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Abstract. We present a description of the diagonal of several spaces in the polydisk. We
also generalize some previously known contentions and obtain some new assertions on the
diagonal map using maximal functions and vector valued embedding theorems, and integral
representations based on finite Blaschke products. All our results were previously known
in the unit disk.
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1. INTRODUCTION AND MAIN DEFINITIONS

Let n € Nand C" = {z = (21,...,2n): 2z € C, 1 <k < n} be the n-dimensional
space of complex coordinates. We denote the unit polydisk by

Ur={2e€C": |zx] <1, 1<k <n}
and the distinguished boundary of U™ by
T ={ze€C": |z| =1, 1<k<n}

By mo,, we denote the volume measure on U™ and by m,, we denote the normalized
Lebesgue measure on T". Let H(U™) be the space of all holomorphic functions on
U™ When n = 1, we simply denote U! by U, T' by T, ma, by ma, m, by m. We
refer to [5] and [11] for further details.

The first author was supported by RFFI Grant 09-01-97-517. The second author was
supported by MNZZS Serbia, Project 144010.
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The Hardy spaces, denoted by HP(U™) (0 < p < o0), are defined by HP(U™) =
{fe HU™): sup My(f,r) < oo}, where
o<r<1

M) = [P dmn(©). Maalfir) = pax £, 7€ (0.1), f € HQ™)

ceTn

As usual, we denote by & the vector (aq, ..., ap).
For aj > —-1,j =1,...,n, 0 < p < oo, recall that the weighted Bergman space
AZ(U™) consists of all holomorphic functions on the polydisk such that

n

1 = [ 1P TI0 = =)™ dmauz) < .

i=1

When o = ... = o, = o then we use notation A2 (U™).
Let 7% = {(k1,...,kn): kj € Zy =NU{0}},

={(ky,... ko) kj€Z_, j=1,... n}.

If w is n-harmonic (harmonic in each variable), then as usual

oo n
i iony _ kil ikjp;
u(re¥t, ... r,e'¥n) = E Chy,....lon Hrj (R
kl,...,knzfoo j:1

We define the fractional derivative of order a of an n-harmonic function in the usual
way as follows

e} n

_ i Lo+ [k[+1) 1k ik
DY gy C 1 7‘P7
u(re'?) > R S N CESY () H
kla 7k77=_00 j=1
k| +1) . kil +1
[(o+ k| +1) S %+||+> o1
Do+ DT(Jk|+1) (o + DI(|kj| + 1)’

Jj=1

Let further
n
RP (@) = {u is n-harmonic: / H(l — ze]) ¥ u(z1, - . .y 20)|P dman(2) < oo},
" k=1

O<p<oo,ar>-1,k=1,...,n
Note that it is easy to check that D®u is n-harmonic if u is n-harmonic.
We will call a function « pluriharmonic if u = Re(f), f € H(U™) and we denote

hP(d) = {u is pluriharmonic: ||u|pra) < 00}
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If1 <pj <o0,j=1,...,n, both h?(a) and ﬁp(o?) are Banach spaces, for
0<p<l,j=1,...,n, h?(a) and ﬁp(&) are quasinormed spaces.

Throughout the paper, we write C' (sometimes with indices) to denote a positive
constant which might be different at each occurrence (even in a chain of inequalities)
but is independent of the functions or variables being discussed.

The notation A < B means that there is a positive constant C, such that B/C <
A < CB. We will write for two expressions A < B if there is a positive constant C'
such that A < CB.

Let us reiterate the main definition.

Definition 1 (see [5]). Let X ¢ H(U), Y C H(U™) be subspaces of H(U) and
H(U™). We say that the diagonal of ) coincides with X if for any function f, f € Y,
f(z,...,2) € X, and the reverse is also true: for every function g from X there is an
extension f(z1,...,2n), f € Y so that f(z,...,2) = g(z).

Note when Diag()) = X, then | f||x =< igf |®(f)||y, where ®(f) is an arbitrary
analytic extension of f from the diagonal of the polydisk to the polydisk. The
problem to studying the diagonal map and its applications was suggested for the
first time by W.Rudin in [11]. Later on, several papers appeared where complete
solutions were given for classical holomorphic spaces such as the Hardy and Bergman
classes, see [5], [6], [8], [12], [16] and the references there. Recently the complete
answer was given for the so-called mixed norm spaces in [10]. For many other classes
the answer is unknown. The aim of this note is to add various new results in this
research area.

Theorems on the diagonal map have numerous applications in the theory of holo-
morphic functions (see, for example, [2], [14]). Analogues of the diagonal map prob-
lem, the so-called trace problems in various functional spaces in R", are well-known
(see, for example, [9]).

This paper is organized as follows. In the second section we collect preliminary
assertions. In the third and fourth sections we present various new results concerned
with the so-called diagonal map operator in the polydisk; practically all results from
these sections were previously known for particular values of the parameters or are
obvious for the case of the unit disk.
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2. PRELIMINARIES
We need the following lemmas.

Lemma 1 [1]. Let 0 < p < g < 00, and let u be a positive Borel measure in the
unit disk. If u{z € U: |z — €| <r} < Cri/? for each & € T and each r > 0, then

[ I£G dute) <
where X is a Banach space in U or a quasinormed space.

Lemma 2. Let ¢t > —1,8; > (t+1)/n, j=1,...,n. Then

n _
1= fuwleiozsl® ] |1~ 2=

1 o t .
J— / n(l Jw])*d|w] < C LeU et
o 11

Jj=1 Jj=1

Proof. We restrict the proof to the case of n = 2. The general case can be
considered similarly. We have obviously

[ (1 — |w])tdjw] ! (1= |w])d|w|
J_A +/ |

11— fwle?®zy P11 — |wlez|% [, |1 — w]e®z |11 — Jw|el¥ 2|

where Ry = max(|z1],|22|). Hence

t+1 t+1
/ (1 ]’ dlu _ Ol - Ry (1 - Ry
Ry 11— [w[e®21 71| — Jwlei®zolP2 = |1 — 2169|811 — zgeiv|Be
C
T2 — t+1 '
Hl |1 — zjeCe|fi—=
=
Thus
/% (1 — |w|)tdjw)| </%ou—Rmy?u_Rﬁhm
o 1= |w|e®z |01 — wlel®zo]® = Jy |1 — Re¥ 7|81 [1 — Re'® 750
C
S 3 .
[T 11— zeie )%
j=1
The proof is complete. O
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Lemma 3. Let du(z) = (1 — |2))"/?~2dmay(z), 0 < p < 1. Then

p{zeU: |z—¢l <r}<Cr'/?, r>0, ¢eT.

Proof. Let K, ={z: 0<|z—¢&| <7}, 2 =& +re¥ = 0el?, € =e?. Then

0—
2

el —e¥| <r, 1—r<p<], ‘sin ‘<r.

Hence we have

The proof is complete. O

3. VECTOR VALUED EMBEDDING THEOREMS, MAXIMAL OPERATORS AND
DIAGONAL MAPPING

The goal of this section is to show how vector valued embeddings and estimates
for maximal functions can be used for the study of the operator of diagonal mapping.
In this section we also completely describe traces of some holomorphic classes in the
polydisk on the diagonal (z,...,z2).

In [6] authors gave a partial solution of Rudin’s problem providing, in particular,
the following assertion.

Theorem A. Let 1 <p < qg< oo, n > 2. Then
[ @1 = 20 ama(z) < L v

where g(z) = (Df)(2) = f(z,...,2).

We provide below generalizations of this result.
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Theorem 1. Let 0 < p; < 1,¢=1,...,n. Then

/ |f(z1,. .. 20)| H(l — |z1)) P2 dmgy, (2)
k=1

<0 ([ (- (Lreor dm1<51)>§fdm1<fz)...)”" 1dm1(£n>)”l"

= C|[fllgz < oo and IIDfIIAgZ SO fllass g = 1.

Proof. We use an idea which appeared in [1] for the study of Hardy classes
in the polydisk. Let n = 2. The general case can be considered similarly by a small
modification of the proof we provide below. Let f: U — LP(X), where X is a
quasinormed space, 0 < p < o0, so for every z € U, fU Il f(2)|I% dma(z) < oo, and
HP(X) is the closure of polynomials depending on z with values in X

n
=Yoot meeXe Il = [ 7@ 0<p<oc.
k=0 T
Note that if X = C then HP(X) is the ordinary Hardy class. If X = HP* then

HP(X) = {feH(UQ): Sup(/ (/ |f(ré1, réa)|” d&)mdﬁz)pz <OO}7
r<l T T

0 < p1,p2 < co. Put in Lemma 1 ¢ = 1, p = po, H? = HP?, X = HP'. Then
HP(X) = HP2(HP'). From Lemma 1 we have

1) /U 1£() 11 dp(z) < CILf 0.

Since by Lemma 3 the measure ju(22) = (1 — |22|)'/P2 dma(22) can be used in Lemma
1 we have

1/;Dl
/ ( JALGESE ds) (1 [22) /P2 dma(z2) < Ol s oe,

1/?1
/ Fer, 22| (1 — |72 dma(zr) ( [ e de) ,

and we have the estimate we need from the last two inequalities.
To get the second estimate of the theorem we use the fact that (see [5])

i (X‘7‘+2n—2
/ (e P — |25 dma(2) < Cllflamy, 0 <p< o0, aj > —1,



for p = 1 and the estimate (see [5])

< / n|<I><z)|ﬂ<1—|z|>adm2<z)>s< IR H D2 dmg(a),
k=1

s <1, ® € H({U™). The theorem is proved. O

Remark 1. The first assertion in Theorem 1 for p; = ... = p, is well-known
(see [1]) and plays a crucial role in the description of the dual of Hardy classes H?,
p < 1 on the polydisk (see [1]).

We give now another extension of a theorem of P. L. Duren and A. L. Shields using
the classical interpolation theorem.

Theorem 2. Let 1 < p < q < co. Then M (Df, r)(1 — 7“2)%7% < CMy(f,r),
n>1,and [)(1-7) e L I(DA)(rE)2dE) T dr < C fllmsnys n > 1.

Remark 2. Note that since M, (f,r) is increasing (see [5]) we have
[ @0 = 2hE dma)

<C/ <1—r>‘«”+a1(/|g<r§>|Qd§)qdn p<a asl,
0 T

So our theorem improves Theorem A from [6].

Proof of Theorem 2. We will show Theorem 2 for n = 2. The general case can
be obtained similarly. Let f € HP(U?). Then by the Poisson integral representation

J(€1,&)(1 — [2])2 d& A&y

52, s : U.
TR S P ol U

o=

We choose s > 1,1 —1/s=1/p—1/gand put c=p/(p—1),b=5s/(s—1),a=gq.
2 _
Then 1/a+1/b+1/c=1.Let ®(&,2) = [ 1 — &pyze)| 2, & €T, 2z, €U, k= 1,2.
k=1
Then by Hoélder’s inequality

WA <o [ e rmere) ([ rorare)’ ([ me o)

< CUANNBU) =
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and

)27?(23—1)—2(1 dp

/T|fR(Z,z)|‘1(1 — |z

Finally [y (|fr(z.2)[dp)? (1 = R)* < Ol falls(ra), R € (0,1), a = (4s — 1 2q +
2¢C~1(25—1))/q, s € [1,q),t > 0. Hence || (Dfg)| L« (1—R)?>/?~1/9 < C|| fr|| r». Note
that the last estimate is well-known for n = 1: M,(f,r) < C(1—r2)Y =P M,(f,7),
1<p<yq.

To get the estimate, we need we apply the classical Marcinkiewicz interpolation
theorem to the following function @,

@) ==y [ If(ré‘,ré)lqdf)l/q, O<r<l.

Since {r € (0,1): ®¢(r) > t} C {r € (0,1): (1 —7r?)% < (Cst*1||f||s)5}, for any
s€[l,r), t >0, we have for all ¢

w(@p(r) >t) < (C’k‘;1f_1||f||s)s7 p(r) =4r(l - 7“2) dr.

Hence by putting s = %(p +q), s = 1 and applying the Marcinkiewicz interpolation
theorem we get the estimate we need

1
= D10 <

The proof of the theorem is now complete. O

Below we provide a complete description of the diagonal of some analytic classes
based on Lorentz spaces on the unit circle.

Theorem 3. Let ¢ > 1 and o € (—1,1). Then Diag(L(«, q)) = L1(«, q), where

Do) = {7 € HO™):

—kn

Z 9=wt(atl) | g=(atD) sup |[f(r1&, ..., rné)l| Lace () < oo},

Kt yeorin >0 rely

1
D) = {£ € HW)s [ 1l (1 =) ar < oo,

L=]Ja-27% 1-27%"1

i=1
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Proof. We have

1
/0 1ol ooy (1 — 1)

C’Z sup || fr|| poary2 k2 7F

k>0 "€k
—k —kn
<C Z 9= (el g (atl) sup I f(ri&, ... )|l Leacrys
K1 im0 1€l . rn€lk,

where I, = (1 —27% 1 - 27+71].

We put ¢ = oo to get a half of the theorem.

Let us prove the reverse. Let n = 2. The general case can be obtained by a small
modification. Let a be sufficiently large positive number. We put

w) (L — |w])® dmo(w)

at2’

(1-(w z1>>T<1— (1, 22)) "+

F(z116 1 118) = Ca /

where C\, is the Bergman projection constant. Obviously

f(z1€,1218) = f(2), z=|z|¢, z € U.

And moreover by a well-known characterization of the L?>° classes (see [7])

1
[ fll ey XSupW/If(lzllf,lmlﬁ)ldm(&)

" // F@)(1 ]} dmo(w) dg
0 ICT |I|1 Ya ate

(w, zi))

H:]w

Note that our integral over the unit circle is a convolution of two functions. Hence
we can apply the well-known Young’s inequality for convolutions in Lorentz clasess
(see [7])

If * gllpaery < CllfllLamllglliery, > 1,

a+2

where g(€) = 1/(1 — (wl€, 2))2, w = |wl|¢, z,w € U, € € T. Hence we have

atl atl
Z sup ”frHLq,oo(T)(l —rl) 2 (1 _7"2) =
kl,kzZOHEI’CUWEIkQ
SC’ sup Z <H2 ka+1>
1€ 1k r2 €0k k1,k220
o 1

< Mol 1- o= — | duwl,

0 (1= (ful€, 21)) % (1 = ([ul€, )+ o)

where « is big enough.
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Note now

2"k C
2 < A =1-277, 1), ).
@ LTRE ST FeO e 0.

Further for a > 0

— —a/2(1 _ 1+a/2
< o L) ™20 = e
LHT) IT(1 = (1—=2%)fuwl)

j=1

1
H (11 = ([wl€, 21)| |1 — ([wl€, 22)|)(@+2)/2

Therefore by using (2) twice for 8 = %(a +1), a € (—1,1) we get finally what we
need. The theorem is proved. O

Remark 3. We note also that in Theorem 3 we can replace the LP>*° classes by
any functional Banach space X on T so that | f * gl x ) < C| fllxllgllr ().
Since it is known that (see [12]) [, [(Df)(2)[P(1 — |z])" "2 dma(z) < C||f || me(wn),
n>1, 0 < p < oo, then we can apply it to the slice function f,(z) = f(pz), z € U,
€ (0,1) we have

sup(l — o) /|f 2, .., 02)[P(1 — |2])"™ 2dmg()
o<1
\CSU.pMp(f, )(1_9)7 a>o7n>1-
o<1
Moreover if
Y1 -z & dma(z .
(T f)(2) = Flon,- oo c/f AP v =1
—(Zzk)

then (DF) = f, ||Fllz» < C[f[laz
F,. The last equality follows from

0<p<oo, n>1(see [12]) and T, 5(f,) =

_9’

/ flotz)g(rt) dt = / f@tz)g(ert)dt, f,ge H(U), z€ U, o,r € (0,1).
T T

Collecting the arguments we gave above, in the following theorem we provide a
description of the diagonal of weighted Hardy spaces. Note that this description was
missing in the recent paper [10].
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Theorem 4. Let n > 1,0 < p < 00, o > 0. Then Diag(AP>°) = AP where

AL = ([ € HU™): swp(f0)(1 = 0" < ook, ME() = [ 1P,

n

AQt = {f € H(U): sup(l = o) /U [f(e2)P(1 = [))" 72 dma(2) < 00}-

o<1

We will provide now the description of the diagonal of the AP classes, also
for p = co. Let S be a set of positive measurable functions w on (0,1) such that
My < w(Ar)/w(r) < My, for all r € (0,1), A € [gw, 1] and some fixed M,,, My,
¢w such that m,,q, € (0,1), M,, > 0. The classes S were studied in [15]. Let
@y = logmy,/logqy, then it can be shown that w(z) € [z, 27 P»], = € (0,1),
Bw =InM,/In(1/q,), w € S, (see [13], [15]).

Let further Ay, w,3={f € HU™): sup |f(z1,...,20)| [] (wi(1—|2x]|) x
z;€U,5=1,...,n k=1

(1 - [z)?/™) < oo}, B> 0,

In our next theorem we describe the diagonal of Bloch type classes with general
weights in the polydisk.

Theorem 5. Let w;" eS, r>ag, w=w;"

i, J=1,...,n. Then

Diag(Aw, ....w,.+) ={f € HU): sup|f T (wr(@ = (2D = |2])7) < oo}
k=1

Proof. One part of the theorem is trivial. To prove the reverse we need the
following estimate (see [13])

w(l — [z|)x% (2) dma(2) w(l = |z1)) ,
(3) /U |1 — <Z,Z_1>|°‘+2 <C (1 — |lel)a Xv(zl)’

where 2, € U, w € S, a > ay, v € [0,min(1 — B,)], x,(2) = 1/(1 — |2])?/P4,
v €10,00), 1/p+1/q=1, p > 1. We have as above for any positive 7

F(z, .. /fz (= )T dme(z) - g
10— ()

k=1
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Hence using (3) for v = 0 and Holder’s inequality for m functions we have

IT (we(1 = [2])) " dma(2)
|F(z1,...,zn)|§/ b=l
U0 - (7 )

k=1
ﬁ</ (w;(1—|2])) "™ dma(z ) “ wi(1—]z))7"
g -G L)
The proof of the theorem is complete. O

Remark 4. The corresponding theorem for little Bloch-type classes can be proved

similarly.

The expanded Bergman projection

1 _ «
Toal)w) = Clne) [ LIZEE e, 0> -,
VL= Ewd)
F=1
where w = (w1, ...,w,) € U™, C(n,«) is the Bergman constant from the Bergman

representation formula, plays a crucial role in the study of the diagonal map (see [5],
[8], [10], [16] and the references there).

We will now provide new estimates for this operator using, in particular, Stein-
type maximal functions from [18]. At the same time we extend previously known
estimates.

Theorem 6. (a) Let I, (§) = {z € U: [1 =& <~v(1 —|2])}, v > 1, € T. Let
Be(0,3), a> B, n=2. Then

[ (s sw PaTo() e z2)l(1- 1) (1 faal) dml)) < o

T Nz1€T4(€) 2260 (€)

(b) Let p>2,1/p+1/qg=1,t € (-2,-1), a > max(t + 2/q,0), n = 2. Then

sup |Th.of (21, 22)|(1 — |21])2(1 — )ﬂ;t7%
21,22€U
A7
éC(/ sup |f(z)|(1_|z|)2> dm(e).
T 2€T,(8)

Remark 5. Puttingn =1, a = 0, 8 = 0 in the first estimate of Theorem 6 we
get the following well-known estimate for H? classes (see [5], Chapter 1)

/T sup |0(2)[2dm(€) < CJ1® |3 0

ZEFw(E)
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Putting n = 1, a = 0, t = —2 in the second statement of Theorem 6 we get the
well-known estimate (see [1], Theorem 2.5, [4], [5])

1
sup [®(2)|(1 - [z[)» < C [ sup [®(w)]” dm(§) = |||
|z]<1 T wel (&)

Proof of Theorem 6. Let T5(f) = ®(z1, 22). Then, by using Hélder’s inequal-
ity we obtain

£ (w) -
(e, )] 5 € U|1—<w L — Gy ()

(e dmz(w)f ([t dm)
Hence since 3 € (0, 3) and a > §,
DS ®(21,22)| S C’(/ | f(w |1_ = z|q;;||)2 de(w))%

1
—|U)| 2
(s o)

then we have

sup  [DE,D(21,22)|(1 — |22)* (1 = |21])?
z1,22€T (&)

su [f@)P (1 = w2 mo(w)(1 —|2:N)?? ) =& see
o () O st = 217 = Ga(1), (s ),

z1 EF

=

Note that
(1= (X&) = (1= 2], 2eU, xeTs(8).

Hence

127281 £(2)2(1 = r)2B T
G1(/)(€) S C sup (/U<1 )T/~ ) dmz(z)) = G\(f.6.5).

0<r<1 1= (r, )2

Obviously for v € (1,2 —28), 8 € (0,3),

N

- R
Gl(f’g’mSCoi‘iEl(/T =06, o) dm@)‘
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Therefore it is enough to use the estimates for Stein-type maximal functions [18]

(1=r) =Y fro)lr VP
“p(/T 11— (3, 6)]° d“’)

feHP p>1,6€(0,1/p), a € (1,2 — Bp), to get what we need. So the proof of
the first estimate is complete.

< Clfllar,

Lp

Let us prove the second estimate. First, we have the following chain of known
estimates (see for example [4]).

dp(z)
d <C ——=d

(4) Jamse[ [ e,

My Pag<C P dg, ;
(5) | s ac<c [ irorae p>1
where My _1 f is the classical Hardy-Littlewood maximal operator, and
(6) [ lr@Pam@ s [ (s (r@home de,

U T z€T4 ()

where p is a positive Borel measure, 0 < p < oo, f is measurable in U and as usual
C(p)(€) =sup |71 [, du(€), Al ={z=r¢, eI, 1—|z| <r <1}, I CT. Using
el

(4) we have

£@)l(1 ~ fu)°
201,22 5 Cl0) | TS P dma),

where 21,29 € U and C(a) is the Bergman projection constant. Further on, by
using (4) and applying Hoélder’s inequality twice, we get

(e 22)l 2 C</T </mg> g 1|Q|S|);||1w—|)2<: wd>n|1+(w ) d’f);

([ Bt o) < o

p>2,a>t+2/q,te(=2,-1),a>t/2,1/p+1/q=1.
Using Fubini’s theorem and a duality argument

) (1~ ]~ dma(w)
B(f)= sup // 1—|w| V1= (21, @)+ [ ()| dm(€)

el ( )

= [f(w)P(1 — fw])** _dma(w)
H«:H & ),/ |1 — (21, )| +2 /W’ )lxra. e (2)d€ A )2
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Hence using (6) and the estimate

sup 1= [ 1RO 0 (2)dm(©) < CMa1(0)6).  (see 4],

we have (f = f(1 — |w|)*/?)

(1 —Jwpett

BU) S 5w [ (Al DNOF Ma-sle)EC (W) (6) de
[ Ui @)Y dms(w)
=

(21, @)[*+2[1 = (@, w)|N 7

< sup /T (Aeo (F)(E))* Mit—1.(9)(€) d€ sup

® weU Ju
where My _ 1 is the Hardy-Littlewood maximal function. We used the fact that

_ |[F(2)|dma(2) . | N1
||C(F)||L°°fglellzf T (1— o)V, N >1.

From the last estimate, Holder’s inequality and (5) we finally get

t

@ (21, 22)|(1 = [21))" (1 = [22]) = ~% < O flleo,

t € (—2,—1), p > 2. The proof of Theorem 6 is complete. |
Sharp diagonal mapping theorems can be obtained in various spaces of harmonic

functions. We give an example.

Theorem 7. Let 0 <p < oo, o > —1, j=1,...,n. Then

Dlag(hp (Za] +2n — 2) n > 1.

Remark 6. Since the h? (d) classes contain the holomorphic Bergman spaces in
the polydisk, Theorem 7 can be considered as an extension of the theorem on the
diagonal map in AP (U™)—the Bergman classes in the polydisk (see [5]).

Proof of Theorem 7. The proof of Theorem 7 almost repeats the corresponding
proof for the classical Bergman classes in the polydisk (see, for example, [12]). We
add some needed remarks. For every harmonic function v such that

/ [v(2)P(1 = |z])*dma(z) < oo, a>1, 0<p< oo,
U
v(z) =

1 )n([3+2)

)= C9) [ )1 =l Re (e

ma(w).
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n —1
Let u(z1,..., %) B) [y v(w)(1 — w[2)nF+D- 2Re(n 1- (zk,w))5+2> X

k=1
dma(w).
Note thatu(z,...,z) = v(z), z € U™ and u is a pluriharmonic function. Indeed to
prove the last assertion we have

o0
E CroMe*? = gel 2 = rel?

k=—o0
w(z1, ...y 2n) / / Z Ckg\k\eike7
=
LB+ k[ +2)  |a n
_ n(5+2) 2 T'kl ,..lenl eikjgpj ‘kjle_ikja d de
! Z F(5+2) (|k|+1) * n J1;[1 0 odo
ezy"u’z"
E+2)
Z Ck ﬁﬂ;_||]:— 1 H ‘kllkJ‘PJ
<k1 + 2Tk +1) 5
eZ"uz"
1 n ,
/ (1-o )n(ﬁ+2)—zg2(j§1 W)Hdg
- Z Cryyeven T‘kl‘ rlkeleitien - iknen
(K1, skn)
erruz™
hence u is pluriharmonic (see for example [11]). -

4. ON SOME GENERALIZATIONS OF DIAGONAL MAPPING

The diagonal (z,...,z) was generalized and studied relatively recently in [3].
Namely, in [3] Clark considered the map (Dpf) = f|ly = F, where f € H(U"),
was based on finite Blaschke products,

V={(z1,....2n) €U": Bi(z1) =... = Bn(2n)}
Bj(z):ﬁ 2obi N, Ibji| < 1.
z:ll_bjiz

He also studied Bergman and Hardy spaces on the variety V, A2 (V) and HP(V)
obtaining generalizations on known results of some diagonal mapping theorems for
AP, HP for the Dp operator. Note that if ny = ... = ny =1 and b;; = 0 for all
j=1,...,N, then (Dgf) = f(z,...,2).
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Our intention is to find new inequalities for holomorphic functions in U™, which
is its subvariety V. The following known estimate gives an example

/U |f(z, ..., 2)[P(1 = |z)" 2 dma(z) < C||fllzen), 0<p<oo, n>1 (see [12]).

Obviously both sides of this estimate “tend” to HP(U) for n = 1.

To get similar inequalities for the variety V', we will need some assertions from
Clark’s paper.

Any analytic function in V' can be represented as

Fz1,....2n) =Y fulz,- o, 20) (Bi(=1))Y,
v=1
(21,...,2Nn) € V, where f, belongs to an n; ...ny dimensional subspace of H2(U™).
Let -
for(z, o) = fulzr,oozn)r (Bi(z1))”, r € (0, 1].
v=1

In [3] Clark defined Hardy space quasinorm on V as follows

27
sup Hf[r]HH,, = sup / / | fir (w1, - oy wn) [P dpteio (w) dO
o<r< o<r<1Jo

sup /T STk o) <f[1 B}(ﬂjk)>1

o<r<1 k>0

where du.ie is an appropriate atomic measure in the mentioned representation and
Bi(n\) =X\ j=1,....N, A=re? € U, Bji(njr) #0,j =1,...,N. For there are
ni,...,ny points (k) = (Mr(A),...nne(A)) such that Bj(n;x) =X, j=1,...,N,

f51(0) = firy(me(N), - . nve(N)) (see [3]).

| firy |l zr2(vy is increasing and

21
0 el =S / e (re®). ... (rei®)) .8
k

2n
= / [1h(z1, - .,zN,rele)quz(Un) df, 0 <r <1, (see [3]),
0

where
N 1
h(zla" ZN& f Uk )
Z 1:[ (njx (A ZJ) B35 (njx (M)
z; €U, j=1,...,n, A € U, where the sum on k is over all 1.
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Remark 7. Note that when V = {(z,...,2): z € U} then
h(z1,.. . 2n,A) = (h(2)) = f(z,...,2), z€U

and in (7) all expressions are equivalent to [.|f(r¢,...,r€)[P d€.

We define Bergman classes on V' as follows (see [3])

1
Ap7N(V) = {f e HV): /0 | fir (21, - - .,zN)||§7V(1 — TQ)ardr < oo},

1 < p< oo, a>0. For the diagonal case (z,...,z) we have

||f||ip,N://|f v, rE)P(1 - ) drde.

Theorem 8. (a) Let « >m —1, f € H(V). Then

1 1 m
a+tl
11y S C/ // I fir, rat 30 [T = Rj) ™ ~TdRy ... ARy
0 0JT paie}

(b) Let F € H(V') and f02n J sup | Fiyj(w)] dpsgio (w) d6 < oco. Then there is a func-
r<l
tion f € H{UY), fly = F and

21
et 2l =)o (= 2D SC [ [ sup 1) dpen () 40 < o,

r<l1

Proof. Since ||fj,[l2,v is increasing (see [3]) we have the following chain of
estimates

1 o0
(Kl :/ I fll3 @ =r)rdr =" (/1
k=0

CZ Z 2wt 2T (2 L 27 sup I firll3.v

ki=0 k=0 ERLY

<C/ /Hf ||2vH L—r))tdry... drp,

1—o—(k+1)

|f[r]|§,v7"d7")2_ka

—9—k

where Iy, = (1 -2, 1 —2=(k+D] [f] = [r}/m e l/m] t=(a+1)/m—1. Proof
for the first part of the theorem is complete.
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Let us prove the second estimate in our theorem. Since

2n
/ /sup | Firy(w)] dpteio (w) A€ < oo,
0 r<l

F belongs to AL%(V) for any a > 0, hence F € AN=2(V) and we have the following
integral representation

flz1, ooy 2n)
Lopr N w i0 —r2)N=2p 4y
N)/O/O /F[r](w)]:[ 1- B( J) ( )due ( )(1 ) drdé

1 — (wy, zj) 1—rBj(w;)Bj(z)

z; €U, f€ HUY) and f|y = F (see [3]).

Moreover, we obviously have the following estimates using Lemma 2

2
* |1 (j)| d/,LeiQ( )d9
flenomi < [ fsupieio H ey L= B, (w,)B, ()| ¥
27
<c/ /sg)w )] dtgo (w) db————
' [T~ zx])

k=1

The theorem is proved. O

Remark 8. Both estimates in Theorem 8 were previously known for particular

values of V| (see [5], [8], [17]). If V = {(2,...,2)} then the first estimate gets the
following form (see [17])

/ 1 | prera - ara

1 1
<C/0.../0/T|f(R1§,...,Rn§)|pH(l—Rk) m 1Ry ... dRy, dE,

k=1

0 < p < oo, a > —1. The second estimate for V = U coincides with the classical
inequality of the theory of H? classes sup |f(2)|(1 —|z]) < C|f||g: (see [5]).
zeU
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