
Czechoslovak Mathematical Journal

Heinrich Raubenheimer
On quasinilpotent equivalence of finite rank elements in Banach algebras

Czechoslovak Mathematical Journal, Vol. 60 (2010), No. 3, 589–596

Persistent URL: http://dml.cz/dmlcz/140591

Terms of use:
© Institute of Mathematics AS CR, 2010

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/140591
http://dml.cz


Czechoslovak Mathematical Journal, 60 (135) (2010), 589–596

ON QUASINILPOTENT EQUIVALENCE OF FINITE RANK

ELEMENTS IN BANACH ALGEBRAS

Heinrich Raubenheimer, Johannesburg

(Received March 9, 2009)

Abstract. We characterize elements in a semisimple Banach algebra which are quasinilpo-
tent equivalent to maximal finite rank elements.

Keywords: maximal finite rank elements, quasinilpotent equivalence

MSC 2010 : 46H05, 46H10

1. Introduction

The notion of quasinilpotent equivalence for linear operators is due to Colojoară

and Foiaş [3], [4]. This notion has been extended to general Banach algebras by

Razpet in [12]. For all unexplained notation and terminology in this paper we refer

the reader to [12].

Throughout this paper A is a complex Banach algebra with unit 1 and C are

the complex numbers. The spectrum of a ∈ A will be denoted by σ(a, A) and the

spectral radius of a ∈ A by r(a, A). Whenever there is no ambiguity we shall drop

the A in σ and r. An element a ∈ A is said to be quasinilpotent if σ(a) = {0},

equivalently lim
n

‖an‖1/n = 0. The set of these elements will be denoted by QN(A).

An element a ∈ A is called Riesz w.r.t. a closed ideal J in A if the coset a + J is in

QN(A/J).

For each a, b ∈ A we introduce associate operators La, Rb and Ca,b acting on A

by the relations

Lax = ax, Rbx = xb and Ca,bx = (La − Rb)x

for all x ∈ A. It is easy to see that La, Rb and Ca,b are bounded linear operators

on A, i.e., La, Rb, Ca,b ∈ L(A).
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2. Quasinilpotent equivalence

Let a, b ∈ A. Since the operators La and Rb commute,

(2.1) Cn
a,bx =

n
∑

k=0

(−1)k

(

n

k

)

an−kxbk

for all x ∈ A. We have

(2.2) Cn+1
a,b x = a(Cn

a,bx) − (Cn
a,bx)b

and if also c ∈ A one can prove

(2.3) Cn
a,b(xy) =

n
∑

k=0

(

n

k

)

(Cn−k
a,c x)(Ck

c,by)

for all x, y ∈ A, see [6] for a proof. Let

(2.4) ̺(a, b) = lim sup
n

‖Cn
a,b1‖

1/n.

Note that in general the numbers ̺(a, b) and ̺(b, a) seem to be different. If, however,

a and b commute then by (2.4) ̺(a, b) = ̺(b, a) = r(a − b).

Define

(2.5) d(a, b) = max{̺(a, b), ̺(b, a)}.

The identity in (2.3) is important because one needs it to prove that the function d

is a semimetric on A. It is called the spectral semidistance from a to b. It is not

a metric on A, see the remarks preceding Proposition 2.2 in [12]. In view of [12],

elements a, b ∈ A are called quasinilpotent equivalent if d(a, b) = 0.

As remarked above, the original idea of “quasinilpotent equivalence” goes back to

Colojoară and Foiaş [3], [4]: Operators S and T on a Banach space X are quasinilpo-

tent equivalent provided

(2.6) d(S, T ) = max{̺(S, T ), ̺(T, S)} = 0,

where

(2.7) ̺(S, T ) = lim sup
n

‖(S − T )[n]‖1/n
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with

(2.8) (S − T )[n] =

n
∑

k=0

(−1)n−k

(

n

k

)

SkT n−k.

Note that (2.7) is not really a function of S − T . If S and T commute, this reduces

to the condition that the difference S − T is quasinilpotent. This applies to the left

and right multiplications La and Rb on a Banach algebra X = A, whether or not

the elements a and b commute. One can therefore define

(2.9) ̺(a, b) = lim sup
n

‖(La − Rb)
n(1)‖1/n

reproducing (2.7) without the spurious dependence on a − b, and verifying that the

definition of Razpet [12] is a valid generalization of the original operator condition.

Note that if two elements in a Banach algebra differ by a commuting quasinilpotent

element, then they are quasinilpotent equivalent. The converse, however, fails: Let

X be a Banach space and Y = X ⊕ X . Define operators T and S on Y as follows:

T (x1, x2) = (0,−x1) and S(x1, x2) = (x2, 0) for all (x1, x2) ∈ Y . Notice that T 2 =

S2 = 0 and so (S − T )[n] = (T − S)[n] = 0 whenever n > 3. By (2.7) and (2.6)

S and T are quasinilpotent equivalent. But S − T is not quasinilpotent because

(S − T )2 = I.

Let a, b ∈ A and suppose there is λ0 ∈ C such that σ(a) = σ(b) = {λ0}. Then a

and b are quasinilpotent equivalent: By (2.4), ̺(a, b) 6 r(Ca,b) and since La and Rb

commute, σ(Ca,b) ⊂ σ(a)−σ(b). If we combine these two facts, ̺(a, b) = 0. It follows

likewise that ̺(b, a) = 0. In this regard also see [12, Corollary 2.3]. In particular,

it follows from these remarks that quasinilpotent elements in A are quasinilpotent

equivalent.

In [6] it is proved that if two elements a and b in A are quasinilpotent equivalent

then σ(a) = σ(b). Since we are going to use this fact repeatedly, we provide a Banach

algebra proof of this fact using the notion of the joint spectrum of two commuting

elements, see [10, Definition 2.14 and Theorem 2.20].

Theorem 2.1. Let A be a Banach algebra and a, b ∈ A. If d(a, b) = 0 then

σ(a) = σ(b).

P r o o f. If a, b ∈ A commute and λ ∈ σ(a) then there is µ ∈ σ(b) with (λ, µ) ∈

σ(a, b); now λ − µ ∈ σ(a − b) = {0} giving λ = µ ∈ σ(b). Similarly if µ ∈ σ(b) then

µ = λ ∈ σ(a). In general if a, b ∈ A then La and Rb commute in L(A), and hence

σ(a) = σ(La) = σ(Rb) = σ(b). �
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As we remarked above the converse of Theorem 2.1 holds when σ(a) = σ(b) = {λ}

is a singleton. It fails in general, however: just let a 6= b be distinct nontrivial

idempotents. Then by (2.4) ̺(a, b) = ̺(b, a) = 1.

The previous observation implies that if a, b ∈ A are both idempotents and

̺(a, b) = 0 then a = b. This is a seemingly stronger statement than [12, Corol-

lary 3.1]. Also, our proof only uses (2.4) while Corollary 3.1 in [12] relies on [12,

Theorem 3.1].

Another consequence of Theorem 2.1 in quotient algebras is

Corollary 2.2. Let A be a Banach algebra and I a closed ideal in A. If a ∈ A is

Riesz relative to I then b ∈ A is Riesz relative to I if and only if d(a + I, b + I) = 0.

Let A be a Banach algebra and I a closed ideal in A. Suppose a, b ∈ A. In view

of ‖a + I‖ 6 ‖a‖ it follows from the definition of the spectral semidistance that

d(a + I, b + I) 6 d(a, b). One can show by an example that this inequality may

be strict. Recall that T is a Riesz operator on a Banach space X if T + K(X) ∈

QN(L(X)/K(X)) where K(X) is the closed ideal of compact operators on X . These

remarks imply

Corollary 2.3. Let S and T be operators on a Banach space X . If T is a Riesz

operator and d(T, S) = 0 then S is a Riesz operator.

3. Finite rank elements

In this section we will require that A is a semiprime Banach algebra, i.e., xAx =

{0} implies that x = 0 holds for all x ∈ A. It can be shown that all semisimple

Banach algebras are semiprime. Following Puhl [11] we call an element 0 6= a ∈ A

rank one if aAa ⊂ Ca. Denote the set of these elements by F1. By [11, Lemma 2.7]

we have F1A, AF1 ⊂ F1. An idempotent belonging to F1 is called a minimal

idempotent. Let F denote the set of all u ∈ A of the form u =
n
∑

i=1

ui with ui ∈ F1.

We will call F the set of finite rank elements of A. F is a twosided ideal in A and

it coincides with the socle of A, i.e., Soc(A) = F .

For another approach to rank one and finite rank elements see [1], [8]. However, if

A is a semisimple Banach algebra then the notion of rank one and finite rank elements

in the sense of Puhl [11] coincides with the notion of rank one and finite rank elements

in the sense of Aupetit/Mouton [1], see [8, Theorem 4] and [1, Theorem 2.12].

Let A be a semiprime Banach algebra and a, b ∈ A. Suppose a, b ∈ F1 and

d(a, b) = 0. If a ∈ QN(A) then by Theorem 2.1 σ(a) = σ(b) = {0}. In view
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of [11], Section 2 and Lemma 2.8] a2 = b2 = 0. If we suppose a, b ∈ F , d(a, b) = 0

and a ∈ QN(A) then again by Theorem 2.1 σ(a) = σ(b) = {0}. In view of [9,

Lemma 3.10] there is a natural number m such that am = bm = 0.

Theorem 3.1. Let A be a semiprime Banach algebra and suppose both a, b ∈ A

are rank one. If d(a, b) = 0 and a is not quasinilpotent then a = b.

P r o o f. If a is not quasinilpotent then by [11, Lemma 2.8] and Theorem 2.1,

σ(a) = {0, λ} = σ(b). But then λ−1a and λ−1b are minimal idempotents. In view

of [12, Corollary 2.1] they are quasinilpotent equivalent. By [12, Corollary 3.1],

λ−1a = λ−1b and so a = b. �

Let A be a semisimple Banach algebra and a ∈ A. Following Aupetit and Mou-

ton [1] we define the rank of a by

(3.1) rank(a) = sup
x∈A

#(σ(xa) \ {0})

where # denotes the number of elements in a set. An element a ∈ A is said to be of

maximal finite rank if

(3.2) rank(a) = #(σ(a) \ {0}).

Theorem 3.2. Let A be a semisimple Banach algebra with a, b ∈ A. If both a

and b are of maximal finite rank and d(a, b) = 0 then a = b.

P r o o f. Since a is of maximal finite rank we can by [1, Theorem 2.8] assume

a = λ1p1 + . . . + λnpn with λ1, . . . , λn the nonzero distinct spectral values of a

and p1, . . . , pn orthogonal minimal idempotents. Likewise we can assume that b =

µ1e1 + . . . + µmem with µ1, . . . , µm the nonzero distinct spectral values of b and

e1, . . . , em orthogonal minimal idempotents. Since d(a, b) = 0, by Theorem 2.1 we

can suppose σ(a) \ {0} = {λ1, . . . , λn} = σ(b) \ {0}. Note that api = λipi and

bei = λiei (i = 1, . . . , n). If f(z) = z(z−λ1) . . . (z −λn), then f is an entire function

with simple zeros such that f(a) = f(b) = 0. In view of [12, Theorem 3.1], a = b. �

In the above proof note that if A is semisimple and infinite dimensional and if a ∈ A

is of maximal finite rank then 0 ∈ σ(a). However, if A is finite dimensional then it

is possible to give examples of maximal finite rank elements which are invertible.

In our next result we are going to characterize elements b in a semisimple Banach

algebra which are quasinilpotent equivalent to maximal finite rank elements.
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Theorem 3.3. Let A be an infinite dimensional semisimple Banach algebra with

a ∈ A a nonzero maximal finite rank element and b ∈ A. Then d(a, b) = 0 if and

only if b − a is quasinilpotent and commutes with a.

P r o o f. Suppose a ∈ A is maximal finite rank and a and b ∈ A are quasinilpotent

equivalent. Since a is Riesz relative to SocA, it follows from Corollary 2.2 that b is

Riesz relative to SocA. We are going to show that b has the desired decomposition.

It follows from [1, Theorem 2.8] that a = λ1p1+. . .+λnpn with λ1, . . . λn the nonzero

distinct spectral values of a and pi (i = 1, . . . , n) the Riesz idempotents associated

with a and λi. Then a = λ0p0 + λ1p1 + . . . + λnpn where λ0 = 0 and p0 is the Riesz

idempotent corresponding to a and λ0. Since the Riesz idempotents pi commute

with a, are orthogonal and minimal, it follows that ap0 = 0, api = λipi (i = 1, . . . , n).

In view of Theorem 2.1, σ(b) = {λ0, λ1, . . . , λn}. By [2, Proposition 7.9] there are

nonzero orthogonal idempotents f0, f1, . . . , fn such that 1 = f0 +f1+ . . .+fn. Hence

b = bf0 + bf1 + . . . + bfn = bf0 + f1bf1 + . . . + fnbfn

because the fi commute with b. Since a and b are quasinilpotent equivalent the series

∞
∑

r=0

(λ − λk)−r−1Cr
b,a1

converges for all λ 6= λk. Put

F (λ) =

n
∑

k=0

( ∞
∑

r=0

(λ − λk)−r−1Cr
b,a1

)

pk.

In view of (2.2)

(λ − b)Cr
b,a1 =

(

Cr
b,a1

)

(λ − a) − Cr+1
b,a 1.

Hence for all λ /∈ σ(b)

(λ − b)F (λ) =

n
∑

k=0

∞
∑

r=0

(λ − λk)−r−1
(

Cr
b,a1(λ − λk) + (a − λk) − Cr+1

b,a 1
)

pk

=
n

∑

k=0

pk = 1,

and so F (λ) = (λ−b)−1. For k = 0, 1, . . . , n let Γk be a small circle around λk which

contains no other elements of the spectrum of b. Then in view of the definition

of F (λ)

fk =
1

2πi

∫

Γk

(λ − b)−1 dλ =
1

2πi

∫

Γk

F (λ) dλ = pk.
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Hence b = bf0 + p1bp1 + . . . + pnbpn. By the minimality of pi, pibpi = µipi for

some µi ∈ C (i = 1, . . . , n). But the spectral mapping theorem implies that λi = µi

(i = 1, . . . , n). Consequently, b = bf0 + a where bf0 ∈ QN(A). The fact that

b commutes with q implies that b commutes with a.

Conversely, suppose b = a+q for some quasinilpotent element q ∈ A with aq = qa.

By remarks preceding Theorem 2.1 or [12, Proposition 2.4], d(a, b) = r(q) = 0. �

If A is an infinite dimensional semisimple Banach algebra and a ∈ A is of maximal

finite rank then it can happen that d(a, b) = 0 for some b ∈ A that does not belong

to the socle of A: Let q ∈ QN(A) and suppose q is not nilpotent and aq = qa. If we

put b = a + q then by [12, Proposition 2.4], d(a, b) = 0. Since q is not nilpotent we

have by [9, Lemma 3.10] that b does not belong to the socle of A.

Corollary 3.4. Let A be a finite dimensional semisimple Banach algebra with

a ∈ A of maximal finite rank and b ∈ A. If d(a, b) = 0 then b = a + q for some

nilpotent q ∈ A with aq = qa.

P r o o f. If a is invertible then 0 /∈ σ(a) and so by Theorem 3.3 a = b. If a is not

invertible then 0 ∈ σ(a) and again it follows from Theorem 3.3 that b = a + q for

some quasinilpotent q in A. Since A is finite dimensional, A = SocA [5, Theorem 11]

and hence b − a = q is a quasinilpotent element in Soc A. But by [5, Corollary 9]

q is algebraic in A. If we combine these two facts it follows that q is nilpotent, see

Remark 2 in [7]. �
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