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Abstract. We give a necessary and sufficient condition for the existence of perfect match-
ings in a plane bipartite graph in terms of elementary edge-cut, which extends the result
for the existence of perfect matchings in a hexagonal system given in the paper of F. Zhang,
R.Chen and X.Guo (1985).
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1. Introduction

A matching of a graph G is a set of edges of G such that no two of them have

common ends. A perfect matching of a graph G is a matching of G which covers all

its vertices. Let S be a set of vertices of a graph G. The set of vertices of G adjacent

to at least one vertex of S is called the neighbor set of S in G and denoted by N(S).

Hall’s theorem tells when a bipartite graph has a perfect matching.

Theorem 1.1 [2]. Let G be a bipartite graph with bipartition (V1, V2). Then

G has a matching from V1 to V2 if and only if |N(A)| > |A| for every A ⊆ V1. In

particular, G has a perfect matching if and only if |V1| = |V2| and |N(A)| > |A| for

every A ⊂ V1.

A hexagonal system is a plane bipartite graph which is often used to represent

a benzenoid hydrocarbon. It is a 2-connected subgraph of a hexagonal lattice such

that each finite face is a unit regular hexagon. It is well-known that a hexagonal

system is the skeleton of a benzenoid hydrocarbon molecule if and only if it has a per-

fect matching. Sachs [3] provided a necessary condition for the existence of perfect
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matchings in a hexagonal system in terms of orthogonal edge-cut and conjectured

that it is also a sufficient condition. Zhang, Chen and Guo [4] gave counterexam-

ples to Sachs’s conjecture and provided a necessary and sufficient condition for the

existence of perfect matchings in a hexagonal system in terms of the elementary

edge-cut. In this paper we extend the result for the existence of perfect matchings

from a hexagonal system to that of a plane bipartite graph in terms of the elementary

edge-cut.

2. Preliminaries

In this section we introduce the basic terminology and results. If S is a set of

vertices of a graph G, then we use 〈S〉 to denote the induced subgraph of G generated

by S. Let G be a bipartite graph. Then we can color the vertices of G with black and

white such that adjacent vertices obtain different colors. We use W (G) (or B(G))

to denote the set of vertices of G colored white (black). A plane graph is a graph

in the plane where any two edges are either disjoint or meet only at a common end

vertex. Each interior region of a plane graph G is called a finite face of G, and the

exterior region of G is called the infinite face of G. The dual graph of a plane graph

G is denoted by G∗. Each vertex f∗ of G∗ corresponds to a (finite or infinite) face f

of G and is placed inside f ; each edge e∗ of G∗ corresponds to an edge e of G which

is adjacent to two faces f1 and f2 of G, and the edge e∗ crosses only the edge e of G

and joins the vertices f∗

1 and f∗

2 of G
∗. We call e∗ the dual edge of e. By definition,

a dual graph of a connected plane graph is also a connected plane graph, and it may

contain self-loops or multiple edges.

Let C be a set of edges of a connected graph G. Then C is called an edge-cut of G

if G \ C is not connected. It is well-known [1] that edges in a plane graph G form a

minimal edge-cut of G if and only if the corresponding dual edges form a cycle in G∗.

Let H be a hexagonal system drawn in a position with some edges in vertical

direction. A straight line segment C with end points P1 and P2 is called a cut

segment if it satisfies the following conditions:

(i) C is orthogonal to one of the three edge directions of H ,

(ii) each of P1 and P2 is the center of an edge of H ,

(iii) every point of C is either an interior or a boundary point of some cell of H ,

(iv) the graph obtained from H by deleting all edges intersected by C has exactly

two components.

Let C denote the set of edges of H intersected by C, then C is called an orthogonal

edge-cut of H , see Fig. 1 (a). By defintion, each orthogonal edge-cut C of a hexagonal

system H has the property that all vertices next to the cut segment on one side of
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the segment are black while those on the other side are white. Two components of

H \ C are called the black bank Hb(C) and the white bank Hw(C) of C respectively.

P1

P2

(a) (b)

Figure 1. (a) Orthogonal (Elementary) edge-cut (b) Elementary edge-cut

Theorem 2.1 [3]. Let H be a hexagonal system such that |B(H)| = |W (H)|.

If H has a perfect matching, then 0 6 |B(Hb(C))| − |W (Hb(C)) = |W (Hw(C))| −

|B(Hw(C))| 6 |C| for each orthogonal edge-cut C of H .

Zhang, Chen and Guo [4] gave examples showing that the converse of the above

theorem is not true. They provided a necessary and sufficient condition for the

existence of perfect matchings in a hexagonal system in the following theorem.

Theorem 2.2 [4]. Let H be a hexagonal system such that |B(H)| = |W (H)|.

Then H has a perfect matching if and only if |B(G′)| > |W (G′)| for each edge-cut

{e1, . . . , et} of H satisfying the following three conditions:

(i) G \ {e1, . . . , et} has exactly two connected components G′ and G′′,

(ii) V (ei) ∩ V (G′) ⊂ B(H) and V (ei) ∩ V (G′′) ⊂ W (H) for each ei (1 6 i 6 t),

(iii) edges e1 and et lie on the boundary of H , and ei, ei+1 are edges of some

hexagonal unit cell for each 1 6 i 6 t − 1.

The concept of an elementary edge-cut of a plane bipartite graph was first intro-

duced in [5]. An elementary edge-cut C of a connected plane bipartite graph G is

a minimal edge-cut of G such that G \ C contains exactly two components and all

edges of C are incident with white vertices of one component of G, which is called

the white bank of C and denoted by Gw(C); the other component of G is called the

black bank of C, and denoted by Gb(C), see Fig. 1 and Fig. 2.
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Lemma 2.3. Let H be a hexagonal system. Then an edge-cut C of H is an

elementary edge-cut if and only if it can be ordered so that it satisfies conditions (i),

(ii) and (iii) of Theorem 2.2.

P r o o f. If an edge-cut C of H satisfies the above three conditions, then C is a

minimal edge-cut. Otherwise, there is an edge ei ∈ C such that (H \ C)∪ {ei} is not

connected. Then (H \ C)∪ {ei} has two components G1 and G2 since H \ C has two

components G′ and G′′. Without loss of generality, we can assume V (G1) = V (G′)

and V (G2) = V (G′′). It follows that both end vertices of ei are contained in the

same component, say G1, of (H \C)∪{ei}. Then V (ei)∩V (G′′) = V (ei)∩V (G2) = ∅.

This contradicts condition (ii). Hence, C is a minimal edge-cut and so an elementary

edge-cut of H . On the other hand, if C is an elementary edge-cut of H , then it

is trivial that C satisfies (i) and (ii). By the proof of Theorem 2.2 [4], we can see

that C satisfies (iii) as follows: Suppose that C has no edges on the boundary of H ,

then one component G′ of H \ C is again a hexagonal system which is surrounded by

hexagons in H . By the fact [3] that the boundary of any hexagonal system has at

least 6 edges whose both end vertices have degree two, it follows that the component

G′ is neither a black bank nor a white bank of C, which is a contradiction. Hence, C

has at least one edge on the boundary of H . Since C is a minimal edge-cut of H , its

corresponding dual edges form a cycle in H∗. Therefore, C has exactly two edges on

the boundary of H and satisfies condition (iii). �

It is clear that an orthogonal edge-cut of a hexagonal system is also an elementary

edge-cut. However, an elementary edge-cut of a hexagonal system is not necessarily

an orthogonal edge-cut.

3. Main results

Theorem 3.1. Let G be a connected plane bipartite graph with |B(G)| = |W (G)|

and maximum degree ∆(G) > 3. Then G has a perfect matching if and only if

|B(Gb(C))| > |W (Gb(C))| for every elementary edge-cut C of G.

P r o o f. The main idea of the proof is similar to that of Theorem 2.2 [4]. We

give it here for completeness. Necessity. Let C be an elementary edge-cut of G.

Choose S = W (Gb(C)). Then N(S) = B(Gb(C)). Since G has a perfect matching,

|B(Gb(C))| = |N(S)| > |S| = |W (Gb(C))| by Hall’s Theorem 1.1.

We will prove sufficiency by contradiction. Suppose that G does not have a perfect

matching. By Hall’s Theorem, there exists a nonempty subset S ⊆ W (G) such

that |S| > |N(S)|. It is clear that S 6= W (G) since |W (G)| = |B(G)|. Without

loss of generality, we can assume that 〈S ∪ N(S)〉 is connected and S is maximal,
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that is, S cannot be a proper subset of S∗ ⊆ W (G) such that |S∗| > |N(S∗)| and

〈S∗ ∪ N(S∗)〉 is connected. We claim that |N(S)| < |S| 6 |N(S)| + ∆(G) − 2.

Otherwise, |S| > |N(S)| + ∆(G) − 2. Choose a vertex v not in S and adjacent

to a vertex of N(S) and let S∗ = S ∪ {v}. Then 〈S∗ ∪ N(S∗)〉 is connected and

|N(S∗)| 6 |N(S)| + ∆(G) − 1 < |S| + 1 = |S∗|. This contradicts the maximality of

S. Therefore, the claim is valid.

Let G′ = 〈S ∪ N(S)〉 and G′′ = G − G′. Let C be the edges of G between G′

and G′′. It is easy to see that C is an edge-cut of G. Note that W (G′) = S and

B(G′) = N(S). Hence, G′ is the black bank of C and G′′ is the union of white banks

of C.

Next, we show that G′′ has exactly one component. Recall that |W (G)| = |B(G)|

and |W (G′)|−|B(G′)| = |S|−|N(S)| > 0. Then |B(G′′)|−|W (G′′)| = |S|−|N(S)| >

0. Assume that G′′

1 , G′′

2 , . . . , G′′

t are components of G
′′. Then |B(G′′)| − |W (G′′)| =

t
∑

i=1

(|B(G′′

i
)|−|W (G′′

i
)|) > 0.We claim that |B(G′′

i
)|−|W (G′′

i
)| > 0 for each 1 6 i 6 t.

Otherwise, if there is some 1 6 i0 6 t such that |B(G′′

i0
)| − |W (G′′

i0
)| 6 0, then

|S ∪ W (G′′

i0
)| = |S| + |W (G′′

i0
)| > |N(S)| + |B(G′′

i0
)| = |N(S) ∪ B(G′′

i0
)|.

Let S∗ = S ∪W (G′′

i0
). Then N(S∗) = N(S)∪B(G′′

i0
) and |S∗| > |N(S∗)|. It is easy

to see that 〈S∗ ∪ N(S∗)〉 is connected. This contradicts the maximality of S. Hence,

|B(Gi
′′)| − |W (G′′

i
)| > 1 for each 1 6 i 6 t. If G′′ has more than one component,

that is, t > 1, then |S| − |N(S)| >
t−1
∑

i=1

(|B(G′′

i
)| − |W (G′′

i
)|). It follows that

∣

∣

∣

∣

S ∪

( t−1
⋃

i=1

W (G′′

i )

)
∣

∣

∣

∣

= |S| +
t−1
∑

i=1

|W (G′′

i )| > |N(S)| +
t−1
∑

i=1

|B(G′′

i )|

=

∣

∣

∣

∣

N(S) ∪

( t−1
⋃

i=1

B(G′′

i )

)
∣

∣

∣

∣

.

Let S∗ = S∪
( t−1

⋃

i=1

W (G′′

i
)
)

. ThenN(S∗) = N(S)∪
( t−1

⋃

i=1

B(G′′

i
)
)

and |S∗| > |N(S∗)|.

It is easy to see that 〈S∗ ∪ N(S∗)〉 is connected. This contradicts the maximality

of S.

Therefore, G \ C has exactly two components G′ = 〈S ∪ N(S)〉 and G′′ which are

black bank and white bank of C respectively. Similarly to the proof of Lemma 2.3,

we can show that C is a minimal edge-cut of G. Hence, C is an elementary edge-cut

of G. However, |B(Gb(C))| = |N(S)| < |S| = |W (Gb(C))|. �

Remark. The elementary edge-cut C in Theorem 3.1 need not have two edges

on the boundary of G. For example, the plane bipartite graph G in Fig. 2 has
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|B(G)| = |W (G)|, and |B(Gb(C))| > |W (Gb(C))| for any elementary edge-cut C of G

with two edges on the boundary of G. Nonetheles, |B(Gb(C))| < |W (Gb(C))| for the

elementary edge-cut C of G shown in the figure. Hence, G does not have a perfect

matching by Theorem 3.1.

Figure 2. An elementary edge-cut of a plane bipartite graph
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