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NAVIER-STOKES EQUATIONS ON UNBOUNDED DOMAINS WITH

ROUGH INITIAL DATA
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(Received October 24, 2008)

Abstract. We consider the Navier-Stokes equations in unbounded domains Ω ⊆ Rn of
uniform C

1,1-type. We construct mild solutions for initial values in certain extrapolation
spaces associated to the Stokes operator on these domains. Here we rely on recent results due
to Farwig, Kozono and Sohr, the fact that the Stokes operator has a bounded H

∞-calculus
on such domains, and use a general form of Kato’s method. We also obtain information on
the corresponding pressure term.
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1. Introduction and main results

In this paper we consider the Navier-Stokes equation

(1.1)





ut − ν∆u + (u · ∇)u + ∇p = f (t > 0),

∇ · u = 0,

u(0, ·) = u0,

u|∂Ω = 0,

in unbounded domains Ω ⊆ R
n of uniform C1,1-type for “rough” initial values u0.

Here, u(t, x) ∈ R
n denotes the unknown velocity field and p(t, x) ∈ R denotes the

unknown pressure at the point x ∈ Ω and at time t > 0, f = f(t, x) ∈ R
n denotes

an external force, and we have no motion at the boundary (“no slip”). We shall

be concerned with the construction of mild solutions for initial values u0 that are

“rough” in the sense that they belong to suitable extrapolation spaces for the Stokes
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operator. On Rn, half spaces or domains with compact boundary this has been done,

e.g., in [12], [2], [1], [10]. The results were based on the Lq-theory for the Stokes

operator on these domains, apart from [12] which, on Rn, used Morrey spaces instead

(cf. also [10, Sect. 4.3]). Here and in the following, the letter q is used to denote the

integrability exponent for Lebesgue-spaces and their sums and intersections. When

nothing else is said, we always understand that q ∈ (1,∞). It is well known that

there is no Lq-theory for the Stokes operator in general unbounded domains Ω, even

if they are smooth.

This lack has been overcome by Farwig, Kozono and Sohr ([4], [6]) who, instead of

working in Lq(Ω)n and Lq
σ(Ω), studied Helmholtz decomposition and Stokes operator

for the following function spaces

L̃q(Ω) :=

{
Lq(Ω) ∩ L2(Ω), q ∈ [2,∞),

Lq(Ω) + L2(Ω), q ∈ (1, 2),

L̃q
σ(Ω) :=

{
Lq

σ(Ω) ∩ L2
σ(Ω), q ∈ [2,∞),

Lq
σ(Ω) + L2

σ(Ω), q ∈ (1, 2),

where as usual Lq
σ(Ω), the space of solenoidal vector fields in Lq, is the closure

in Lq(Ω)n of C∞
c,σ(Ω) := {ϕ ∈ C∞

c (Ω)n : ∇ · ϕ = 0}. We denote by Dq(Ω) :=

W 2,q(Ω)∩W 1,q
0 (Ω) the domain of the Dirichlet Laplace operator ∆q in Lq(Ω) (for a

bounded domain we refer to [8, Sect. 2], the general case can be found in, e.g., [13]),

and we write, for q ∈ (1,∞),

D̃q(Ω) :=

{
Dq(Ω) ∩ D2(Ω), q > 2,

Dq(Ω) + D2(Ω), q < 2,

W̃ 1,q
0 (Ω) :=

{
W 1,q

0 (Ω) ∩ W 1,2
0 (Ω), q > 2,

W 1,q
0 (Ω) + W 1,2

0 (Ω), q < 2.

We recall some facts (for further details we refer to Section 2 below). The correspond-

ing Helmholtz projection P̃q : L̃q(Ω)n → L̃q
σ(Ω) is bounded (cf. [5]), and the Stokes

operator Ãq in L̃q
σ(Ω) is defined by Ãq := −P̃q∆q on D(Ãq) := D̃q(Ω)n ∩ L̃q

σ(Ω) for

1 < q < ∞ (cf. [6]). It was shown in [6] that −Ãq generates an analytic semigroup

in L̃q
σ(Ω) and that Ãq has maximal L

r-regularity in these spaces for r ∈ (1,∞) (we

cite these results as Theorems 2.2 and 2.3 below).

In [14] we showed that ε + Ãq has a bounded H∞-calculus in L̃q
σ(Ω) for any

ε > 0. The latter result allows to identify domains of fractional powers of ε + Ãq

(for details we refer again to Section 2 below). Here we already fix the notations

W̃ 1,q
0,σ(Ω) := W̃ 1,q

0 (Ω)n ∩ L̃q
σ(Ω) and W̃−1,q

σ (Ω) := (W̃ 1,q′

0,σ (Ω))′ for the dual space.

We shall use 〈·, ·〉 to denote extensions of the usual L2-duality throughout. We also
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recall the following notation from [10]: for a Banach space Z and α ∈ R, p ∈ [1,∞],

τ ∈ (0,∞] we write

Lp
α(0, τ ; Z) := {f : (0, τ) → Z measurable : t 7→ tαf(t) ∈ Lp(0, τ ; Z)},

‖f‖Lp
α(0,τ ;Z) := ‖t 7→ tαf(t)‖Lp(0,τ ;Z).

Coming back to (1.1) we start with the case f = 0 and use ∇ · u = 0 to rewrite

(u · ∇)u = ∇ · (u ⊗ u). If u has values in L̃q
σ(Ω) we can apply P̃q to the equation to

obtain

(1.2)

{
u′ + Ãqu = −P̃q∇ · (u ⊗ u) (t > 0),

u(0) = u0.

In [4], Farwig, Kozono, Sohr applied their results to the construction of so-called

“suitable weak solutions” of Navier-Stokes equations on unbounded domains.

In this paper we shall obtain solutions u for initial values u0 belonging to some

extrapolation space of L̃q
σ(Ω) with respect to Ãq. More precisely we let, for q ∈

(n,∞), p ∈ [2,∞],

X̃q
p,σ(Ω) := (W̃−1,q

σ (Ω), L̃q
σ(Ω))n/q,p,

where (·, ·)θ,p denotes real interpolation. Essentially due to the results in [14], the

Stokes semigroup (T̃q(t)) on L̃q
σ(Ω) extends to an analytic semigroup (T̃q,p(t)) on

X̃q
p,σ(Ω) with negative generator Ãq,p (cf. Corollary 2.6 below).

We look for mild solutions of (1.2), i.e. for continuous functions u : [0, τ) →

X̃q
p,σ(Ω) satisfying the fixed point equation

(1.3) u(t) = T (t)u0 −

∫ t

0

T (t − s)P̃∇ · (u(s) ⊗ u(s)) ds, t ∈ [0, τ),

for some τ > 0 where T (·) = T̃q,p(·). Our main result reads as follows.

Theorem 1.1. Let Ω ⊆ R
n be a domain of uniform C1,1-type and q ∈ (n,∞).

Fix α > 0 and p ∈ (2,∞) satisfying α + 1/p = 1
2 − 1

2n/q. For any initial value

u0 ∈ X̃q
p,σ(Ω) there exists τ > 0 depending on the norm ‖u0‖X̃q

p,σ(Ω) such that (1.3)

has a unique solution

u ∈ C([0, τ), X̃q
p,σ(Ω)) ∩ Lp

α(0, τ ; L̃q
σ(Ω)).

Remark 1.2. For p = ∞, the domain D(Ãq,∞) of Ãq,∞ is not dense in X̃q
∞,σ(Ω),

and we denote the closure of D(Ãq,∞) in X̃q
∞,σ(Ω) by X̃q,♭

∞,σ(Ω). For q ∈ (n,∞) and

α > 0 with α = 1
2 − 1

2n/q the assertion of Theorem 1.1 holds for p = ∞ if we take

u0 ∈ X̃q,♭
∞,σ(Ω).
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For the proof we use Kato’s method and proceed as in [10]. We have to check that

the necessary estimates, which are well known in an Lq-setting on bounded or exterior

domains, also persist to the present L̃q-setting on unbounded domains of uniform

C1,1-type. To this end we shall use the main results of [14] (cited as Theorem 2.4,

Corollary 2.5 below) on boundedness of H∞-calculi and imaginary powers of the

Stokes operator on unbounded domains which allow to identify domains of fractional

powers of the Stokes operator. In particular, the space X̃q
p,σ(Ω) in Theorem 1.1 can

thus be seen to be an extrapolation space associated to the Stokes operator in L̃q
σ(Ω).

Remark 1.3. An inspection of the proof of Theorem 1.1 and the results of [10]

allow to obtain, under the assumptions of Theorem 1.1, time local solutions with the

same regularity also for external forces f ∈ L
p/2
2α (0,∞; W̃−1,q/2(Ω)n). The existence

time τ then also depends on the norm ‖f‖
L

p/2
2α (W̃−1,q/2(Ω)n)

. Instead of (1.3) one has

to solve

(1.4) u(t) = T (t)u0 +

∫ t

0

T (t − s)P̃(f(s) −∇ · (u(s) ⊗ u(s))) ds, t ∈ [0, τ).

Other assumptions on f are also possible when we split the second term on the

right hand side of (1.4) and treat f and ∇ · (u ⊗ u) separately. For q ∈ (n, 2n) it

is thus possible to take f ∈ Lr
β(0,∞; L̃q/2(Ω)n) where β > 0 and r ∈ (1,∞] satisfy

β + 1/r = 3
2 − n/q. We do not go into details here and refer to [10].

Remark 1.4. One might like to identify the space X̃q
p,σ(Ω), which is an extra-

polation space for L̃q
σ(Ω), as a subspace of the extrapolation space X̃q

p(Ω)n :=

(W̃−1,q(Ω), L̃q(Ω))n
n/q,p, in other words, one would like to have a Helmholtz decom-

position of X̃q
p(Ω)n as a direct sum of X̃q

p,σ(Ω) (representing divergence-free vector

fields in X̃q
p(Ω)n) and the space of gradients in X̃q

p(Ω)n. This problem shall be

studied in greater generality in another paper.

The next result studies the limit case q = n (for n > 3) in the situation of

Theorem 1.1. Observe that q = n leads to α = 0 and p = ∞. For Ω = R
n and

the Lq-scale in place of the L̃q-scale, the corresponding assertion has been proved by

Y.Meyer ([17]). Here we use the notation

(1.5) L̃n
∞,σ(Ω) := (L̃q0

σ (Ω), L̃q1
σ (Ω))θ,∞

where 2 < q0 < n < q1 < ∞ and θ ∈ (0, 1) are such that 1/n = (1 − θ)/q0 + θ/q1.

Again, we denote the closure of the domain of the Stokes operator Ã(n,∞) in L̃n
∞,σ(Ω)

by L̃n,♭
∞,σ(Ω).
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Theorem 1.5. Let n > 3 and Ω ⊆ R
n be a domain of uniform C1,1-type. For any

initial value u0 ∈ L̃n,♭
∞,σ(Ω) there exists τ > 0 depending on the norm ‖u0‖L̃n

∞,σ(Ω)

such that (1.3) has a unique solution

u ∈ C([0, τ), L̃n
∞,σ(Ω)).

The proof relies on a type of maximal L∞- regularity and we shall check the

sufficient condition of [10, Lem. 3.11].

Finally, we construct, in the situation of Theorem 1.1, solutions to the full equation

(1.1) by recovering the corresponding pressure term.

Theorem 1.6. Let Ω be an unbounded domain of uniform C1,1-type and

q ∈ (n,∞). For any initial value u0 ∈ X̃q
p,σ(Ω) and any external force f ∈

L
p/2
2α (0,∞; W̃−1,q/2(Ω)n) there exists a ∇p = ∇p1 + ∂t∇p̂2 satisfying ∇p1 ∈

Lp
α+1(0, τ ; L̃q(Ω)n) and ∇p̂2 ∈ L

p/2
2α (0, τ ; W̃−1,q/2(Ω)n) such that the local solu-

tion u of Theorem 1.1 and Remark 1.3 and ∇p satisfy (1.1) on (0, τ).

The approach in the proof is inspired by [19, IV. Sec. 2.6]. We decompose u =

u1 + u2 according to (1.4), and exploit the properties u1 ∈ Lp
α+1(0, τ ; D(Ãq)) and

u2 ∈ L
p/2
2α (0, τ ; W̃

1,q/2
0,σ (Ω)). This shows how to give sense to the conditions ∇ · u = 0

and u|∂Ω = 0 in (1.1). For the interpretation of ∆u we refer to Section 5.

The paper is organized as follows. In Section 2 we recall results on the Stokes

operator from [6], [14] and we introduce certain interpolation and extrapolation

spaces associated to the Stokes operator and the Dirichlet Laplacian. In Section 3

we prove Theorem 1.1 using the general approach presented in [10]. In Section 4 we

prove Theorem 1.5. Finally, Theorem 1.6 is proved in Section 5.

In this paper, C denotes a generic constant, and dependence on parameters τ , ε,

etc. is denoted by Cτ , Cε, etc.

Acknowledgement. The author thanks Prof.Reinhard Farwig for drawing his

attention to the Stokes operator on unbounded domains of uniform C1,1-type and for

sending him his joint papers with H. Kozono and H. Sohr [4], [5], [6], which—together

with ideas from [10], [14]—led to this work.
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2. The Stokes operator in unbounded domains

First we recall the precise definition of the class of domains Ω we shall work on

(cf. [6, Def. 1.1]).

Definition 2.1. A domain Ω ⊆ R
n, n > 2, is called of uniform C1,1-type if

there are constants α, β, K > 0 such that, for each x0 ∈ ∂Ω, there is a Cartesian

coordinate system with origin at x0 and coordinates y = (y′, yn), y′ = (y1, . . . , yn−1)

and a C1,1-function h, defined on {y′ : |y′| 6 α} and with ‖h‖C1,1 6 K, such that,

for the neighborhood

Uα,β,h(x0) = {y = (y′, yn) ∈ R
n : |yn − h(y′)| < β, |y′| < α}

of x0 we have Uα,β,h(x0) ∩ ∂Ω = {(y′, h(y′)) : |y′| < α} and

Uα,β,h(x0) ∩ Ω = {(y′, yn) : h(y′) − β < yn < h(y′), |y′| < α}.

We refer to the definition of the spaces L̃q(Ω) and L̃q
σ(Ω) in the introduction.

Denoting byGq(Ω) := {∇p ∈ Lq(Ω)n : p ∈ Lq
loc(Ω)} the space of gradients in Lq(Ω)n,

the space of gradients in L̃q(Ω)n is defined by

G̃q(Ω) :=

{
Gq(Ω) ∩ G2(Ω), q ∈ [2,∞),

Gq(Ω) + G2(Ω), q ∈ (1, 2).

It has been shown in [5] that, for unbounded Ω of uniform C1,1-type, the Helmholtz

decomposition L̃q(Ω)n = L̃q
σ(Ω)⊕G̃q(Ω) is valid for all q ∈ (1,∞). The corresponding

Helmholtz projection P̃q : L̃q(Ω)n → L̃q
σ(Ω) with kernel G̃q(Ω) is bounded, C∞

c,σ(Ω)

is dense in L̃q
σ(Ω), and the duality relations

(2.1) (L̃q
σ(Ω))′ = L̃q′

σ (Ω), (P̃q)
′ = P̃q′

hold, where q ∈ (1,∞) and 1/q + 1/q′ = 1.

We refer to the introduction for the definition of the Stokes operator in L̃q
σ(Ω)

and cite the following two results on properties of the Stokes operator in unbounded

domains of uniform C1,1-type.

Theorem 2.2 ([6] Thm. 1.3). Let Ω ⊆ R
n be a domain of uniform C1,1-type. For

q ∈ (1,∞) and ε > 0, the Stokes operator Ãq is the negative generator of an analytic

semigroup (T̃q(t))t>0 in L̃q
σ(Ω) satisfying

‖T̃q(t)f‖L̃q 6 Meεt‖f‖L̃q , f ∈ L̃q
σ(Ω), t > 0,

whereM = M(ε, q, α, β, K) and α, β, K are the constants from Definition 2.1. More-

over, the operator ε + Ãq is sectorial of type 0, and the duality relation (Ãq)
′ = Ãq′

holds.
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Theorem 2.3 ([6] Thm. 1.4). If Ω ⊆ R
n is a domain of uniform C1,1-type then,

for q, r ∈ (1,∞) the operator Ãq has maximal L
r-regularity on finite time intervals

in L̃q
σ(Ω): for T > 0, f ∈ Lr(0, T ; L̃q

σ(Ω) the mild solution to

u′(t) + Ãqu(t) = f(t), t ∈ [0, T ], u(0) = 0,

satisfies

‖u′(t)‖Lr(0,T ;L̃q
σ(Ω)) + ‖Ãqu(t)‖Lr(0,T ;L̃q

σ(Ω)) 6 C‖f‖Lr(0,T ;L̃q
σ(Ω)),

where C = C(q, r, T, α, β, K) and α, β, K are the constants from Definition 2.1.

As already mentioned, another technical ingredient is the main result from [14]

on H∞-calculi for the Stokes operator on unbounded domains. For the notion of a

bounded H∞-calculus, for further properties and for the relevance of bounded H∞-

calculi we refer to [15]. For bounded domains of C1,1-type the corresponding result

with ε = 0 has been proved in [11, Thm. 9.17].

Theorem 2.4 ([14] Thm. 1.1). Let Ω ⊆ R
n be a domain of uniform C1,1-type.

For q ∈ (1,∞) and any ε > 0, the operator ε + Ãq has a bounded H∞-calculus in

L̃q
σ(Ω). In particular, ε + Ãq has bounded imaginary powers in L̃q

σ(Ω).

Since ε + Ãq has bounded imaginary powers, the fractional domain spaces D((ε +

Ãq)
θ), θ ∈ (0, 1), can be obtained as complex interpolation spaces [L̃q

σ(Ω), D(Ãq)]θ

(cf. [20]). It is this property that we shall exploit. The following consequence has

been shown in [14].

Corollary 2.5 ([14] Cor. 1.2). If Ω ⊆ R
n is an unbounded domain of uniform

C1,1-type then D((ε + Ãq)
1/2) = W̃ 1,q

0,σ (Ω) for q ∈ (1,∞).

We recall that W̃ 1,q
0,σ (Ω) = W̃ 1,q

0 (Ω)n ∩ L̃q
σ(Ω). By Corollary 2.5, we can write

W̃−1,q
σ (Ω) = (W̃ 1,q′

0,σ (Ω))′ = (D((ε + Ãq′ )1/2))′.

For the usual (L̃q, L̃q′

)-duality, the dual space of D((ε + Ãq′)1/2) can easily be iden-

tified with

(L̃q
σ(Ω), ‖(ε + Ãq)

−1/2 · ‖)∼,

if we recall (Ãq′ )′ = Ãq from Theorem 2.2 above (here
∼ denotes completion). We

thus obtain
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Corollary 2.6. For q ∈ (1,∞) we have

W̃−1,q
σ (Ω) = (L̃q

σ(Ω), ‖(ε + Ãq)
−1/2 · ‖)∼.

The Stokes semigroup T̃q(·) on L̃q
σ(Ω) has an extension to an analytic semigroup

T̃
(−1)
q (·) on W̃−1,q

σ (Ω) satisfying

‖T̃ (−1)
q (t)‖ 6 Cεe

εt, t > 0, ε > 0.

Its restriction T̃q,p(·) to X̃q
p,σ(Ω) is an analytic semigroup on X̃q

p,σ(Ω) satisfying

‖T̃q,p(t)‖ 6 Cεe
εt, t > 0, ε > 0.

For p < ∞, X̃q
p,σ(Ω) is reflexive and the negative generator Ãq,p of T̃q,p(·) is densely

defined.

P r o o f. The first assertion is clear from the arguments above. One can extend

J := (ε + Ãq)
−1/2 to an isomorphism J̃ : W̃−1,q

σ (Ω) → L̃q
σ(Ω). Then T̃

(−1)
q (t) =

J̃−1T̃q(t)J̃ defines the desired extension. For the remainig assertions we use real

interpolation. �

We note a last consequence of Theorem 2.4, namely a Sobolev type embedding

result.

Corollary 2.7. Suppose that Ω ⊂ R
n is an unbounded domain of uniform C1,1-

type. Let ε > 0, q ∈ (1,∞), s ∈ (0, 1) with s < n/q, and r ∈ (1,∞) such that

r−1 = q−1 − 2s/n. Then

D((ε + Ãq)
s) →֒ L̃r

σ(Ω).

P r o o f. We start with an argument that has been used in the proof of [14,

Cor. 1.2]. Since we have bounded imaginary powers, [7, Lem. 6] gives

D((ε + Ãq)
s) = D((ε − ∆̃q)

s) ∩ L̃q
σ(Ω).

By consistency of the resolvents of the Laplacian we have

D((ε − ∆̃q)
s) =

{
D((ε − ∆q)

s) + D((ε − ∆2)
s), q ∈ (1, 2),

D((ε − ∆q)
s) ∩ D((ε − ∆2)

s), q ∈ [2,∞).

Since Ω is of uniform type C1,1 and s ∈ (0, 1) we have the usual Sobolev embedding

D((ε − ∆q)
s) →֒ Lr(Ω) (use a partition of unity similar to [5, pp. 242/243] and
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uniformity of the constants for the “parts”). We also have D((ε − ∆2)
s) →֒ L2(Ω).

From this the assertion follows in case that both q, r 6 2 or that both q, r > 2.

If q < 2 and r > 2 we have to show in addition that

D((ε − ∆q)
s) →֒ L2(Ω) and D((ε − ∆2)

s) →֒ Lr(Ω).

These embeddings hold by usual Sobolev embedding since q−1 − 2s/n = r−1 6 1/2

and 1/2 − 2s/n 6 q−1 − 2s/n = r−1. Now the assertion follows also for q < 2 and

r > 2. �

3. Mild solutions and proof of theorem 1.1

We use the general approach from [10]. In an Lq-setting with q ∈ (n,∞) where

n > 2 is the dimension, this approach is based on function spaces with exponents

q and 1
2q. Due to the structure of the spaces L̃q(Ω), which is different depending

on whether q > 2 or q < 2, we sometimes have to distinguish the cases q > 4 and

q ∈ (n, 4). The latter case, of course, does only occur for n ∈ {2, 3}.

First we fix the domain Ω ⊂ R
n of uniform C1,1-type and q ∈ (n,∞). For our

approach via the results in [10] we define the following function spaces:

Z := L̃q(Ω)n, W := W̃
−1, q

2
σ (Ω), and X := X̃q

p,σ(Ω),

where α and p are as in the theorem, i.e. α > 0, p ∈ (2,∞] with α+1/p = 1
2 −

1
2n/q.

The next proposition establishes the properties we have to check for the nonlinearity.

Proposition 3.1. (a) The map Z × Z → W̃−1, q
2 (Ω)n, (u, v) 7→ ∇ · (u ⊗ v) is

well-defined, bilinear and continuous.

(b) The Helmholtz projection P̃q/2 has a continuous linear extension P̃q/2 :

W̃−1, q
2 (Ω)n → W given by restriction

(3.1) P̃q/2ϕ = ϕ|
W̃

1,(q/2)′

0,σ (Ω)
, ϕ ∈ (W̃−1, q

2 (Ω)n)′.

(c) The map Z × Z → W, (u, v) 7→ −P̃q/2∇ · (u ⊗ v) is well-defined, bilinear and

continuous.

P r o o f. (a): As mentioned above we distinguish two cases.

Case q > n and q > 4. For u, v ∈ Z we then have u, v ∈ Lq ∩ L2 which yields

u⊗ v ∈ Lq/2 ∩L1 by Hölder’s inequality. By q > 4 we have Lq/2∩L1 ⊂ L2, and thus

we obtain that

(u, v) 7→ u ⊗ v is bilinear and continuous

Z × Z → L̃q/2(Ω)n×n = L
q
2 (Ω)n×n ∩ L2(Ω)n×n.
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By q > 4 we have (1
2q)′ 6 2 and W̃

1,(q/2)′

0 (Ω) = W
1,(q/2)′

0 (Ω) + W 1,2
0 (Ω) which leads

to W̃−1,q/2(Ω)n = W−1,q/2(Ω)n ∩ W−1,2(Ω)n. We conclude that

Z × Z → W̃−1,q/2(Ω)n, (u, v) 7→ ∇ · (u ⊗ v)

is bilinear and continuous.

Case n ∈ {2, 3} and q ∈ (n, 4). For u, v ∈ Z = Lq ∩ L2 we have u ⊗ v ∈ Lq/2 by

Hölder. Since 1
2q < 2, we conclude that

(u, v) 7→ u ⊗ v is continuous Z × Z → L̃q/2(Ω)n×n = Lq/2(Ω)n×n + L2(Ω)n×n.

Hence ∇ · (u ⊗ v) is an element of

W−1,q/2(Ω)n + W−1,2(Ω)n = (W
1,(q/2)′

0 (Ω)n ∩ W 1,2
0 (Ω)n)′

= (W̃
1,(q/2)′

0 (Ω)n)′ = W̃−1,q/2(Ω)n,

and (u, v) 7→ ∇ · (u ⊗ v) is bilinear and continuous Z × Z → W̃−1,q/2(Ω)n.

(b): Since (3.1) defines a continuous linear map, we only have to check for con-

sistency with P̃q/2. For a ϕ ∈ W̃−1,q/2(Ω)n which coincides with 〈f, ·〉, where

f ∈ L̃q/2(Ω)n, and for any v ∈ W̃
1,(q/2)′

0,σ (Ω) we have

ϕ(v) = 〈f, v〉 = 〈f, P̃(q/2)′v〉 = 〈P̃q/2f, v〉,

and hence P̃q/2ϕ = 〈P̃q/2f, ·〉 as desired.

(c) follows from (a) and (b). �

The next proposition contains the properties we have to check for the Stokes

semigroup.

Proposition 3.2. (a) The Stokes semigroup T̃
(−1)
q/2 (t) acts continuously W → Z

with

‖T̃
(−1)
q/2 (t)‖W→Z 6 Cτ t−(1/2+n/2q), t ∈ [0, τ ],

for any τ ∈ (0,∞).

(b) The Stokes semigroup acts continuously X → Z and W → X with

‖T̃q,p(t)‖X→Z 6 Cτ t−1/2+n/2q, ‖T̃
(−1)
q/2 (t)‖W→X 6 Cτ t−n/q, t ∈ [0, τ ],

for any τ ∈ (0,∞).
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P r o o f. (a): More generally, we shall show that, for 1 < r < s < ∞ and

τ ∈ (0,∞),

‖T̃r(t)‖L̃r
σ(Ω)→L̃s

σ(Ω) 6 Cr,s,τ t−
1
2n(1/r−1/s), t ∈ [0, τ ].

By duality, interpolation (cf. [14, Lem. 4.1], where [20, 1.2.4] is used), and the semi-

group property it suffices to show this for r = 2 and some s > 2.

For n > 3 the usual Sobolev embedding W 1,2
0,σ (Ω) ⊆ W 1,2

0 (Ω)n →֒ L2n/(n−2)(Ω)n

leads to W̃ 1,2
0,σ (Ω) →֒ L̃

2n/(n−2)
σ (Ω), and this in turn yields

‖T̃2(t)‖L̃2
σ(Ω)→L̃

2n/(n−2)
σ (Ω)

6 Cτ t−1/2, t ∈ [0, τ ];

notice that 1
2n

(
1
2 − 1

2 (n − 2)/n
)

= 1
2 .

For n = 2 we use the inequality ‖u‖L4 6 C‖u‖
1/2
W 1,2‖u‖

1/2
L2 (cf. [16, p. 70]) that

leads to

‖T̃2(t)‖L̃2
σ(Ω)→L̃4

σ(Ω) 6 Cτ t−1/4, t ∈ [0, τ ];

observe here that 1
2n(1

2 − 1
4 ) = 1

4 since n = 2.

(b) The first assertion follows by interpolation from the observation that the Stokes

semigroup acting W̃−1,q
σ (Ω) → L̃q

σ(Ω) has norm 6 Cτ t−1/2, t ∈ [0, τ ], for any finite

τ > 0 (here we use Corollary 2.6).

Part (a) and Corollary 2.6 imply that the Stokes semigroup acts continuously

W → W̃−1,q
σ (Ω) with norm 6 Cτ t−n/2q, t ∈ [0, τ ], for any finite τ > 0. Now

interpolation yields the second assertion. �

Let γ = 1
2 + n/2q. Then γ ∈ (1

2 , 1) and α + 1/p = 1 − γ. By reiteration it is

clear that the space X satisfies (X−1, X1)1/2,p = X where X1 denotes the domain of

the Stokes operator in X , equipped with the graph norm, and X−1 denotes the first

extrapolation space of X with respect to the Stokes operator, i.e.

X−1 = (X, ‖(1 + A)−1 · ‖X)∼,

we refer to [10] for more details. Now the results of [10, Sect. 3] prove the assertion

of Theorem 1.1.
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4. Maximal L∞-regularity and proof of theorem 1.5

In this section we prove Theorem 1.5. First of all we extend the definition (1.5)

to all exponents q ∈ (1,∞) by letting

(4.1) L̃q
∞(Ω) := (L̃q0(Ω), L̃q1(Ω))θ,∞

where 1 < q0 < q < q1 < ∞, θ ∈ (0, 1) with 1/q = (1 − θ)/q0 + θ/q1 and

q0, q1 ∈ (2,∞) if q > 2, q0, q1 ∈ (1, 2) if q < 2 and q0 < 2 < q1 if q = 2. By

reiteration this definition does not depend on the particular choice of q0 and q1 since

(L̃q(Ω))q>2 and (L̃q(Ω))q∈(1,2] are complex interpolation scales (cf. [14, Lem. 4.1]).

By continuity of the Helmholtz projection in the scale (L̃q(Ω)) we obtain bound-

edness of the Helmholtz projection P̃q,∞ in L̃q
∞(Ω)n. By [20, 1.2.4] we see that

L̃q
∞,σ(Ω) := P̃q,∞L̃n

∞(Ω)n satisfies

L̃q
∞,σ(Ω) = (L̃q0

σ (Ω), L̃q1
σ (Ω))θ,∞

where q0, q1, θ are as in (4.1). In particular, we have consistency with the definition

in (1.5). We also use real interpolation (·, ·)θ,∞ and the same q0, q1 to define

W̃ 1,q
0,∞(Ω) := (W̃ 1,q0

0 (Ω), W̃ 1,q1

0 (Ω))θ,∞,

and similarly L̃q
∞,σ(Ω), W̃ 1,q

0,∞,σ(Ω), W̃−1,q
∞ (Ω), W̃−1,q

∞,σ (Ω). In the following we shall

abbreviate X := L̃n
∞,σ(Ω), X♭ := L̃n,♭

∞,σ(Ω), Z := L̃n
∞(Ω)n, and W := W̃

−1,n/2
∞,σ (Ω).

Lemma 4.1. (a) For q ∈ (1,∞), the Helmholtz projection P̃q,∞ has a continuous

extension P̃q,∞ : W̃−1,q
∞ (Ω)n → W̃−1,q

∞,σ (Ω) which acts by restriction.

(b) The map (u, v) 7→ P̃n/2,∞∇ · (u ⊗ v) is bilinear and continuous Z × Z → W .

P r o o f. (a) follows from Proposition 3.1 (b) by real interpolation. For the proof

of (b) we use real interpolation for the assertion of Proposition 3.1 (a) and combine

with the assertion on the Helmholtz projection in (a). �

In the following lemma we understand in the assertions (a) and (b) that q ∈ (1,∞)

and that q0, q1, θ are as in (4.1).
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Lemma 4.2. (a) The Stokes semigroup acts as an analytic semigroup T̃(q,∞)(·)

in L̃q
∞,σ(Ω). Denoting by Ã(q,∞) its negative generator, ε + Ã(q,∞) has a bounded

H∞-calculus for each ε > 0.

(b) For any s ∈ (0, 1] and ε > 0 we have

D((ε + Ã(q,∞))
s) = (D((ε + Ãq0)

s), D((ε + Ãq1)
s))θ,∞.

Moreover,

W̃−1,q
∞,σ (Ω) = (L̃q

∞,σ(Ω), ‖(ε + Ã(q,∞))
−1/2 · ‖)∼.

(c) For any τ > 0 the convolution operator

T̃(n/2,∞)(·)∗ : L∞(0, τ ; W ) → L∞(0, τ ; X)

is bounded.

P r o o f. (a) is obtained by real interpolation from the corresponding properties

in the L̃q
σ-scale.

(b) follows by real interpolation, since (ε + Ã)−s acts as an isomorphism L̃
qj
σ →

D((ε + Ãqj )
s), j = 0, 1. The same argument applies to the negative Sobolev type

space.

(c): By [10, Lem. 3.11] it is sufficient to check the inclusion (W, W2)1/2,∞ →֒ X

where W2 denotes D((Ã
(−1)
(n/2,∞))

2) and Ã
(−1)
(n/2,∞) is the extrapolated version of the

Stokes operator Ã(n/2,∞) onW (recall (b) for q = n/2). By reiteration, it is sufficient

to check

(4.2) (D((ε + Ã(n/2,∞))
(1−δ)/2), D((ε + Ã(n/2,∞))

(1+δ)/2))1/2,∞ →֒ L̃n
∞,σ(Ω)

for some small δ ∈ (0, 1). We use (b) for s = s± = (1 ± δ)/2 and fixed q0, q1 where

we arrange for θ = 1/2. By Corollary 2.7 we have

D((ε + Ãqj )
s) →֒ L̃rj

σ (Ω), j = 0, 1, where r−1
j = q−1

j − 2s/n.

By real interpolation and (b) we obtain that

D((ε + Ã(n/2,∞))
s±) →֒ L̃r±

∞,σ(Ω) where r−1
± = (2 − 2s±)/n.

By reiteration we then conclude that (4.2) holds. �

P r o o f of Theorem 1.5. Lemma 4.2 yields that

L∞(0, τ ; X) × L∞(0, τ ; X) → L∞(0, τ ; X),

(u, v) 7→ T̃(n/2,∞) ∗ P̃(n/2,∞)∇ · (u ⊗ v)

is continuous. It is well known that the proof can then be finished by a fixed point

argument (cf., e.g. [2, Lem. 1.2.6]). �
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5. The pressure term and proof of theorem 1.6

Our starting point is (1.3). For a given initial value u0 ∈ X̃q,♭
p,σ(Ω) we decompose

u(t) = u1(t) + u2(t), where

u1(t) = T̃q,p(t)u0, u2(t) =

∫ t

0

T̃
(−1)
q/2 (t − s)P̃q/2(f −∇ · (u(s) ⊗ u(s))) ds,

and we look on u1, u2 separately.

We start with u1. Since the Stokes semigroup is analytic in X̃q
p,σ(Ω) and in L̃q

σ(Ω),

we obtain

t 7→ t∂tu1(t) = tAu1(t) ∈ C([0, τ), X̃q
p,σ(Ω)) ∩ Lp

α(0, τ ; L̃q
σ(Ω)).

In particular, we have u1 ∈ Lp
α+1(0, τ ; D(Ãq)) and, recalling the definition of Ãq,

∂tu1, ∆̃qu1 ∈ Lp
α+1(0, τ ; L̃q(Ω)n), Ãqu1 = −P̃q∆̃qu1.

Hence ∂tu1 − ∆̃qu1 ∈ Lp
α+1(0, τ ; L̃q(Ω)n) and

(5.1) P̃q(∂tu1 − ∆̃qu1) = ∂tu1 + Ãqu1 = 0.

By the Helmholtz decomposition in L̃q(Ω)n we thus obtain a gradient term ∇p1 ∈

Lp
α+1(0, τ ; L̃q(Ω)n) such that

(5.2) ∂tu1 − ∆̃qu1 + ∇p1 = 0.

We turn to u2. Since u ∈ Lp
α(0, τ ; L̃q(Ω)n) we have, by the assumption on f and the

arguments in the proof of Theorem 1.1, that

w := P̃q/2(f −∇ · (u ⊗ u)) ∈ L
p/2
2α (0, τ ; W̃−1,q/2

σ (Ω)).

By Corollary 2.6 maximal Ls-regularity of Ãq/2 carries over to the operator Ã
(−1)
q/2

in W̃
−1,q/2
σ (Ω). By [18, Thm. 2.4] (cf. also [9, Thm. 1.13]) the operator Ã

(−1)
q/2 has

maximal L
p/2
2α -regularity in W̃

−1,q/2
σ (Ω). This means that

u2 = T̃
(−1)
q/2 (·) ∗ w ∈ L

p/2
2α (0, τ ; W̃ 1,q

0,σ (Ω)) and ∂tu2 ∈ L
p/2
2α (0, τ ; W̃−1,q

σ (Ω)).

Similarly as for u1, we want to apply the Dirichlet Laplacian to u2. We need a

lemma on the relation of extrapolated versions of the Stokes operator to extrapolated

versions of the Dirichlet Laplacian.
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Lemma 5.1. We have Ã
(−1)
q/2 = −P̃q/2∆̃

(−1)
q/2 on W̃

1,q/2
0,σ (Ω), where ∆̃

(−1)
q/2 denotes

the extrapolated version of the Dirichlet Laplacian to the space

W̃−1,q/2(Ω)n = (L̃q/2(Ω)n, ‖(1 − ∆̃q/2)
−1/2 · ‖L̃q/2)

∼.

Observe that the last equality holds dy dualization and the identity

D((1 − ∆̃(q/2)′)
1/2) = W̃

1,(q/2)′

0 (Ω)n.

P r o o f of Lemma 5.1. By definition of Ãq/2, equality holds on the dense subset

D(Ãq/2). Hence the proof can be finished by approximation. �

By the lemma we have ∆̃
(−1)
q/2 u2 ∈ L

p/2
2α (0, τ ; W̃−1,q/2(Ω)n), in particular, this

function has values in the distributions on Ω. We would like to have the same for

∂tu2, but this function has values in W̃
−1,q/2
σ (Ω), which is not a space of distributions.

We proceed as in [19, p. 247] and integrate
∫ t

0 · ds with respect to time: let v(t) :=∫ t

0
u(s) ds and define v1, v2 similarly by integrating u1, u2, respectively. Moreover,

let g(t) :=
∫ t

0 w(s) ds and

h(t) :=

∫ t

0

f(s) −∇ · (u(s) ⊗ u(s)) ds.

Then v2 = T̃ (·) ∗ g, u2 + Ãv2 = g, and we see that ∂tv2 = u2 ∈ L
p/2
2α (0, τ ; W̃

1,q/2
0,σ (Ω)).

By the lemma we obtain

∂tv2 − ∆̃
(−1/2)
q/2 v2 − h ∈ L

p/2
2α (0, τ ; W̃−1,q/2(Ω)n),

P̃q/2(∂tv2 − ∆̃
(−1)
q/2 v2 − h) = u2 + Ã

(−1)
q/2 v2 − g = 0.

Hence there is a gradient term ∇p̂2 ∈ L
p/2
2α (0, τ ; W̃−1,q/2(Ω)n) such that

(5.3) ∂tv2 − ∆̃
(−1/2)
q/2 v2 − h −∇p̂2 = 0.

We let ∇p := ∇p1+∂t∇p̂2 where ∂t is taken in distributional sense. Putting together

(5.2) and (5.3) we see that construction of the pressure term is achieved.
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