(n), where λ∗ is a positive constant, σ(n) = n + k,

τ(n) = n + l, where k, l are positive integers and l > k + 3. Assume that there exists

a sequence α : N → R such that n < α(n). If

(17) lim inf
n→∞

M

n+l−k−1∑

i=n

α(i)∑

j=i

(j − i + 1)

p(j + l − k)
q(j) >

( l − k

l − k + 1

)l−k+1

and

(18) lim sup
n→∞

M

n−3∑

i=n−l+k

(n − i − 1)2
q(i)

p(i + l − k)
> 2,

then every nonoscillatory solution of equation (E) tends to zero as n → ∞.

P r o o f. Assume that conditions (17) and (18) hold. Equation (E) takes on the

form

(E2) ∆3(x(n) − p(n)x(n + k)) + q(n)f(x(n + l)) = 0, n ∈ N(n0).

Assume that x is an eventually positive solution of equation (E2). Then there exists

an integer n1 > n0 such that x(n) > 0 for all n > n1. By (9), there are four cases to

consider:

(A) u(n) > 0, ∆u(n) > 0, ∆2u(n) > 0, ∆3u(n) < 0,

(B) u(n) < 0, ∆u(n) < 0, ∆2u(n) > 0, ∆3u(n) < 0,

(C) u(n) < 0, ∆u(n) < 0, ∆2u(n) < 0, ∆3u(n) < 0,

(D) u(n) > 0, ∆u(n) < 0, ∆2u(n) > 0, ∆3u(n) < 0,

eventually, for N+
2 ,N−

1 ,N−

3 ,N+
0 , respectively.

C a s e (A). Let

u(n) > 0, ∆u(n) > 0, ∆2u(n) > 0, ∆3u(n) < 0 for n > n2 > n1.

From (6) for σ(n) = n + k we have

(19) x(n) = u(n) + p(n)x(n + k) > u(n)

and

x(n) > p(n)x(n + k) > x(n + k),

which implies that x is bounded. But u(n) < x(n) eventually which is a contradiction

with the unboundedness of u.
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C a s e (B). Let

u(n) < 0, ∆u(n) < 0, ∆2u(n) > 0, ∆3u(n) < 0 for n > n3 > n1.

In [1], problem 1.9.35 p. 43 one can find the following formula:

∆ru(n) =

m−1∑

i=r

(−1)i−r (t − n + i − r − 1)i−r

(i − r)!
∆iu(t)

+ (−1)m−r 1

(m − r − 1)!

t−1∑

j=n

(j − n + m − r − 1)m−r−1∆mu(j),

where m, r, t ∈ N and t > m > n0, 0 6 r < m.

Applying the above equality to equation (E2) for r = 1 we get

∆u(n) =

2∑

i=1

(−1)(i−1) (s − n + i − 2)i−1

(i − 1)!
∆iu(s) −

s−1∑

j=n

(j − n + 1)q(j)f [x(j + l)]

for s > n > n3.

Therefore we have

∆u(n) 6 −
s−1∑

j=n

(j − n + 1)q(j)f(x(j + l)) for s > n > n3.

By (H4)

(20) ∆u(n) 6 −M
s−1∑

j=n

(j − n + 1)q(j)x(j + l) for n > n3.

From (19) we get

(21) −x(n + l) 6
u(n + l − k)

p(n + l − k)
.

Putting (21) into (20) we obtain

∆u(n) 6 M

s−1∑

j=n

(j − n + 1)
q(j)u(j + l − k)

p(j + l − k)
.

Let s = α(n) + 1. Then we have

∆u(n) 6 M

α(n)∑

j=n

(j − n + 1)
q(j)u(j + l − k)

p(j + l − k)
,
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hence

∆u(n) − Mu(n + l − k)

α(n)∑

j=n

(j − n + 1)
q(j)

p(j + l − k)
6 0.

By Lemma 3 with regard to (17) for m = l − k we obtain that the above inequality

has no eventually negative solution, which is a contradiction.

C a s e (C). Let

u(n) < 0, ∆u(n) < 0, ∆2u(n) < 0, ∆3u(n) < 0 for n > n4 > n1.

From discrete Taylor’s formula we have

u(n) =

2∑

i=0

(n − n4)
i

i!
∆i[u(n4)] +

1

2

n−3∑

j=n4

(n − j − 1)2∆3u(j), n > n4,

where ni = n(n − 1)(n − 2) . . . (n − i + 1) and n0 = 1. Therefore we obtain

u(n) 6
1

2

n−3∑

j=n4

(n − j − 1)2∆3u(j).

By (E2) and (H4) we have

−u(n) >
1

2

n−3∑

j=n4

(n − j − 1)2q(j)f(x(j + l)) >
M

2

n−3∑

j=n4

(n − j − 1)2[q(j)x(j + l)].

Using (21) in the above inequality we get

−u(n) > −
M

2

n−3∑

j=n4

(n − j − 1)2
q(j)u(j + l − k)

p(j + l − k)
.

Let n4 = n − l + k. Then

−u(n) > −
M

2
u(n)

n−3∑

j=n−l+k

(n − j − 1)2
q(j)

p(j + l − k)
.

Therefore
2

M
>

n−3∑

j=n−l+k

(n − j − 1)2
q(j)

p(j + l − k)
,

which contradicts (18).

C a s e (D). Let

u(n) > 0, ∆u(n) < 0, ∆2u(n) > 0, ∆3u(n) < 0 for n > n5 > n1.

By Lemma 2 it follows that lim
n−→∞

x(n) = 0. This completes the proof. �
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R em a r k 1. One can observe that condition (H4) is fulfilled, for instance, with

functions of the form f(x) = (|xα| + c)sgn x where α > 1, c > 0. Particularly, for

α = 2 and c = 1, condition (H4) holds for each constant M ∈ (0, 2).
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