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Abstract. In this paper, we determine all the normal forms of Hermitian matrices over

finite group rings R = Fp2G, where ¢ = p%, G is a commutative p-group with order pﬁ.

Furthermore, using the normal forms of Hermitian matrices, we study the structure of
unitary group over R through investigating its BN-pair and order. As an application, we
construct a Cartesian authentication code and compute its size parameters.

Keywords: finite group ring, BN-pair, authentication code

MSC 2010: 20E42, 19G24, 94A60

1. INTRODUCTION

It is an important topic to investigate classical groups over finite commutative
rings. Many results on the structures of the general linear groups, symplectic groups
and orthogonal groups over finite commutative rings have been obtained [6], [8], [2].
In [2], the unitary group over a finite group ring was defined by the Hermitian matrix

Im)' In the present paper, we determine all the normal forms

of special form (7
of Hermitian matrices over finite group rings. Moreover, we study the structures of
unitary groups over finite group rings including constructing BN-pairs and computing
orders. As an application, we construct a Cartesian authentication code and compute
the size parameters.

Let Fi2 be a finite field with ¢? elements, where ¢ = p®. Then F,> has an involutive
automorphism w: x — 9, and the fixed field of this automorphism is F,. Let G be a
commutative p-group with order p”. From the reference [3], we know that the group
ring R = F2G is a local ring and its maximal ideal is M = J(R) = I(G), where
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J(R) is Jacobson root of R and I(G) is augmentation ideal of R. Since I(G) is a
free F2-module with a basis g — e, e # g € G, it then follows that

Fp=R/M=R/IG), |I(G)=¢*"D and [FpG|l=q¢"".

Now the involutive automorphism w can be extended to an involutive automor-

phism w’ of R: Y 49 — Y w(zy)g. For the convenience of notation, we write a
geG geG
for w'(a), where a € R. Let R’ = F,G. Then R’ is a local ring. Denote by M’ the

maximal ideal of R’

Throughout this paper, the finite group ring we considered is R = F,2 G, where
q = p*, G is a commutative p-group with order p®. Now let us list some definitions
that will be used in this paper.

Definition 1.1 ([1]). Let G be a group. A pair of subgroups (B, N) of the
group G is said to be a BN-pair if B and N generate G, the intersection T'= BN N
is normal in N and the quotient W = N/T admits a set of generators S such that
the following two conditions hold:

(BN1) BsB - BwB C BwB U BswB, where s € S and w € W;
(BN2) sBs™' ¢ B, where s € S.

The group W is called the Weyl group associated to the BN-pair. A BN-pair is called
spherical if the group W is finite.

Definition 1.2. An m X m matrix H over a finite group ring R is said to be
Hermitian if *H = H, where *H denotes the transpose of H and H = (i_zij).

Definition 1.3. Let H be an m X m nonsingular Hermitian matrix over a finite
group ring R. The unitary group over R with respect to H is defined to be

Un(R,H) = {T € GL(R): 'THT = H}.

2. THE NORMAL FORMS OF HERMITIAN MATRICES OVER FINITE GROUP RINGS

Before proving the normal forms of Hermitian matrices over R, we first give the
following lemmas. Lemmas 2.1 and 2.3 are not going to be proved, see [2], [5].

Lemma 2.1 ([2]). For any A € R/, the equation x + & = A\ has exactly &’
solutions in R. And for any A\ € M’, the equation x + & = )\ has exactly qpﬁ’1

solutions in M.
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Lemma 2.2. Let R* and R'* be the sets of all invertible elements of R and R’
respectively. Then for any a € R'*, the equation T = a has exactly (q + 1)qpﬁ_1
solutions in R*.

Proof. First we claim that the solution of ©Z = a exists, for any a € R'™*.
By [3], g1,...,9r € G are a basis of R with & = p?, then we can write 2Z = a as
follows

g1 x1 g1
(w1, .ze) | (9w | 2 | = (@, a) |

9k Tk 9k

Without loss of generality, we assume that a; # 0. Then we have

9 1 9
(1, .o ze)T | 2 1 (gh,-0)'T| ¢ | =@,...;00 [ |,
i T, 9k
where
1 —1 —1
a —a; ay ... —a; a
v v 4 "
T= . and =17t
1 g;g gk
Denote , ,
91 91
y=Wi,--u) | ¢ | =@, 2)T
9 Ik

Then under the basis g1, ..., g) we have yy = 1-¢/. It is clear that this equation has
a solution. Thus the claim is proved. ([

Consider the map ¢: R* — R”™: x +— xZ. Clearly it is an epimorphism of groups
by the claim above. Then we have |Ker ¢| = |R*|/|R"™| = (¢+ 1)¢?”~1. Consequently,
for any a € R'*, the equation xT = a has exactly (¢ + 1)qpﬁ’1 solutions in R*.

Lemma 2.3 ([6]). Any m xm nonsingular Hermitian matrix over F,» is cogredient

to 1)

J(n)
( @ > or | 1™ )

when m = 2n or m = 2n + 1, respectively.
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Theorem 2.4. Any m X m nonsingular Hermitian matrix over R is cogredient to

()

J(n)
( (@ > or | 1™ )

when m = 2n or m = 2n + 1, respectively.

Proof. Let H be an m x m nonsingular Hermitian matrix over R. Consider the
group homomorphism ¢: GL,(R) — GLy,(F,2) induced by the canonical homo-
morphism 7: R — Fjp. Then ¢(H) € GL,(F,2) is a Hermitian matrix over Fie.
By Theorem 5.2 in [5], there exists Q € GL,(F,2) such that

hi
hm

where hi,...,h, are invertible elements of Fp, ie., h; # 0 (1 < ¢ < m). Let
H,Q' € GL,,(R) be coset representatives of ¢(H) and (). Then

hit hiz ... him
_ h hoa ... hom

2) QHY =| " 7 | € GLn(R).
ﬁlm BQm e hmm

We claim that ki1, ..., mm are invertible elements of R and hy; € M, 1 <4 # j < m.
Otherwise, by (2), we have that

W(l}ll) m(hi2) 7 (him)
sangy= | T T T o),
’]'['(]_”le) W(B2m) e W(hmm)

where 7(hi;) =0 (1 < i< m) and 7(hi;) # 0 (1 < i # j < m). Observe that the
fact w(*Q'HQ') = *Qy(H)Q. This is a contradiction with (1).

Denote
]}11 hiz ... him
hiz  hag ... hop
. . . . =T
Blm }_LQm e hmm

and write T in block form
( hi1 le)
Ty T )’
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where h1; = hi1 and Ths is an (m — 1) x (m — 1) Hermitian matrix. We use induction
on m to prove that T is cogredient to a diagonal matrix. When m = 1, this is
obvious. Now assume that m > 2 and the assertion holds for all r < m. Let

R hi1 —hf11T12 .
J(m—1)

Then

— hi1
tRTR - ( — el ) )
—h [ To'Tho + Tao

where —hl_llTlgtTlg + T is an (m — 1) x (m — 1) nonsingular Hermitian matrix.
By induction hypothesis, —hﬁlTlgtTlg + Tho is cogredient to a diagonal matrix.
Consequently, H is cogredient to a diagonal matrix

hi1

/
22

h/

mm

According to Lemma 2.2, there exists A; € R* (1 <4 < m) such that

At hi1 A
=1,

At - At

By Lemma 2.3, I(™) is cogredient to
(n)
7 o I
(I(") > or I ,
1

when m = 2n or m = 2n + 1 respectively, so does H. (Il
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3. BN-PAIRS AND ORDERS OF UNITARY GROUPS OVER FINITE GROUP RINGS

By Theorem 2.4, when studying the unitary groups over finite group rings R, we
only need consider the two special cases Uy, (R, H1) and U,,(R, Hs), where

J(n)

I(n)
H, = (I(”) ) and Hy= | I™
1

For simplicity we denote them by Us,,(R) and Us,+1(R) respectively.

Now we give the definitions of elementary unitary matrices of Us,(R) and
Uspn+1(R), which play an important role in verifying BN-pairs.

The elementary unitary matriz of Us(R) is the unitary matrix of the following

(") G G) = ()

where a is an invertible element of R, b+b =0 and ¢+ ¢ = 0.
Let R?" be a free module of rank 2n. Denote the standard basis vectors of R%" by

e1,€a, ... en, f1, fo,..., fn. When n > 2, an elementary unitary matriz of Us,(R)

form

is defined to be the image of a 2 x 2 elementary matrix in Us, (R) under one of the
embeddings in the following:

(1) For each i =1,...,n, there is an elementary unitary matrix of Uz(R) acting on
[es, fi] in Usp(R), which fixes all the basis vectors other than e; and f;.

(2) Given 1 < i < j < n, there is an elementary matrix of GL2(R) acting on [e;, e;]
in Uspn(R), which stabilizes [e;, e;] and [fi, f;] and fixes all the basis vectors
other than these four.

(3) Given 1 < i < j < n, there is an elementary matrix of GL2(R) acting on [e;, f;]
in Uspn(R), which stabilizes [e;, f;] and [ej, f;] and fixes all the basis vectors
other than these four.

Example. We give some examples of elementary unitary matrices. Take n = 2
and ¢ = 1 for example in the first embedding. We obtain an elementary unitary
matrix A € Uys(R) which has the following form

In the second embedding, for instance, we take n = 2, ¢ = 1, j = 2 and construct
an elementary unitary matrix A € Uy(R) which is given by an elementary matrix
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1
(0 ?) on [e1, e2] and which stabilizes [f1, f2]. Then A must have the form

Similarly, we have the definition of elementary unitary matrix of Us,+1(R).

3.1. BN-pairs of unitary groups Us,(R)
Consider the group homomorphism 6: Us,(R) — Usy(F,2) induced by the canon-
ical homomorphism 7: R — F_2. Let B be the subgroup of Uszn(F,2) consisting of

C1 Oy
Cs )’
where C} is an n x n invertible lower triangular matrix, {C1Cs = I and 'CyC3 +

t030y = O. Let N be the monomial subgroup of Uy, (F,2). We take B and N to
be the inverse images of B and N in Us,(R) respectively and prove that (B, N) is a

the matrices of the form

BN-pair of Us,(R). To show this, we first prove the following lemma.

Lemma 3.1. The unitary group Us,(R) is generated by its subgroups B and N.

Proof. Through the row and column operations by the elementary unitary
matrices and the definition of unitary group, any A € Us,(R) is reduced to the
identity matrix. This proves the assertion. O

Note that "= B N N is the inverse image of the diagonal subgroup of Usy, (F,z2)
in Uy, (R). Consequently, T is a normal subgroup of N. Then W = N/T has a set
of generators S = {s1, $2,..., S}, where

1
1 0
[(n—2)
S1 = 1 ’ ’
0
J(n—2)
J(n—2)
0 1 J(n—1)
B 1 B 0 0 1
Sn—1= [(n=2) » o Sn = 0 J(n—1) 0
0 1 1 0 0
1 0
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Theorem 3.2. The pair (B, N) is a spherical BN-pair in Us,(R).

Proof. To prove that the axiom (BN1) holds, it is enough to show that for
each s € S, sB C BB' U BsB’, where B’ = wBw™"'. We verify only for s = s, the
other elements of S are treated similarly. Any element of sB has the form

C21 a22 .- ban C2 n+1 C2,n+2 .- C2 2n
ail bia ... by Cln+1 Clin+2 .- Clon
Cnl Cn2 S Gnn Cn,n+1 Cn,n+2 e Cn,2n
)
bn+2,1 bn+2,2 e bn+2,n bn+2,n+1 an+2,n+2 e Cn+2,2n
bn+1,1 bn+1,2 e anrl,n an+1,n+1 Cn+1,n+2 e Cn+1,2n
ban1  bana2 ... bapn  bapn+1 banny2 ... Q2non
where a11,. .., a2n,2, are invertible elements of R and b;; € M with ¢ # j. Through
left multiplication by the matrices in B and the definition of unitary group, it is
reduced to
C21 a22 bas ... Doy
ail 0 613 e bln
0 0 Ay
: : Aq
3) 00 ,
bnt2,1 bnyo2 0 ni2nt2 0 ... 0
bnt1,1 bpsi2 Gpntintl Cntlnt2 0 ... 0
A3 : . A4
b2n,1 b2n,2 b2n,n+1 b2n,n+2
where
ass ... b3, An+3,n+3
Al = . . : 5 A4 - E D . Y
Apn b2n,n+3 ce. G2p2n

Ay is an n x n zero matrix and As is an n X (n—2) matrix with entries in the maximal
ideal M.

In case that co1 € M, the matrix (3) is reduced to s through left multiplication
by the matrices in B, i.e., sB C BsB’. If co; is an invertible element, then using
right multiplication by the matrices in B’, we reduce the matrix (3) to s or 1,
i.e., sBC BB'UBsB'.
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Let

[(n—2)

Then s1 Ps; € B, which shows that the axiom (BN2) holds. Therefore, (B, N) is a
BN-pair and obviously it is spherical. O

3.2. BN-pairs of unitary groups Us,+1(R)
Just as in Section 3.1, we consider the group homomorphism ¢: Us,y1(R) —
Uszn+1(F,2) induced by the canonical homomorphism 7: R — F2. Let

y P
B= {p — < ! ) . P € Un(Fp), P € U2n+1(Fq2)}
a2n+1,2n+1

and N be the monomial subgroup of Usn1(Fy2). Take B’ to be the inverse image
of B and N’ the inverse image of N in Usnt1(R). Then T = B’ N N’ is the inverse
image of the diagonal subgroup of Uz,41(Fy2) in Usz,y1(R), whence it is a normal

subgroup of N’. Consequently, W’ has a set of generators S’ = {s},s5,...,5.},
where
J(n—=2)
sh = 0 ) ;
1
J(n—2)
1
[(n—2)
0 1 J(n—1)
1 0 0 1
Sy = 1n=2) , 8, = 0 I»=H 0
1 1 0 0
1 1
1
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Theorem 3.3. The pair (B’, N') is a spherical BN-pair in Usp,11(R).
Proof. The proof is analogous to the case of Us,(R). O

3.3. Homological properties of BN-pairs in the unitary groups
over group rings

As in Section 1, G is a commutative p-group with order p”. Suppose that G; are
subgroups of G with order p’ for all 1 <3 < 8 — 1. Then R; = Fp2G; are a family
of group rings. Accordingly, we obtain a family of unitary groups U,,(R;), where
1<i<pg-1.

Theorem 3.4. Let (B, N) be the BN-pairs of unitary groups Uy, (R) constructed
in Sections 3.1 and 3.2. Assume that B, = BNU,,(R;) and N; = NNU,,(R;). Then
the pair (B;, N;) is a BN-pair of unitary group Uy, (R;).

Proof. The proof is completely similar to the case of Uy, (R). O

Let (Bo, No) be the BN-pair of the unitary group U,,(F,2). Denote Ty = By N Ny
and Wy = Ny/Tp. Then we have the following theorem.

Theorem 3.5. There exists a commutative diagram with the exact columns:

0 0 0 0
To—" T Ty 22
No —2= N, Nj_1 by
Wo —2s W, Wiy -4 sy

0 0 0 0

where i; and i’; (0 < j < 3 — 1) are embeddings of groups.

Remark. Although the groups U,,(R;) (1 < i < 3) and U,,(Fj2) are not isomor-
phic, the associated Weyl groups are completely identical.

3.4. Some Anzahl theorems in unitary groups over finite group rings

Let ¢: Uzpy1(R) — Uszni1(Fy2) be as in Section 3.2. Denote Ker¢ = Uspi1 M.
Before we prove our main result of this section, we need prove two lemmas.
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Lemma 3.6. |UsM| = (¢ + 1)¢°®’ D,

Proof. Assume that

1+4+cnn C12 C13
P = €21 1+co  co3 € UsM,
31 32 1+ c33

where ¢;; € M. The definition of unitary group implies that (1 + ¢11)c21 + €21(1 +
c11) + Cs1cs1 = 1, whence ¢11, ¢21, ¢31 have q5(pﬁ_1) values by Lemma 2.1. If we

choose ¢11 = ¢co1 = ¢31 = 0, then
1 ci2 13

P=10 1 0
0 c32 1+cs3

Since €12 + ¢12 + €32¢32 = 1 by the definition of unitary group, we know ci2, c32 have

q?’(pﬁ*l) values. Similarly, we choose ¢12 = ¢332 = 0. Then

1 0 0
P=10 1 0 ,
0 0 1+633

whence (1 4 ¢33)(1 + c33) = 1 and ¢33 has (¢ + 1)qpﬁ*1 values. Therefore, |UsM| =
(g+ )¢ . 0

Lemma 3.7. |U2n+1M| = (q —+ 1)q(4"2+4n+1)(10ﬁ—1)_

Proof. Assume that

I4+ecin ... C1,n+1 e C1,2n C1,2n+1
Cni e Cn,n+1 e Cn,2n Cn,2n+1
P=] cuy11 ... 14+cuginsr - Cotl2n Cnt1,2n+1 ;
Con,1 Con,n+1 . 14conon Con,2n+1
Con4+1,1 - Con+1,n+1 .- C2n+1,2n 1+ Con+1,2n+1

where c;; € M. Let

I Wi Q1
P = S Im Vs Q2 P,
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1 1 C21 ... Cni
—C21 1 1 0
Vl = : . .. ’ ‘/2 = . : ’
—Cn1 0 ... 1 1
0 En+271 éQn,l
—Cn4-2,1 0 0
s=| "
_CQn,l 0 e 0

Then P; has the following form

1 - Clnt1 €1,2n+1
0 . Cnntl Cn,2n+1
n
Cn+11(1+C11) + D entjiGin 1+ cng1ntt Cn+1,2n+1
Jj=2
0 . Connt1 Con,2n+t1
Con+1,1 Con+1,n+1 14 cont1,2n41

Since P; is a unitary matrix, we have that c,41.1(1 + €11) + Gnt11(1 + c11) +
n

> (€nt41Cj1 + Cngji1Cj1) + Congi,1C2nt1,1 = 1, and hence cqy,..
j=2

q(4”+1)(pﬁ’1) values by Lemma 2.1. If we choose ¢1; = ...

.,Cant+1,1 have

= capt1,1 = 0, then by

the definition of unitary matrix we have

1 ... cinp1 C1,2n+1

0 ... Cn,n+1 Cn,2n+1
Pr=10 1 0

0 ... connt1 Con,2n+1

0 ... contint 1+ cong12n41
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By repetition of the argument, P; is reduced to

n
1 ... Cing1+ D CntiCntjntl - C1,2n+1
i=2
(4) 0 0 ce Cn,2n+1
0o ... 1 ... 0
0o ... 0 Con,2n+1
0 ... C2nt1,n+1 oo 1T+ cont1,2n41

n
Thus ¢1n41 + Crng1 + Z (Cjnt1Cntjn+1 + Cing1Cnyjnt1) + Clant1Clont1 = 1

Jj=2
(P —
and €1 p+41s--+)Cnnt1,Cnt2,n+ls- -5 Contl,n+1 have q(4” D®"=1) yalues. Choose
Clptl = - .. = Copt1n+1 = 0. Then the matrix (4) has the following form
1 0 .. 0 .. 0
0 1+coo 0 C2 2n+1
(5) 0 Cn2 ... 0 L. Cn,2n+1
0 0 U 0
0 Con,2 ... 0 ... Con,2n+1
0 Con+1,2 --- 0 ... 1+ Con+1,2n+1
Clearly, the matrix (5) is the direct sum of
1 0
0 1
and
14coo ... C2,n+1 ce C2.2n C2,2n+1
Cn2 - Cn,n+1 e Cn,2n Cn,2n+1
Cnt+1,2 --- l4+cCpgyintr - Cnti2n Cn+1,2n+1 ,
Con2  --- Con,n+1 oo T+conon Con,2n+1
Con4+1,2 .- Con+1,n+1 - C2n+1,2n 1+ Con+1,2n+1
B
whence we have |Us,1 M| = ¢ ’1)|U2n,1M|. By Lemma 3.6, we have

|U2n+1M| = (q + 1)q(4n2+4n+1)(pﬁ71)'
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Theorem 3.8. Let (B, N) and (B’, N') be the BN-pairs of unitary groups Us,,(R)
and Usy,41(R) constructed above. Then we have

(1) [Uan(B)] = g% =40 T (¢~ (-17),

=1
2n+1 ]
Usns1(R)| = (q+ 1)qUin +ant+0p’ =@n®+3n41) "] (4 — (—1)7);
i=1
2) |B| = (¢* — )" =20" | IN| = 2"n! (¢% — 1)"g*™ @’ =D,
(3) |B,| = (> - 1)"(q+ 1)2q(4"2+4n+1)pﬁ7(2n2+4n+1)7
[N'| = 2nl(g> = 1)" (g + 1)gtn* +Amt D=1,

Proof.  The first equation is proved in [2]. Observe that |Uzpi1(F2)|
2n+1 . N 2 ] 2 ~
eI (@ = (D), B = (@ -0, B = (g + D@ - )¢, N =
1=

2"nl(¢> —1)" and N = 2"n!(¢*> — 1)"(¢ + 1). By Lemma 3.7, we obtain the re-
sults, as required. O

4. CONSTRUCTION OF CARTESIAN AUTHENTICATION CODES

In this section, by the normal forms of Hermitian matrices over finite group rings
in Theorem 2.4, we construct a Cartesian authentication code and compute its size
parameters and the probabilities of successful impersonation and substitution attack.
For the definitions of authentication code (S, E, M; f), Cartesian authentication code
and the size parameters of code the reader is referred to [4], [7].

Define the source state S to be the set

I
J = ( ) tr=1,2,...,m,,
0 mXm

the message M to be the set N,,(R) = {A € M} ,(R): ‘A = A} and the encoding
rules E to be the set GL,,(R). Define

f: SXxXE—-M

sXg —>t§sg.

By Theorem 2.3, we know that every m X m matrix over R is cogredient to its
normal form, so the map f is surjective. Moreover, by the invariance of the rank un-
der cogredient transformation, we show that given any message m there is a unique
source state s such that m = f(s,e) for any encoding rule e contained in m. There-
fore, (J, Ny (R), GLy,(R); f) is a Cartesian authentication code.
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Lemma 4.1. The number of Hermitian matrices with rank r in Ny,(R) is equal

to
QmTpﬁ ™ 1—-1 24
q [T (1-1/¢%)
i=m—r+1 r—92s
g T (g - (-1))
i=1
QmTpﬁ ™ 24
q [T (1-1/¢%)
=mortl r=2s+1
1 T . . ’ )
(q+1)g" " =20 [T (¢ — (-1)7)

i=1

Proof. Let ! be the number of Hermitian matrices with rank » in Np,(R).
Consider the action of GL,,(R) on the set Ny, (R):

GLm(R) X Npp(R) — Ny (R)
(P, A) — 'PAP.

Then
|Go|

(r)

I
where Gy is the stabilizer of ( O) . Note that |Gg| is equal to the number of

the solutions of equation

Let
P P
p_ ( 11 12) .
Py Py
Then 'P 1P, = I, Py € GL,,—-(R) and P»; is uniquely determined by Pis.
Thus

B (GLn(R)
NG Ly (R (R)|

as required. O
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Lemma 4.2.
6 2o 1
sl=m, 18] =" [](1- ).
i=1
4'msp[j a _ 21
q I (1-1/¢%)

n
i=m—2s+1
Z 2s
s=1 q432pﬁ_(232+s) H (qi _ (_1)i)
=1

m
q(4ms—2m)pﬁ H (1 _ 1/q2i)
+ 1=m—2s+2
)

2s—1
(q+ gl =Cs=9 T (g’ — (~1))

i=1

m = 2n,

W (atm I (-1 qm)

|M| _ Z z:m—23—2|-81

s=1 q4s2pﬁ_(232+s) H (qi _ (_1)i)
i=1

(4ms—2m)p? a 1—1/g%
q I (-1/¢*)
1=m—2s+2

2s—1
(g 4+ 1)glis* =402 T (gf = (~1))
i=1

+

m

m2p? 7
@ 11 (1-1/¢%)
+ =1
2n+1 )
(q + 1)gUn*+4n+1p8—Cn243041) "T[ (¢ — (1))
i=1
m=2n+ 1.

Proof. The conclusion is obvious by Lemma 4.1.

Lemma 4.3. The number of encoding rules contained in a message m is

2s m—2s

m2—mr)p? 4s%p” —(2s%+s i3 A 1
¢ L +)H(q—(—l))H(l—E)
i=1 i=1 q
and
, 5 2 5 . 2s+1 m—2s—1 1
q2(m —mr)p (q+ 1)q(4s +4s4+1)p” —(25°+3s+1) H (qz _ (_1)1) H (1 _ ﬁ)
i=1 i=1

when r = 2s and r = 2s + 1, respectively.
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Proof. Let

(r)
=)
0

be the source state corresponding to m. It is easy to see that the number of the
encoding rules contained in the message m is equal to the number of the solutions
of the equation ‘X AX = A. O

Lemma 4.4. Let m; and mo be two distinct messages which contain a common
encoding rule. Then the number of the encoding rules in both my and msy is

m—nry

m2—rim)p? 1
q2( 1m)p H (1—ﬁ)|Ur2(R)||Um—T2(R)|7

i=1

where rank(mi) = 1, rank(msg) = ro and 11 > ro.

(1) J(r2)
Al = ( ) and A, = ( )
0 0

be the source states corresponding to m and ms respectively. Assume that r; > rq,

Proof. Let

for otherwise, m; = mao, a contradiction. It suffices to compute the number of the
solutions of the matrix equations

{t)_(AlX:ml, . {t)_(AlXZAl,
1.€e.

©) ~ ~
XAQX = ma, XAQX = AQ.

By Lemma 4.1, we can assume that

X X
X = ( 11 12) ,
X2 mxm

where ‘X 1110 X = 1) X9y € GL,—, (R). By (6), we have

n( ) e ()
11 11 = .
0 71 X7T1 0 T1XT1

If we write X711 as follows
a b
Xll = ( d> )

then tal"™)q = 1) d € GL,, _,,(R). The fact ‘X1, 1) X;; = I") implies that

b = 0, whence
a
X1 = ( d) )
71 XT1

where tal(")q = [(m2) and td1(r1—7r2)q = [(ri—r2), O
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Theorem 4.5. If the encoding rules are chosen according to a uniform probability
distribution, then the probabilities of a successful impersonation attack P; and of a
successful substitution attack Ps are

(¢ +1)?

Pr = Ps =
1 gm0 1) (g2m 1)’ s

(¢+1)°
(qm _ (_1)m)q(2m72)p57(m71) ’
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