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Abstract. The main purpose of this paper is to prove the boundedness of the multidi-
mensional Hardy type operator in weighted Lebesgue spaces with a variable exponent. As
an application we prove the boundedness of certain sublinear operators on the weighted
variable Lebesgue space.
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Introduction

It is well known that the variable exponent Lebesgue space appeared in literature

for the first time already in 1931 by Orlicz [31]. In [31] the Hölder inequality for

variable exponent discrete Lebesgue space was proved. Orlicz also considered the

variable exponent Lebesgue space on the real line, and proved the Hölder inequality

in this setting.

However, after this one paper, Orlicz abandoned the study of variable exponent

Lebesgue spaces, to concentrate on the theory of the Orlicz spaces (see also [27]).

Further development of this theory was connected with the theory of modular func-

tion spaces. The first systematic study of modular spaces is due to Nakano [28]. In

the appendix, Nakano mentioned explicitly variable exponent Lebesgue spaces as an

example of the more general spaces he considered. Somewhat later, a more explicit

version of these spaces, namely modular function spaces, were investigated by many

mathematicians (see Musielak [26]).

The next step in the investigation of variable exponent spaces were the papers by

Sharapudinov [35] and Kováčik and Rákosník [20]. The study of these spaces has
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been stimulated by problems of elasticity, fluid dynamics, calculus of variations and

differential equations with non-standard growth conditions(see [2], [32], [39]).

In this paper sufficient conditions for pairs of weights ensuring the validity of two-

weight inequalities of a strong type for the multidimensional Hardy type operator are

found. We also investigate the corresponding problem for the dual operator. We also

give applications to the boundedness of certain sublinear operators on the weighted

variable Lebesgue space.

1. Preliminaries

Let Rn be the n-dimensional Euclidean space of points x = (x1, . . . , xn) and let Ω

be a measurable subset in Rn and |x| =
( n

∑

i=1

x2
i

)1/2

. Suppose that p is a measurable

function on Ω such that 1 6 p(x) < ∞, p = ess inf
x∈Ω

p(x), p = ess sup
x∈Ω

p(x), and ω is

a weight function on Ω, i.e. ω is a non-negative, almost everywhere (a.e.) positive

function on Ω. For the sake of simplicity, the letter C always denotes a positive

constant which may change from one step to the next.

Definition 1. By Lp(x),ω(Ω) we denote the space of measurable functions f on

Ω such that ∫

Ω

|f(x)ω(x)|p(x) dx < ∞.

Under the condition 1 6 p(x) 6 p < +∞, the space Lp(x),ω(Rn) is a Banach space

(see [17]) with respect to the norm

‖f‖Lp(x), ω(Rn) = ‖f‖Lp(·), ω(Rn) = inf

{

λ > 0:

∫

Rn

∣

∣

∣

f(x)ω(x)

λ

∣

∣

∣

p(x)

dx 6 1

}

.

For ω = 1 the space Lp(x),ω(Ω) coincides with the variable Lebesgue space

Lp(x)(Ω). The following theorems are known.

Theorem 1 (see [3]). Let 1 6 p 6 p(x) 6 q(y) 6 q < ∞ for all x ∈ Ω1 ⊂ R
n and

y ∈ Ω2 ⊂ R
m. If p(x) ∈ C(Ω1), then the inequality

∥

∥‖f‖p,Ω1

∥

∥

q,Ω2
6

(p

q
+

q − p

q

)1/p
∥

∥‖f‖q,Ω2

∥

∥

p,Ω1

is valid, where q = ess inf
Ω2

q(x), q = ess sup
Ω2

q(x) and C(Ω1) is the space of continuous

functions in Ω1 and f : Ω1 × Ω2 → R is any measurable function such that

∥

∥‖f‖q,Ω2

∥

∥

p,Ω1
= inf

{

µ > 0:

∫

Ω1

(‖f(x, ·)‖q(·),Ω2

µ

)p(x)

dx 6 1

}

< ∞.
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Remark 1. Note that in the case p(x) = 1, Theorem 1 is the analog of the

generalized Minkowski type inequality and was proved in [34].

Remark 2. Let v be a weight function. Analogously replacing the function f by

the function fv in Theorem 1, one can have the weighted analog of Theorem 1.

In [6] the following theorem was proved.

Theorem 2. Let p(x) and q(x) be bounded exponents on Ω. Then

Lq(x)(Ω) →֒ Lp(x)(Ω)

if and only if p(x) 6 q(x) for a.e. x ∈ Ω and there exists δ ∈ [0, 1) such that

∫

Ω

δ
p(x) q(x)

q(x)−p(x) dx < ∞,

where δ
p(x) q(x)

q(x)−p(x) = 0 for p(x) = q(x).

Remark 3. Note that in the case n = 1, x ∈ [0, 1] Theorem 2 was proved in [36].

For n > 1 and when the Lebesgue measure of the set Ω is finite, Theorem 2 was

proved in [20] (see also [33]).

2. Main results

Now we prove boundedness of the multidimensional Hardy type operator in

weighted variable Lebesgue space.

Theorem 3. Let 1 < p 6 p(x) 6 p < ∞, and p(x) be a function measurable on

R
n and satisfying the condition

∫

Ω δ
p(x) q(x)

q(x)−p(x) dx < ∞, where δ ∈ [0, 1). Suppose that

v(x) and w(x) are weights on R
n and there exists a constant α < 1 such that

A = sup
t>0

(
∫

|y|<t

[v(y)]−p′

dy

)
α

p′
∥

∥

∥

∥

w(·)

(
∫

|y|<|·|

[v(y)]−p′

dy

)
1−α

p′
∥

∥

∥

∥

Lp(·)(|x|>t)

(1)

< ∞.

Then for every f ∈ Lp(x),v(x)(R
n) the inequality

∥

∥

∥

∥

∫

|y|<|·|

f(y) dy

∥

∥

∥

∥

Lp(·),w(Rn)

6 C ‖f‖Lp(·),v(Rn)

is valid with C = (1 + (p − p)/p)1/p(1 − α)−1/p′

C1 A.
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P r o o f. Let

h(y) =

(
∫

|z|<|y|

[v(z)]−p′

dy

)α/p′

=

(
∫ |y|

0

sn−1

(
∫

|ξ|=1

[v(sξ)]−p′

dσ(ξ)

)

ds

)α/p′

.

It is obvious that h(y) is radial function.

Applying Hölder’s inequality for Lp(R
n) spaces (with conjugate exponent p′ =

p/(p − 1) = p′), we have
∥

∥

∥

∥

∫

|y|<|x|

f(y) dy

∥

∥

∥

∥

Lp(x),w(Rn)

=

∥

∥

∥

∥

∫

|y|<|x|

[f(y)h(y)v(y)][h(y)v(y)]−1

∥

∥

∥

∥

Lp(x),w(Rn)

6
∥

∥‖f h v‖Lp(|y|<|x|)‖[h v]−1‖Lp′ (|y|<|x|)

∥

∥

Lp(x),w(Rn)
.

By Remark 2, we obtain

∥

∥‖fhv‖Lp(|y|<|x|)‖[hv]−1‖Lp′(|y|<|x|)

∥

∥

Lp(x),w(Rn)

=
∥

∥

∥

∥fhvχ{|y|<|x|}(x)‖[hv]−1‖Lp′ (|y|<|x|)

∥

∥

Lp(Rn)

∥

∥

Lp(x),w(Rn)

6

(

1 +
p − p

p

)1/p
∥

∥

∥

∥fhvχ{|y|<|x|}(x)‖[hv]−1‖Lp′(|y|<|x|)

∥

∥

Lp(x),w(Rn)

∥

∥

Lp(Rn)

=
(

1 +
p − p

p

)1/p
∥

∥fhv
∥

∥χ{|y|<|x|}(x) ‖[h v]−1‖Lp′ (|y|<|x|)

∥

∥

Lp(x),w(Rn)

∥

∥

Lp(Rn)

=
(

1 +
p − p

p

)1/p
∥

∥fhv
∥

∥‖[hv]−1‖Lp′ (|y|<|x|)

∥

∥

Lp(x),w(|x|>|y|)

∥

∥

Lp(Rn)
.

We have

‖[h v]−1‖Lp′ (|y|<|x|) =

(
∫

|y|<|x|

[h(|y|) v(y)]−p′

dy

)1/p′

=

(
∫ |x|

0

rn−1

[

h(r)

∫

|η|=1

[v(rη)]−p′

dσ(η)

]

dr

)1/p′

=

(
∫ |x|

0

[
∫ r

0

sn−1

(
∫

|ξ|=1

[v(sξ)]−p′

dσ(ξ)

)

ds

]−α

×

(
∫

|η|=1

[v(rη))−p′

dσ(η)

)

rn−1 dr

)1/p′

=
( 1

1 − α

)1/p′ (
∫ |x|

0

d

dr

[(
∫ r

0

sn−1

(
∫

|ξ|=1

[v(sξ)]−p′

dσ(ξ)

)

ds

)1−α]

dr

)1/p′

=
( 1

1 − α

)1/p′ (
∫ |x|

0

sn−1

(
∫

|ξ|=1

[v(sξ)]−p′

dσ(ξ)

)

ds

)(1−α)/p′

=
( 1

1 − α

)1/p′ (
∫

|y|<|x|

[v(y)]−p′

dy

)(1−α)/p′

=
( 1

1 − α

)1/p′

[h(x)](1−α)/α.
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Therefore by the condition (1), we obtain

∥

∥fhv
∥

∥‖[hv]−1‖Lp′ (|y|<|x|)

∥

∥

Lp(x),w(|x|>|y|)

∥

∥

Lp(Rn)

=
( 1

1 − α

)1/p′
∥

∥fhv‖[h(·)](1−α)/α‖Lp(·),w(|·|>|y|)

∥

∥

Lp(Rn)

6

( 1

1 − α

)1/p′

A ‖fv‖Lp(Rn).

Taking Ω = R
n and applying Theorem 2, we obtain

‖fv‖Lp(Rn) 6 C1 ‖fv‖Lp(x)(Rn).

Finally, we have
∥

∥

∥

∥

∫

|y|<|x|

f(y) dy

∥

∥

∥

∥

Lp(x),w(Rn)

6

(

1 +
p − p

p

)1/p ( 1

1 − α

)1/p′

AC1 ‖f‖Lp(x),v(Rn).

This completes the proof of Theorem 1. �

Corollary. Let p(x) = p = const and let

l = sup
t>0

(
∫

|y|<t

[v(y)]−p′

dy

)1/p′
(

∫

|y|>t

[w(y)]p dy

)1/p

< ∞.

Then there exists a constant α ∈ (0, 1) such that the inequalities

l 6 A 6 Clα

holds.

The theorem below is proved analogously.

Theorem 4. Let 1 < p 6 p(x) 6 p < ∞, and p(x) be a function measurable on

R
n and satisfying the condition

∫

Ω δ
p(x) q(x)

q(x)−p(x) dx < ∞, where δ ∈ [0, 1). Suppose that

v(x) and w(x) are weights on R
n and there exists a constant β < 1 such that

(1)

B = sup
t>0

(
∫

|y|>t

[v(y)]−p′

dy

)

β

p′
∥

∥

∥

∥

w(·)

(
∫

|y|<|·|

[v(y)]−p′

dy

)

1−β

p′
∥

∥

∥

∥

Lp(·)(|x|<t)

< ∞.

Then for every f ∈ Lp(x),v(x)(R
n) the inequality

∥

∥

∥

∥

∫

|y|<|·|

f(y) dy

∥

∥

∥

∥

Lp(·),w(Rn)

6 C ‖f‖Lp(·),v(Rn)

is valid with C = (1 + (p − p)/p)1/p (1 − β)−1/p′

C1 B.
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Example. Let n = 1.We denote by C1(R) the space of continuously differentiable

functions on R. Let p(x) ∈ C1(R) and w(x) = |x|(1−α)/p′−α/p′·q(xt)/q(t) · Aq(xt)/q(t) ·

|(dq(xt)/dt) ln At−α/p′

− α/p′ · q(xt)/t|1/p(t), v(x) = 1, where xt ∈ (0,∞). Then the

pair (v, w) satisfies the condition (2) of Theorem 3.

Remark 4. Note that Theorem 3 and Theorem 4 in the case n = 1, 1 < p 6

p(x) 6 p < ∞ for x ∈ [0, 1] and p(x) = p = const for x > 1 were proved in [9] while

for multidimensional Hardy type operators they were proved in [11]. Also, Theorem

3 in the case n = 1, 1 < p 6 p(x) 6 p < ∞, for x ∈ (0,∞) and
∫ ∞

1 [p(x) − p] dx <

∞ was proved in [1]. In particular, for the multidimensional Hardy operator the

Lp(x-boundedness was proved in [5]. Further development in the direction of the

boundedness of the Hardy operator was given in the papers [15], [7] and [23]. A

two-weighted criterion for the Hardy operator at x ∈ [0, 1] was proved in [19]. In

the case p(x) = p = const at x ∈ (0,∞), various variants of Theorem 3 for classical

Lebesgue spaces were proved in [4], [10], [21], [24], [30], etc.

Sufficient conditions for general weights ensuring the validity of the two-weight

strong type inequalities for some sublinear operator are given in the following theo-

rem.

Theorem 5. Let 1 < p 6 p(x) 6 p < ∞ for x ∈ R
n and

∫

Rn δ
p(x) q(x)

q(x)−p(x) dx < ∞,

where δ ∈ [0, 1), and let T be a sublinear operator acting boundedly from Lp(x)(R
n)

to Lp(x)(R
n) such that, for any f ∈ L1(R

n) with compact support and x /∈ supp f,

(3) |Tf(x)| 6 C

∫

Rn

|f(y)|

|x − y|n
dy,

where C > 0 is independent of f and x.

Moreover, let v(x) and w(x) are weight functions on R
n satisfying the conditions

A1 = sup
t>0

(
∫

|y|<t

[v(y)]−p′

dy

)
α

p′
∥

∥

∥

∥

w(·)

| · |n

(
∫

|y|<|·|

[v(y)]−p′

dy

)

1−α

p′
∥

∥

∥

∥

Lp(·)(|·|>t)

(4)

< ∞,

B = sup
t>0

(
∫

|y|>t

[v(y)|y|n]−p′

dy

)

β

p′
∥

∥

∥

∥

w(·)

(
∫

|y|>|·|

[v(y)|y|n]−p′

dy

)

1−β

p′
∥

∥

∥

∥

Lp(·)(|·|<t)

(5)

< ∞.

There exists M > 0 such that

(6) sup
1
4 |x|<|y|64 |x|

w(y) 6 M ess inf
x∈Rn

v(x).
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Then there exists a positive constant C, independent of f , such that for all f ∈

Lp(x),v(R
n)

‖Tf‖Lp(x),w(Rn) 6 C‖f‖Lp(x),v(Rn).

P r o o f. For k ∈ Z we define Ek = {x ∈ R
n : 2k < |x| 6 2k+1}, Ek,1 = {x ∈ R

n :

|x| 6 2k−1}, Ek,2 = {x ∈ R
n : 2k−1 < |x| 6 2k+2}, Ek,3 = {x ∈ R

n : |x| > 2k−1}.

Then Ek,2 = Ek−1 ∪ Ek ∪ Ek+1 and the multiplicity of the covering {Ek,2}k∈Z is

equal to 3.

Given f ∈ Lp(x),v(R
n), we write

|Tf(x)| =
∑

k∈Z

|Tf(x)|χEk
(x) 6

∑

k∈Z

|Tfk,1(x)|χEk
(x) +

∑

k∈Z

|Tfk,2(x)|χEk
(x)

+
∑

k∈Z

|Tfk,3(x)|χEk
(x) = T1f(x) + T2f(x) + T3f(x),

where χEk
is the characteristic function of the set Ek, fk,i = fχEk

, i = 1, 2, 3.

First we shall estimate ‖T1f‖Lp(x),ω2
. Note that for x ∈ Ek, y ∈ Ek,1 we have

|y| < 2k−1 6 1
2 |x|. Moreover, Ek ∩ supp fk,1 = ∅ and |x − y| > |x| − 1

2 |x| = 1
2 |x|.

Hence by (3)

|T1f(x)| 6 C
∑

k∈Z

(
∫

Rn

|fk,1(y)|

|x − y|n
dy

)

χEk
6 C

∫

|y|< 1
2 |x|

|f(y)|

|x − y|n
dy

6 C

∫

|y|<|x|

|f(y)|

|x − y|n
dy 6 2n C |x|−n

∫

|y|<|x|

|f(y)| dy

for any x ∈ Ek. Hence we have

‖T1f(x)‖Lp(x),w(Rn) 6 2n C ‖| · |−n

∫

|y|<|·|

|f(y)| dy‖Lp(x),w(Rn)

=

∥

∥

∥

∥

∫

|y|<|·|

|f(y)| dy

∥

∥

∥

∥

L
p(x), |x|−n w

(Rn)

.

By the condition (4) and Theorem 1 we obtain

(7) ‖T1f(x)‖Lp(x),w(Rn) 6 C1 ‖f‖Lp(x),v(Rn)

where C1 > 0 is independent of f and x ∈ R
n.

Next we estimate ‖T3f‖Lp(x),w(Rn). It is obvious that for x ∈ Ek, y ∈ Ek,3 we have

|y| > 2 |x| and |x − y| > |y| − |x| > |y| − 1
2 |y| = 1

2 |y|. Since Ek ∩ supp fk,3 = ∅ for

x ∈ Ek by (2), we have

|T3f(x)| 6 C

∫

|y|>2|x|

|f(y)|

|x − y|n
dy 6 2n C

∫

|y|>2|x|

|f(y)|

|y|n
dy.
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Hence we obtain

‖T3f(x)‖Lp(x),w(Rn) 6 2nC

∥

∥

∥

∥

∫

|y|>2|·|

|f(y)| |y|−n dy

∥

∥

∥

∥

Lp(x),w(Rn)

6 2n C

∥

∥

∥

∥

∫

|y|>|·|

|f(y)| |y|−n dy

∥

∥

∥

∥

Lp(x),w(Rn)

.

By the condition (5) and Theorem 2 we obtain

(8) ‖T3f(x)‖Lp(x),w(Rn) 6 C2 ‖f‖Lp(x),v(Rn)

where C2 > 0 is independent of f and x ∈ R
n.

Finally, we estimate ‖T2f‖Lp(x),w(Rn). By the Lp(x)(R
n) boundedness of T and

condition (6) we have

‖T2f(x)‖Lp(x),w(Rn) =

∥

∥

∥

∥

∑

k∈Z

|Tfk,2(x)|χEk
(x)w(x)

∥

∥

∥

∥

Lp(x)(Rn)

=

∥

∥

∥

∥

∑

k∈Z

|Tfk,2(x)|χEk
(x)w(x)

∥

∥

∥

∥

Lp(x)(Rn)

6
∑

k∈Z

‖Tfk,2 w‖Lp(x)(Rn)

6
∑

k∈Z

sup
x∈Ek

w(x) ‖Tfk,2‖Lp(x)(Rn) 6 ‖T ‖Lp(·)(Rn)

∑

k∈Z

sup
x∈Ek

w(x) ‖fk,2‖Lp(x)(Rn)

= ‖T ‖Lp(·)(Rn)

∑

k∈Z

sup
y∈Ek

w(y) ‖f‖Lp(x)(Ek,2),

where ‖T ‖Lp(·)(Rn) is the norm of the operator T in Lp(x)(R
n). Since for x ∈ Ek,2 we

have 2k−1 < |x| 6 2k+2, we obtain by condition (a)

sup
y∈Ek

w(y) 6 sup
y∈Ek,2

w(y) 6 sup
1
4 |x|<|y|64|x|

6 M v(x) for a.e. x ∈ Ek,2.

Therefore

(9) ‖T2f(x)‖Lp(x),w(Rn) 6 ‖T ‖Lp(·)(Rn) M
∑

k∈Z

‖f v‖Lp(x)(Ek,2) 6 C3 ‖f‖Lp(x),v(Rn),

where C3 = 3 ‖T ‖Lp(·)(Rn) M, since the multiplicity of the covering {Ek,2}k∈Z is equal

to 3.

Combining the inequalities (7),(8) and (9) we obtain the proof of Theorem 3. �

Remark 5. Note that the condition (3) was introduced by Soria and Weiss in [37].

Many interesting operators in harmonic analysis, such as the Calderon-Zigmund sin-

gular integral operators, Hardy-Littlewood maximal operators, Fefferman’ssingular
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integrals, Ricci-Stein’s oscillatory singular integrals, Bochner-Riesz means and so on

satisfy the condition (3). In the case p(x) = p = const for the classical Lebesgue

spaces Theorem 5 was proved in [38](see also [12] and [22]). Also, for classical

Lebesgue spaces Edmunds and Kokilashvili [8] and Guliyev [13] found new sufficient

conditions on weights for the Calderon-Zigmund singular integral operator whenever

the weight functions are radial monotone functions. Further, for singular integral

operators defined on homogeneous groups, an analog of Theorem 5 was proved in

[16] and [14].

Remark 6. In [6] Diening was proved boundedness of the Hardy-Litlewood

maximal operators provided the exponent function is constant outside of a fixed

ball. Further, Nekvinda [29] has shown that this hypothesis can be weakened. Let

1 < p 6 p(x) 6 p < ∞ for |x| 6 1 and |p(x)−p(y)| 6 K/ ln 1/|x − y|, 0 < |x−y| 6 1
2 ,

and p(x) = p = const for 0 < |x − y| > 1. Further, suppose that T is either the

Calderon-Zigmund singular integral operator or the Hardy-Littlewood maximal op-

erator. Then for radial increasing weights functions Theorem 5 was proved in [11].

In [18] boundedness of the maximal operator in weighted variable spaces on a metric

measure space is proved.
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