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COUNTING IRREDUCIBLE POLYNOMIALS OVER FINITE FIELDS
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Abstract. In this paper we generalize the method used to prove the Prime Number
Theorem to deal with finite fields, and prove the following theorem:

π(x) =
q

q − 1

x

logq x
+

q

(q − 1)2
x

log2q x
+O

(

x

log3q x

)

, x = q
n
→ ∞

where π(x) denotes the number of monic irreducible polynomials in Fq[t] with norm 6 x.

Keywords: finite fields, distribution of irreducible polynomials, residue

MSC 2010 : 11T55

1. Introduction

Let Fq be a finite field with character p, and N(f) be the norm of f which is

equal to the number of elements in the quotient ring Fq[t]/(f(t)). We consider the

irreducible polynomials in Fq[t] with norm less than or equal to x.

Let π(x) denote the number of monic irreducible polynomials in Fq[t] with norm

6 x. In 1990, M. Kruse and H. Stichtenoth (see [1]) proved that

π(x) ∼
q

q − 1

x

logq x
, x = qn

→ ∞.

In this paper we generalize the method used to prove the Prime Number Theorem

to deal with finite fields, and prove the following more precise result:

π(x) =
q

q − 1

x

logq x
+

q

(q − 1)2
x

log2
q x

+O
( x

log3
q x

)

,

where x = qn
→ ∞.
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2. The prime number theorem for Fq[t]

Let f(t) be a polynomial in Fq[t] with degree n. It is easily seen that N(f) = qn.

The zeta function of Fq[t] is defined as

ζ(s) =
∑

f

N(f)−s,

where the sum is taken over all monic polynomials in Fq[t]. There are q
n monic

polynomials in Fq[t] with degree n. Hence

ζ(s) =

∞
∑

n=0

qn

qns
=

∞
∑

n=0

qn(1−s)

converges for Re(s) > 1. Whence

(2.1) ζ(s) =
1

1 − q1−s
.

Hence we obtain an analytic continuation of ζ(s) which has poles at s = 1 +

2kπi/ log q, k ∈ Z and does not vanish everywhere.

Since every monic polynomial can be factored as a product of monic irreducible

polynomials uniquely, we have the Euler product formula:

(2.2) ζ(s) =
∏

P

(

1 −
1

N(P )s

)

−1

for Re(s) > 1,

where the product is taken over all monic irreducible polynomials in Fq[t]. By ap-

plying logarithms to both sides in equation (2.2), and then differentiating, we obtain

−
ζ′

ζ
(s) =

∑

P

N(P )−s logN(P )

1 −N(P )−s
=

∑

P

∞
∑

n=1

N(P )−ns logN(P ) =
∑

f

Λ(f)

N(f)s
,

where the sum is taken over all monic polynomials in Fq[t] and

Λ(f) =

{

logN(P ) if f is a power of some irreducible polynomial P,

0 otherwise.

From the equation (2.1), we see that

(2.3) −
ζ′

ζ
(s) =

q1−s log q

1 − q1−s
,

which has simple poles at s = 1 + 2kπi/ log q, k ∈ Z, and with residue 1.

882



Let ψ(x) =
∑

N(f)6x

Λ(f), where f are monic polynomials in Fq[t]. Beginning with

the fundamental line integral

1

2πi

∫ c+i∞

c−i∞

ys ds

s
=















1 if y > 1,

1

2
if y = 1,

0 if y < 1,

for any c > 1 we have

ψ0(x) =
1

2πi

∫ c+i∞

c−i∞

−
ζ′

ζ
(s)

xs

s
ds,

where

ψ0(x) =







ψ(x) −
1

2

∑

N(f)=x

Λ(f) if x = qn, n ∈ N,

ψ(x) otherwise.

Then by (2.3) we get

ψ0(x) =
1

2πi

∫ c+i∞

c−i∞

q1−s log q

1 − q1−s

xs

s
ds.

As a consequence of this calculus we get

Lemma 2.1. Let f(s) be continuous on ΓR : s = c + Reiθ (1
2π 6 θ 6 3

2π), and

f(s) → 0 as R → +∞, then
∫

ΓR

f(s)xs ds→ 0 as R → +∞, for any x > 1.

Let f(s) = (q1−s log q)/(1 − q1−s)s. We have

(2.4)
1

2πi

∫ c+iR

c−iR

f(s)xs ds→ ψ0(x), as R → +∞, where c > 1.

If R = R0 =
√

(c− 1)2 + ((2k + 1)2π
2)/ log2 q, (2.4) holds also for k → +∞.

If ΓR : s = c+R0e
iθ (12π 6 θ 6 3

2π), it is easily seen that we can apply Lemma 2.1

to f(s). Hence we deduce the following proposition:
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Proposition 2.1.

ψ0(x) =
q log q

1 − q
+ x

∞
∑

k=−∞

cos(ky)(log q)2 + 2kπ log q sin(ky)

(log q)2 + 4k2
π
2

,

for any x > 1, where y = 2π log x/log q.

P r o o f. By Lemma 2.1 we get
∫

ΓR0

f(s)xs ds → 0, as R0 → ∞ for any x > 1.

Hence by contour integration we have

(2.5) ψ0(x) =
q log q

1 − q
+

∞
∑

k=−∞

x1+2kπ i/ log q

1 + 2kπi/ log q
.

Indeed, this is obtained by the integral on the line Re(s) = c and by moving it

to ΓR0
. The simple poles at s = 0, s = 1 + 2kπi/ log q produce the corresponding

terms in (2.5). Since ψ0(x) is a real valued function, imaginary part of it must be

zero, and the result follows. �

Corollary 2.1.
∞
∑

k=−∞

log2 q

log2 q + 4k2
π
2

=
q + 1

2(q − 1)
log q.

P r o o f. By Proposition 1 let x = q. We have

ψ0(q) =
q log q

1 − q
+ q

∞
∑

k=−∞

log2 q

log2 q + 4k2
π
2

=
q

2
log q,

and the result follows. �

Let x = qn. We get

(2.6) ψ0(q
n) =

q log q

1 − q
+ qn

∞
∑

k=−∞

log2 q

log2 q + 4k2
π
2

=
(qn+1 + qn

− 2q) log q

2(q − 1)

and

ψ(qn) = ψ0(q
n) +

1

2

∑

N(f)=qn

Λ(f) = 2ψ0(q
n) − ψ(qn−1),(2.7)

ψ(q) = q log q.(2.8)

Then by (2.6), (2.7) and (2.8) we deduce that

(2.9) ψ(qn) =
qn+1

− q

q − 1
log q.

�
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Lemma 2.2.

n
∑

i=1

qi

i
=

qn+1

n(q − 1)
+

qn+1

n2(q − 1)2
+O

( qn

n2

)

, as n→ ∞.

P r o o f. We have

n
∑

i=1

qi

i
=
qn

n

n−1
∑

i=0

nq−i

n− i
=
qn

n

(n−1
∑

i=0

(

1 +
i

n− i

)

q−i

)

,

and
n−1
∑

i=0

q−i =
q

q − 1
+O(q−n),

n−1
∑

i=0

i

n− i
q−i = q−n

n−1
∑

i=1

n− i

i
qi.

By Poisson’s summation formula we get

n−1
∑

i=1

n− i

i
qi =

qn

n− 1

n−2
∑

i=1

qi

i(i+ 1)
+

q

n− 1

1 − qn−1

1 − q
+ O(n),

and
n−2
∑

i=1

qi

i(i+ 1)
=

q

q − 1

qn−2
− 1

(n− 2)(n− 1)
+O

( qn

n3

)

.

Therefore
n−1
∑

i=1

n− i

i
qi =

qn+1

n(q − 1)2
+O

( qn

n2

)

,

and the result follows. �

Theorem 2.1.

π(x) =
q

q − 1

x

logq x
+

q

(q − 1)2
x

log2
q x

+O
( x

log3
q x

)

, where x = qn
→ ∞.

P r o o f. Let

π1(x) =
∑

N(f)6x

Λ(f)

logN(f)
.

We have

π1(x) =
∑

N(P m)6x

logN(P )

m logN(P )
= π(x) +

1

2
π(x1/2) +

1

3
π(x1/3) + . . .(2.10)

= π(x) + o(x1/2) (see [2]).

�
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By (2.9) and Lemma 2.2 we have

π1(x) =

n
∑

i=1

ψ(qi) − ψ(qi−1)

i log q
(2.11)

=
n

∑

i=1

qi

i
=

qn+1

n(q − 1)
+

qn+1

n2(q − 1)2
+O

( qn

n2

)

,

as x = qn
→ ∞. By (2.10) and (2.11) we deduce the theorem. �
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