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Abstract. It is proved that for a zero-dimensional space X, the function space Cp(X, 2)
has a Vietoris continuous selection for its hyperspace of at most 2-point sets if and only
if X is separable. This provides the complete affirmative solution to a question posed by
Tamariz-Mascarúa. It is also obtained that for a strongly zero-dimensional metrizable space
E, the function space Cp(X, E) is weakly orderable if and only if its hyperspace of at most
2-point sets has a Vietoris continuous selection. This provides a partial positive answer to
a question posed by van Mill and Wattel.
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1. Introduction

Let Y be a topological space, and let F (Y ) be the set of all nonempty closed

subsets of Y . Also, let D ⊂ F (Y ). A map ϕ : D → Y is a selection for D if

ϕ(S) ∈ S for every S ∈ D . A selection ϕ : D → Y is continuous if it is continuous

with respect to the relative Vietoris topology τV on D . Let us recall that τV is

generated by all collections of the form

〈V 〉 =
{

S ∈ F (Y ) : S ⊂
⋃

V and S ∩ V 6= ∅ whenever V ∈ V

}

,

where V runs over the finite families of open subsets of Y .

In the sequel, all spaces are assumed to be at least Hausdorff. In this paper we

are interested in continuous selections for D , when D is the family

F2(Y ) = {S ∈ F (Y ) : |S| 6 2}

This work is based upon research supported by the NRF of South Africa.
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of at most 2-point subsets of Y . Suppose that ϕ : F2(Y ) → Y is a selection. Then

it introduces a natural order-like relation �ϕ on Y [7] by defining that y �ϕ z if

and only if ϕ({y, z}) = y. For convenience, we write y ≺ϕ z if y �ϕ z and y 6= z.

This relation is very similar to a linear order on Y in that it is both total and

antisymmetric, but, unfortunately, it may fail to be transitive. In this regard, one of

the fundamental questions in the theory of continuous selections for at most 2-point

subsets is the following one.

Question 1 (van Mill and Wattel, [8]). Let Y be a space which has a continuous

selection for F2(Y ). Does there exist a linear order � on Y such that, for each

y ∈ Y , the sets {z ∈ Y : z � y} and {z ∈ Y : y � z} are both closed?

Recall that a space Y is orderable (or, linearly orderable) if the topology of Y

coincides with the open interval topology on Y generated by a linear ordering on

Y . Following [8], we say that a space Y is weakly orderable if there exists a coarser

orderable topology on Y . In this terminology, Question 1 states the conjecture

whether a space Y is weakly orderable provided that it has a continuous selection for

F2(Y ). In view of that, a selection ϕ : F2(Y ) → Y is often called a weak selection

for Y .

Recently, Michael Hrušák and Iván Martínez-Ruiz solved Question 1 in the nega-

tive by constructing a separable, first countable locally compact space which admits

a continuous weak selection but is not weakly orderable [6]. For a detailed discussion

on several classes of spaces where Question 1 was resolved in the affirmative, we refer

the interested reader to [5].

In the present paper we are interested in continuous weak selections for spaces

of continuous functions. To this end, for sets X and E, we will use EX to denote

the set of all maps from X to E. If E is a topological space, then EX will be

always endowed with the Tychonoff product topology. For spaces X and E we will

use Cp(X, E) to denote the space of all continuous maps f : X → E equipped with

the pointwise convergence topology, i.e. with the topology inherited from the product

space EX . In case E is the real line R, as usual, we write Cp(X) instead of Cp(X,R).

It should be mentioned that Cp(X) is a dense linear subspace of RX ; consequently, it

inherits many properties of RX . Several selection properties of Cp(X, E)-spaces were

investigated in [9]. In particular, it was obtained that Cp(X) has a continuous weak

selection if and only if X is a singleton ([9, Proposition 2.1]), also that if X is zero-

dimensional and E is a strongly zero-dimensional metrizable space, then Cp(X, E) is

weakly orderable if and only if X is separable ([9, Theorem 4.5]). Here E is strongly

zero-dimensional if its covering dimension is zero, while X is zero-dimensional if it

has a base of clopen sets.

On this basis, the following question was posed in [9].
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Question 2 ([9]). Let X be a zero-dimensional space. Is it true that X is

separable provided Cp(X, 2) has a continuous weak selection?

We are now ready to state also the main purpose of this paper. Namely, in this

paper we provide the complete affirmative solution to Question 2, see Theorem 3.2

and Corollary 3.3. Also, we demonstrate that for a strongly zero-dimensional metriz-

able space E, the function space Cp(X, E) is weakly orderable if and only if it has

a continuous weak selection, Theorem 4.1. This generalizes [9, Theorem 4.5] and

provides a further partial positive answer to Question 1.

For the proper understanding of our results, let us emphasise that all they involve

in one or another way the requirement that the function space Cp(X, E) is dense

in the product space EX . This requirement is quite natural in view of the Cp(X)-

spaces, also when it comes to deriving properties of X by means of properties of

Cp(X, E). In the realm of such function spaces, we demonstrate that if Cp(X, E)

has a continuous weak selection, then both X and E must be totally disconnected,

Theorem 2.1. That is, the natural environment for continuous weak selections for

Cp(X, E)-spaces is when X and E are both totally disconnected.

2. Function spaces and continuous weak selections

Throughout this section and in the sequel, all spaces are assumed to have at least

2 distinct points. The following theorem will be proved.

Theorem 2.1. Let X and E be spaces such that Cp(X, E) is dense in EX and

has a continuous weak selection. Then both X and E must be totally disconnected.

To prepare for the proof of Theorem 2.1, let us recall some terminology. For a

space Y , a weak selection ϕ for Y , and points y, z ∈ Y , define the following �ϕ-

intervals :

(y, z)�ϕ
= {t ∈ Y : y ≺ϕ t ≺ϕ z}, and

[y, z]�ϕ
= {t ∈ Y : y �ϕ t �ϕ z},

where �ϕ is the order-like relation generated by ϕ. Since �ϕ is not necessarily

transitive, both the intervals (y, z)�ϕ
and (z, y)�ϕ

can be nonempty, similarly for

[y, z]�ϕ
and [z, y]�ϕ

. Let us explicitly mention that if ϕ is continuous, then both

the �ϕ-open intervals (y, z)�ϕ
and (z, y)�ϕ

are open in Y , while the corresponding

�ϕ-closed intervals [y, z]�ϕ
and [z, y]�ϕ

are closed in Y , see [7]. We will freely rely

on this fact.
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For a space E and y ∈ E, we will use C [y] to denote the component of the point

y in E, and C ∗[y]—the corresponding quasi-component, i.e.

C [y] =
⋃

{C ⊂ E : y ∈ C and C is connected}, and

C
∗[y] =

⋂

{C ⊂ E : y ∈ C and C is clopen}.

Note that E is totally disconnected if and only if C ∗[y] = {y} for every y ∈ E.

Finally, let us recall that a canonical open set of Cp(X, E) is of the form

{f ∈ Cp(X, E) : f(xk) ∈ Uk for every k 6 n},

where n < ω and, for each k 6 n, xk ∈ X and Uk is an open subset of E.

Lemma 2.2. Let X and E be spaces such that Cp(X, E) is dense in EX and has

a continuous weak selection. Then E is totally disconnected.

P r o o f. Identifying each point y ∈ E with the constant map y(x) = y, x ∈ X , we

have that E is naturally embedded in Cp(X, E). Consequently, E has a continuous

weak selection because so does Cp(X, E). To show that E is totally disconnected,

we have to showing that all quasi-components of E are singletons. Since E has a

continuous weak selection, by [4, Theorem 4.1], C [y] = C ∗[y] for every y ∈ E. Hence,

our proof is reduced to show that each connected component of E is a singleton.

Suppose that this fails, i.e. that there exists a point y ∈ E such that its connected

component C [y] in E is not a singleton. Also, let ϕ be a continuous weak selection for

Cp(X, E), and let �ϕ be the order-like relation generated by ϕ. Take two distinct

points y1, y2 ∈ C [y], say y1 ≺ϕ y2. Then, by [2, Lemma 2.5], the �ϕ-interval

(y1, y2)�ϕ
is a nonempty open subset of Cp(X, E) and (y1, y2)�ϕ

⊂ C [y] ⊂ E. That

is,

(2.1) f is constant for every f ∈ (y1, y2)�ϕ
.

Take a point z ∈ C [y] such that the constant map z(x) = z, x ∈ X , corresponding

to this point is in (y1, y2)�ϕ
. Since (y1, y2)�ϕ

is open in Cp(X, E) and z is constant,

there now exists an open set U ⊂ (y1, y2)�ϕ
with z ∈ U , and a finite set F ⊂ X with

|F | > 2, such that

U = {f ∈ Cp(X, E) : f(F ) ⊂ U} ⊂ (y1, y2)�ϕ
.

According to [2, Lemma 2.5] once again, the �ϕ-interval [y1, y2]�ϕ
is a connected

subset of Cp(X, E), while U is open in [y1, y2]�ϕ
being open in (y1, y2)�ϕ

. Conse-

quently, U has no isolated points. Thus U is infinite, while F is a finite set. Hence,
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for every x ∈ F there exists a nonempty open subset Ux ⊂ U such that the family

{Ux : x ∈ F} is pairwise disjoint. Consider the set

Ω = {h ∈ EX : h(x) ∈ Ux, whenever x ∈ F}.

Then Ω is a nonempty open subset of EX , hence Ω∩Cp(X, E) 6= ∅ because Cp(X, E)

is dense in EX . Take an f ∈ Ω∩Cp(X, E). Then f(x) ∈ Ux ⊂ U for every x ∈ F and,

therefore, f ∈ U ⊂ (y1, y2)�ϕ
. Since |F | > 2 and {Ux : x ∈ F} is pairwise disjoint,

f must have at least 2 distinct values. However, according to (2.1), f must be a

constant map. The contradiction so obtained demonstrates that the components of

E must be singletons. �

We conclude the preparation for the proof of Theorem 2.1 with the following simple

observation; its verification is left to the reader.

Proposition 2.3. Let X be a space, and let E be a totally disconnected space.

Then X is totally disconnected provided Cp(X, E) is dense in EX .

P r o o f of Theorem 2.1. Let X and E be as in that theorem. Then, by

Lemma 2.2, E must be totally disconnected which, by Proposition 2.3, implies that

X must be totally disconnected as well. �

3. Separability and continuous weak selections

In the present section we provide the complete affirmative solution to Question 2.

To prepare for this, suppose that ϕ is a weak selection for Y . Following [1], for subsets

B, C ⊂ Y , we write that B �ϕ C (respectively, B ≺ϕ C) if y �ϕ z (respectively,

y ≺ϕ z) for every y ∈ B and z ∈ C. Obviously, B ≺ϕ C implies B ∩ C = ∅. For

some other properties of this relation, see [1].

Here we are interested in weak selections for Cp(X, E) when E = 2 = {0, 1} is the

2-point space. According to [3, Theorem 3.1], if ϕ is a continuous weak selection for

Cp(X, 2) and f, g ∈ Cp(X, 2) with f ≺ϕ g, then there are open sets U , V ⊂ Cp(X, 2)

such that f ∈ U , g ∈ V , and U ≺ϕ V . However, in this case, a canonical open

neighbourhood of an h ∈ Cp(X, 2) is given by

{l ∈ Cp(X, 2): l ↾M = h ↾M},

where M runs over the finite subsets of X . Hence, we have the following simple

criterion for continuity of weak selections for Cp(X, 2).
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Proposition 3.1. Let X be a space, ϕ a continuous weak selection for Cp(X, 2),

�ϕ the order-like relation generated by ϕ, and let f, g ∈ Cp(X, 2) be such that f ≺ϕ g.

Then there exists a finite set M ⊂ X such that if h, l ∈ Cp(X, 2), h ↾M = f ↾M and

l ↾ M = g ↾ M , then h ≺ϕ l.

Now, we have the following theorem.

Theorem 3.2. Let X be a zero-dimensional space such that Cp(X, 2) has a

continuous weak selection. Then X must be separable.

P r o o f. Suppose that X is not separable. Then X must be infinite, and being

zero-dimensional, it has a sequence {Un : n < ω} of pairwise disjoint nonempty

clopen sets. Take an f ∈ Cp(X, 2) and, for every n < ω, define gn ∈ Cp(X, 2) by

letting gn ↾X \ Un = f ↾X \ Un and gn(x) = 1 − f(x), x ∈ Un. Then

(3.1) f = lim
n→∞

gn.

Indeed, take a finite set M ⊂ X . Then there is an m < ω such that M ∩ Un = ∅

for every n > m. Hence, gn ↾ M = f ↾M for every n > m, which completes the

verification.

Now, by hypothesis, Cp(X, 2) has a continuous weak selection ϕ. Let �ϕ be the

order-like relation on Cp(X, 2) generated by ϕ. Since f 6= g0, by Proposition 3.1

there exists a finite set M0 ⊂ X such that if h, l ∈ Cp(X, 2), h ↾M0 = f ↾ M0 and

l ↾ M0 = g0 ↾M0, then h ≺ϕ l if f ≺ϕ g0 and l ≺ϕ h if g0 ≺ϕ f . Note thatM0∩U0 6= ∅

because, by construction, g0 ↾X \ U0 = f ↾ X \ U0. Set α(0) = 0, and let

α(1) = min{k < ω : M0 ∩ Uk = ∅}

= min{α(0) < k < ω : M0 ∩ Uk = ∅}.

Since f 6= gα(1), just like before, Proposition 3.1 implies the existence of a finite set

M1 such that if h, l ∈ Cp(X, 2), h ↾M1 = f ↾M1 and l ↾M1 = gα(1) ↾ M1, then h ≺ϕ l

if f ≺ϕ gα(1) and l ≺ϕ h if gα(1) ≺ϕ f . Again, we have that M1 ∩ Uα(1) 6= ∅. Thus,

by induction, we get a sequence {Mn : n < ω} of nonempty finite subsets of X and

an increasing sequence {α(n) : n < ω} of natural numbers such that for every n < ω,

(a) α(n + 1) = min{α(n) < k < ω : Mn ∩ Uk = ∅},

(b) if h, l ∈ Cp(X, 2), h ↾Mn = f ↾Mn and l ↾Mn = gα(n) ↾Mn, then h ≺ϕ l if

f ≺ϕ gα(n) and l ≺ϕ h if gα(n) ≺ϕ f .

Let M =
⋃

{Mn : n < ω}, and let Y = M . Since X is not separable, we have that

X \ Y 6= ∅, hence there exists a nonempty clopen subset O with O ∩ Y = ∅. Define

h ∈ Cp(X, 2) by h ↾X \ O = f ↾X \ O, and h(x) = 1 − f(x), x ∈ O. Also, for every
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n < ω, define hn ↾ X \O = gα(n) ↾X \O and hn(x) = 1− f(x), x ∈ O. Thus, we get

a sequence {hn ∈ Cp(X, 2): n < ω} which, by (3.1), is convergent to h, and clearly

h 6= f . Suppose that f ≺ϕ h, the other case being symmetric. Then there exists an

m < ω such that f ≺ϕ hn for every n > m, because lim
n→∞

ϕ({f, hn}) = ϕ({f, h}).

Since O ∩ Mn = ∅ for every n < ω, by (b) and the definition of the maps hn’s we

now have that

f ≺ϕ gα(n) whenever n > m.

On the other hand, hn+1 ↾Mn = f ↾Mn because hn+1(x) = gα(n+1)(x) = f(x) for

x ∈ Y \ Uα(n+1) and, by (a), Mn ∩ Uα(n+1) = ∅. Hence, by (b), we also have that

hn+1 ≺ϕ gα(n) for every n > m. Since ϕ is continuous, this finally implies that

h = lim
n→∞

hn+1 �ϕ lim
n→∞

gα(n) = f.

However, h 6= f , so h ≺ϕ f . Thus, we get that h ≺ϕ f and f ≺ϕ h, which is clearly

impossible. The contradiction so obtained completes the proof. �

Corollary 3.3. Let X be a zero-dimensional space, and let E be a space such

that Cp(X, E) has a continuous weak selection. Then X must be separable.

P r o o f. Since E has at least 2 distinct points (recall that we consider only such

spaces), Cp(X, 2) is naturally embedded as a (closed) subset of Cp(X, E). Conse-

quently, Cp(X, 2) has a continuous weak selection and, by Theorem 3.2, X must be

separable. �

4. Weak orderability and continuous weak selections

In this last section of the paper, we provide a complete characterisation of the weak

orderability of function spaces by means of continuous weak selections. In order to

state our result, let us recall that the density of a space X , denoted by d(X), is

the least cardinal δ such that X has a dense subset of cardinality δ. In particular,

X is separable if d(X) 6 ω. On the other hand, if A is a dense subset of X , then

A ∩ U 6= ∅ for every nonempty open U ⊂ X . Here we consider the following related

cardinal invariant. By the clopen density of a space X , denoted by d∗(X), we will

mean the least cardinal δ such that X has a subset A of cardinality δ and with the

property that A ∩G 6= ∅ for every nonempty clopen subset G ⊂ X . Observe that X

is connected if and only if d∗(X) = 1, while d∗(X) = d(X) for every zero-dimensional

space X .

The following theorem will be proved.
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Theorem 4.1. Let E be a strongly zero-dimensional metrizable space. Then for

a space X , the following assertions are equivalent:

(a) Cp(X, E) has a continuous weak selection.

(b) X has a countable clopen density.

(c) Cp(X, E) is weakly orderable.

To prepare for the proof of Theorem 4.1, for a space X consider the equivalence

relation ∼ on X defined for x, y ∈ X by x ∼ y if and only if x and y cannot be

separated by a clopen subset of X , i.e. if C ∗[x] = C ∗[y]. Let X∗ = X/ ∼ be the

quotient set, and let q : X → X∗ be the corresponding quotient map. Then X∗

is a totally disconnected space if endowed with the natural quotient topology T∼

generated by this equivalence relation. We are interested in considering the coarser

topology T∗ on X∗ which is generated by the clopen subsets of T∼. Thus, T∗ ⊂ T∼,

and X∗ endowed with this topology is zero-dimensional. In the sequel, we will refer

to this resulting space merely as X∗, and will call it the quasi-clopen-modification

of X .

Suppose that E is a space. Since q : X → X∗ is continuous (we have that T∗ ⊂

T∼), it generates a natural map q# : Cp(X∗, E) → Cp(X, E), q#(g) = g ◦ q for

g ∈ Cp(X∗, E), which is clearly continuous and injective. In fact, q# is an embedding,

which follows easily from the fact that if

U∗ = {g ∈ Cp(X∗, E) : g(zk) ∈ Uk for every k 6 n < ω}

for some open sets Uk, k 6 n, in E, then U∗ = (q#)−1(U ), where

U = {f ∈ Cp(X, E) : f(xk) ∈ Uk for every k 6 n < ω}

for some points xk ∈ X with q(xk) = zk, k 6 n.

Proposition 4.2. Let X be a space, E a zero-dimensional space, and let X∗ be

the quasi-clopen modification of X . Then for every f ∈ Cp(X, E) there exists an

f∗ ∈ Cp(X∗, E) such that q#(f∗) = f∗ ◦ q = f . In particular, q# is bijective and,

hence, a homeomorphism.

P r o o f. Take an f ∈ Cp(X, E) and x, y ∈ X , and then observe that f(x) = f(y)

provided x ∼ y. Indeed, if f(x) 6= f(y), then there is a clopen set U ⊂ E with

f(x) ∈ U and f(y) /∈ U , because E is zero-dimensional. That is, x 6∼ y. Thus,

we may define f∗ : X∗ → E by letting f∗(q(x)) = f(x), x ∈ X . To see that f∗ is

continuous, take a clopen set U ⊂ E. Then, G = f−1(U) is clopen in X , hence

G = q−1(q(G)). Consequently, G∗ = q(G) is open in X∗ and, clearly, G∗ = f−1
∗ (U).

Thus, f∗ is continuous, and q# is surjective. This implies that q# is bijective because

it is injective. Hence, it is a homeomorphism, which completes the proof. �
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We finalize the preparation for the proof of Theorem 4.1 with the following simple

observation; its verification is left to the reader.

Proposition 4.3. Let X be a space, and let X∗ be the quasi-clopen modification

of X . Then d(X∗) = d∗(X).

P r o o f o f T h e o r e m 4.1. Let X∗ be the quasi-clopen modification of X .

Then X∗ is zero-dimensional while, by Proposition 4.2, Cp(X∗, E) is homeomorphic

to Cp(X, E). To show that (a)⇒ (b), suppose that Cp(X, E) has a continuous weak

selection. Then Cp(X∗, E) has a continuous weak selection, so, by Corollary 3.3, X∗

must be separable. Hence, by Proposition 4.3, X has a countable clopen density.

To show that (b) ⇒ (c), take in mind that, by Proposition 4.3, X∗ is a separable

space. Then, by [9, Corollary 4.2] (see, also, [9, Theorem 4.1]), Cp(X∗, E) is weakly

orderable, hence so is Cp(X, E). To see finally that (c) ⇒ (a), use [7, Lemma 7.5.1]

that every weakly orderable space has a continuous weak selection. �

References

[1] S.García-Ferreira, V.Gutev, and T.Nogura: Extensions of 2-point selections. New
Zealand J. Math. 38 (2008), 1–8.

[2] V.Gutev: Weak orderability of second countable spaces. Fund. Math. 196 (2007),
275–287.

[3] V.Gutev and T.Nogura: Selections and order-like relations. Appl. Gen. Topol. 2 (2001),
205–218.

[4] V.Gutev and T.Nogura: Vietoris continuous selections and disconnectedness-like prop-
erties. Proc. Amer. Math. Soc. 129 (2001), 2809–2815.

[5] V.Gutev and T.Nogura: Selection problems for hyperspaces. Open Problems in Topol-
ogy 2 (Elliott Pearl, ed.), Elsevier BV, Amsterdam, 2007, pp. 161–170.

[6] M.Hrušák and I.Martínez-Ruiz: Selections and weak orderability. Fund. Math. 203
(2009), 1–20.

[7] E.Michael: Topologies on spaces of subsets. Trans. Amer. Math. Soc. 71 (1951), 152–182.
[8] J. van Mill and E.Wattel: Selections and orderability. Proc. Amer. Math. Soc. 83 (1981),
601–605.

[9] A.Tamariz-Mascarúa: Continuous selections on spaces of continuous functions. Com-
ment. Math. Univ. Carolin. 47 (2006), 641–660.

Author’s address: Va l e n t i n G u t e v, School of Mathematical Sciences, University of
KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa, e-mail:
gutev@ukzn.ac.za.

281


		webmaster@dml.cz
	2020-07-03T18:36:23+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




