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Abstract. We recall first Mather’s Lemma providing effective necessary and sufficient
conditions for a connected submanifold to be contained in an orbit. We show that two
homogeneous polynomials having isomorphic Milnor algebras are right-equivalent.
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1. Introduction

In this note we recall first Mather’s Lemma 2.4 providing effective necessary and

sufficient conditions for a connected submanifold to be contained in an orbit. In

Theorem 3.2 we show that two homogeneous polynomials f and g having isomorphic

Milnor algebras are right-equivalent.

This is similar to the celebrated theorem by Mather and Yau [4], saying that the

isolated hypersurface singularities are determined by their Tjurina algebras. Our

result applies only to homogeneous polynomials, but it is no longer necessary to

impose the condition of having isolated singularities at the origin.

2. Preliminary results

We recall here some basic facts on semialgebraic sets, which are also called con-

structible sets, especially in the complex case. For a more complete introduction

see [2, Chapter 1].

Definition 2.1. Let M be a smooth algebraic variety over K (K = R or C as

usual).
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(i) Complex Case. A subset A ⊂ M is called semialgebraic if A belongs to the

Boolean subalgebra generated by the Zariski closed subsets ofM in the Boolean

algebra P (M) of all subsets of M .

(ii) Real Case. A subset A ⊂ M is called semialgebraic if A belongs to Boolean

subalgebra generated by the open sets Uf = {x ∈ U : f(x) > 0} where U ⊂ M

is an algebraic open subset in M and f : M → R is an algebraic function, in

the Boolean algebra P (M) of all subsets of M .

By definition, it follows that the class of semialgebraic subsets ofM is closed under

finite unions, finite intersections and complements. If f : M → N is an algebraic

mapping between the smooth algebraic varietiesM and N and if B ⊂ N is semialge-

braic, then clearly f−1(B) is semialgebraic in M . Conversely, we have the following

basic result.

Theorem 2.2 (Tarski-Seidenberg-Chevalley). If A ⊂ M is semialgebraic, then

f(A) ⊂ N is also semialgebraic.

Next consider the following useful result.

Proposition 2.3. Let G be an algebraic group acting (algebraically) on a smooth

algebraic varietyM . Then the corresponding orbits are smooth semialgebraic subsets

in M .

Let m : G×M → M be a smooth action. In order to decide whether two elements

x0, x1 ∈ M areG-transversal, we try to find a path (a homotopy) P = {xt : t ∈ [0, 1]}

such that P is entirely contained in a G-orbit. It turns out this naive approach works

quite well and the next result gives effective necessary and sufficient conditions for

a connected submanifold (in our case the path P ) to be contained in an orbit.

Mather’s Lemma 2.4 ([3]). Let m : G × M → M be a smooth action and

P ⊂ M a connected smooth submanifold. Then P is contained in a single G-orbit if

and only if the following conditions are fulfilled:

(a) Tx(G.x) ⊃ TxP , for any x ∈ P .

(b) dimTx(G.x) is constant for x ∈ P .

3. Main Theorem

For isolated hypersurface singularities, the following result was obtained by Mather

and Yau, see [4].
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Theorem 3.1. Let f, g : (Cn, 0) → (C, 0) be two isolated hypersurface singulari-

ties having isomorphic Tjurina algebras T (f) ≃ T (g). Then f
K
∼ g, where

K
∼ denotes

the contact equivalence.

For arbitrary (i.e. not necessarily with isolated singularities) homogeneous poly-

nomials we establish now the following result.

Theorem 3.2. Let f, g ∈ C[x1, . . . , xn]d = Hd(n, 1;C) = Hd be two homogeneous

polynomials of degree d such that Jf = Jg. Then f
R
∼ g, where

R
∼ denotes the right

equivalence.

P r o o f. To prove this claim we choose an appropriate submanifold ofHd(n, 1;C)

containing f and g and then apply Mather’s lemma to get the result. Here f, g ∈

Hd(n, 1;C) are such that Jf = Jg. Set ft = (1 − t)f + tg ∈ Hd(n, 1;C). Consider

the R-equivalence action on Hd(n, 1;C) under the group Gl(n,C). By eq. (4.16) [1,

p. 35], we have

(3.1) Tft
(Gl(n,C).ft) = C

〈
xj

∂ft

∂xi

; i, j = 1, . . . , n
〉
.

Now, note that the R.H.S of eq. (3.1) satisfies the relation

C

〈
xj

∂ft

∂xi

; i, j = 1, . . . , n
〉
⊂ Jft

∩ Hd.

But Jft
∩ Hd ⊂ Jf ∩ Hd since

∂ft

∂xi

= (1 − t)
∂f

∂xi

+ t
∂g

∂xi

∈ (1 − t)Jf + tJg = Jf (because Jf = Jg).

So, we have the inclusion of finite dimensional C-vector spaces

(3.2) Tft
(Gl(n,C).ft) = C

〈
xj

∂ft

∂xi

; i, j = 1, . . . , n
〉
⊂ Jf ∩ Hd

with equality for t = 0 and t = 1.

Let us show that we have equality for all t ∈ [0, 1] except finitely many values.

Clearly the dimension of the space Jf ∩Hd is at most n2. Let us fix {e1, . . . , em}

a basis of Jf ∩ Hd, where m 6 n2. Consider the n2 polynomials

αij(t) = xj

∂ft

∂xi

= xj

[
(1 − t)

∂f

∂xi

+ t
∂g

∂xi

]
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corresponding to the generators of the space (3.1). We can express each αij(t),

i, j = 1, . . . , n in terms of the above mentioned fixed basis as

(3.3) αij(t) = φ1

ij(t)e1 + . . . + φm
ij (t)em, ∀ i, j = 1, . . . , n

where each φk
ij(t) is linear in t. Consider the matrix of transformation corresponding

to the eqs. (3.3)

(φm
ij (t))n2×m =




φ1

11
(t) φ2

11
(t) . . . φm

11
(t)

...
...

. . .
...

φ1

1n(t) φ2

1n(t) . . . φm
1n(t)

φ1

21
(t) φ2

21
(t) . . . φm

21
(t)

...
...

. . .
...

φ1

nn(t) φ2

nn(t) . . . φm
nn(t)




having rank at most m. Note that the equality
〈
xj∂ft/∂xi

〉
= Jf ∩ Hd holds for

those values of t in C for which the rank of the above matrix is precisely m. As

we know that the rank of the matrix of transformation is at most m, there must be

n2 − m proportional rows. So, we have the m × m submatrix whose determinant

is a polynomial of degree m in t and by the fundamental theorem of algebra it has

at most m roots in C, for which rank of the matrix of transformation will be less

than m. Therefore, the above-mentioned equality does not hold for finitely many

values, say t1, . . . , tp where 1 6 p 6 m.

It follows that the dimension of the space (3.1) is constant for all t ∈ C except

finitely many values {t1, . . . , tp}.

For an arbitrary smooth path

α : C −→ C \ {t1, . . . , tp}

with α(0) = 0 and α(1) = 1, we have the connected smooth submanifold

P = {ft = (1 − α(t))f(x) + α(t)g(x) : t ∈ C}

of Hd. By the above, it follows dimTft
((Gl(n,C).ft)) is constant for ft ∈ P .

Now, to apply Mather’s lemma, we need to show that the tangent space to the

submanifold P is contained in that to the orbit Gl(n,C).ft for any ft ∈ P . One

clearly has

Tft
P = {ḟt = −α̇(t)f(x) + α̇(t)g(x) ∀ t ∈ C}.

Therefore, by Euler’s formula 7.6 [1, p. 101], we have

Tft
P ⊂ Tft

(Gl(n,C).ft).
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By Mather’s lemma the submanifold P is contained in a single orbit. This implies

that f
R
∼ g, as required. �

Corollary 3.3. Let f, g ∈ Hd(n, 1;C). If M(f) ≃ M(g) (isomorphism of graded

C-algebras) then f
R
∼ g.

P r o o f. We show firstly that an isomorphism of graded C-algebras

ϕ : M(g) =
C[x1, . . . , xn]

Jg

≃
−→ M(f) =

C[x1, . . . , xn]

Jf

is induced by a linear isomorphism u : C
n −→ C

n such that u∗(Jg) = Jf . Consider

the following commutative diagram.

0

��

0

��

Jg
u∗

//

i

��

Jf

j

��

C[x1, . . . , xn]
u∗

//

p

��

C[x1, . . . , xn]

q

��

M(g)
ϕ

≃

//

��

M(f)

��

0 0

We note that the isomorphism ϕ is a degree preserving map and each of the

Jacobian ideals Jf and Jg is generated by the homogeneous polynomials of degree

d− 1. The cases d = 1 and d = 2 are special, and we can treat them easily. Assume

from now on that d > 3. Define the morphism u∗ : C[x1, . . . , xn] → C[x1, . . . , xn] by

(3.4) u∗(xi) = Li(x1, . . . , xn) = ai1x1 + . . . + ainxn, ai1, . . . , ain ∈ C

which is well defined by commutativity of the diagram below.

xi
�

u∗

//
_

p

��

Li
_

q

��

x̂i
�

ϕ

≃

// L̂i
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Let us prove that u∗ is an isomorphism. Consider the following commutative

diagram at the level of degree d = 1.

C[x1, . . . , xn]1
u∗

1
//

p

C[x1, . . . , xn]1

q

(M(g))1
ϕ1

≃

// (M(f))1

Since here the Jacobian ideals Jf and Jg are generated by polynomials of

degree > 2, therefore we have

(M(g))1 = (M(f))1 = C[x1, . . . , xn]1.

This implies that ϕ1 and u∗
1
are coincident. As ϕ is a given graded C-algebra iso-

morphism, it follows that u∗
1
is also an isomorphism. Hence u∗ is an isomorphism.

Next we show that u∗(Jg) = Jf .

For every G ∈ Jg, we have u∗(G) ∈ Jf by the commutative diagram below.

G
�

u∗

//
_

p

��

F = u∗(G)
_

q

��

0̂
�

ϕ
// F̂ = 0̂

This implies that u∗(Jg) ⊂ Jf . As u∗ is an isomorphism, therefore it is invertible

and by repeating the above argument for its inverse, we have u∗(Jg) ⊃ Jf .

Thus, u∗ is an isomorphism with u∗(Jg) = Jf .

By eq. (3.4), the map u : C
n → C

n can be defined by

u(z1, . . . , zn) = (L1(z1, . . . , zn), . . . , Ln(z1, . . . , zn))

where Li(z1, . . . , zn) = ai1z1 + . . . + ainzn.

Note that u is a linear isomorphism by Proposition 3.16 [1, p. 23].

In this way, we have shown that the isomorphism ϕ is induced by a linear isomor-

phism u : C
n → C

n such that u∗(Jg) = Jf .

Here u∗(Jg) = 〈g1 ◦ u, . . . , gn ◦ u〉 = Jg◦u, where gj = ∂g/∂xj.

Therefore, Jg◦u = Jf ⇒ g ◦ u
R
∼ f . Now, g ◦ u

R
∼ g implies that g

R
∼ f . �

Remark 3.4. The converse implication, namely

f
R
∼ g ⇒ M(f) ≃ M(g)

always holds (even for analytic germs f , g defining IHS), see [1, p. 90].
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