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Abstract. It is shown that every maximal monotone operator on a real Banach space
with relatively compact range is of type NI. Moreover, if the space has a separable dual
space then every maximally monotone operator T can be approximated by a sequence of
maximal monotone operators of type NI, which converge to T in a reasonable sense (in the
sense of Kuratowski-Painleve convergence).
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1. Introduction

Let X be a real Banach space and X∗ its dual space (the set of all continuous

linear functionals on X); we refer to [3, p. 63] for the definition and several properties

of the dual space. We recall the notion of the maximal monotone subset of X ×X∗,

referring to [11] for classical results concerning maximal monotonicity and to [8], [9],

[5], [4] for presentations of several recent achievements, comments and open problems

on it.

Definition 1.1. A subset S ⊂ X × X∗ is said to be monotone provided

〈x∗ − y∗, x − y〉 > 0 whenever (x, x∗), (y, y∗) ∈ S,

where (x, x∗) ∈ X × X∗ and 〈x∗, x〉 stands for the value of x∗ at x.

We say that S ismaximally monotone if S is monotone and has no proper extension

(the set S is maximal in the family of monotone subsets of X × X∗, ordered by

inclusion).
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We denote by D(S) the domain and by R(S) the range of S, i.e.

D(S) := {x ∈ X | ∃x∗ ∈ X∗ : (x, x∗) ∈ S},

R(S) := {x∗ ∈ X∗ | ∃x ∈ X : (x, x∗) ∈ S}.

In the caseX is a reflexive Banach space, there are several strong results concerning

maximally monotone subsets, for example: the closure of the domain is a convex set

(see [6]; this is still an open question in the nonreflexive case), the closure of the range

is also convex (see [6]), the range of a coercive maximal monotone operator is the

whole space (we refer to [11] for several results of this type and their generalizations,

for an example see Corollary 32.35 of [11]), for every maximally monotone subset

S ⊂ X×X∗ there is a pair (s, s∗) ∈ S such that 〈s∗, s〉 = −‖s∗‖‖s‖, ‖s∗‖ = ‖s‖ (this

yields several results on maximal monotonicity in a reflexive Banach space set-up,

see [9, Theorem 10.3], the perfect square criterion for maximality, or [8] for a more

general form of this and some comments on it). There have been several attempts

to extend the results beyond the reflexive set-up, we refer to [8] for the most recent

repertory on achievements in this direction and to [10] for an extension of the perfect

square criterion for the maximality to a nonreflexive Banach set-up. Most of the

extensions were done for special classes of maximally monotone subsets of X × X∗,

see [5], [9], [8] for a discussion on it. One of them is the class of NI operators, see [9].

Below we recall the notion

Definition 1.2. We say that a maximally monotone subset S of X × X∗ is of

type NI if for every (x∗, x∗∗) ∈ X∗ × X∗∗ we have

inf
(s,s∗)∈S

〈ϕ(s) − x∗∗, s∗ − x∗〉 6 0,

where X∗∗ stands for the dual space of X∗ (the bidual of X) and the linear operator

ϕ : X → X∗∗ is such that

(1) ∀x∗ ∈ X∗, ∀x ∈ X, 〈x∗, x〉 = 〈ϕ(x), x∗〉,

i.e. ϕ(x) is the canonical image of x in the bidual, see [9, p. 18–19] for comments.

For the class of NI sets we have a version of the perfect square criterion, see [10],

so it is natural to ask how large the class is. Several examples of NI subsets can be

found in [9], [8], [10]. Herein it is shown that any maximal monotone subset with

its range relatively compact is in the class (the same result holds true whenever the

domain of maximally monotone subset is relatively compact, see comments following

Property 3.2). What is more, whenever X∗ is a separable Banach space then for

any maximally monotone operator we are able to construct an approximation by
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maximally monotone operators of type NI which converge to the operator in “good”

sense, namely in the sense of Kuratowski-Paineleve convegence; this corresponds

to [2, Theorem 2.3].

Open problem. Is it possible to construct the approximation in Asplund space

(maybe in Weakly Compactly Generated Banach space)?

2. Auxiliary results

In this section some notions and their properties are gathered. Let us start with

weak topologies. For a real Banach space X and its dual X∗ we denote by w(X∗, X)

the weak∗ topology of X∗—the topology induced by X , see [7] or [3], [9], and by

w(X∗∗, X∗) the weak∗ topology of X∗∗—the topology induced by X∗, see [7] for

example. The following two properties of the weak∗ topology are used in the sequel.

Property 2.1 ([3, p. 75]). If X is a real separable Banach space then any closed

ball in X∗ is weak∗ sequentially compact, i.e. every sequence {x∗

i }
∞

i=1 ⊂ X∗ which is

bounded has a weak∗ converge subsequence.

Property 2.2 ([7, see Exercise 1.b]). Let X be a real Banach space and ϕ the

embeding of X into X∗∗ (ϕ is given in (1), see also [7, 4.5 The second dual of a

Banach space, p. 95]). If

B(0, M) := {x ∈ X : ‖x‖ 6 M}, M > 0

then ϕ(B(0, M)) is w(X∗∗, X∗) dense in

B∗∗(0, M) := {x∗∗ ∈ X∗∗ : ‖x∗∗‖ 6 M},

i.e.

∀ε > 0, ∀x∗∗ ∈ B∗∗(0, M), ∀x∗ ∈ X∗, ∃x ∈ B(0, M) : |〈x∗∗, x∗〉 − 〈x∗, x〉| 6 ε.

Below we recall that if S is a maximally monotone subset with a bounded range

then its domain is the whole space, namely, we have

Property 2.3 ([8, see Theorem 25.1]). Let X be a nonzero real Banach space,

let S ⊂ X × X∗ be maximally monotone and R(S) bounded. Then D(S) = X .

S. Simons gave a useful characterization of maximal monotonicity in reflexive

Banach spaces, see [9, Theorem 10.3] and for generalizations [8, Theorem 21.7]. In

nonreflexive Banach spaces there is a possibility to give an approximated version of

it, namely,
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Property 2.4 ([10, Corollary 3.4]). LetX be a real Banach space and S ⊂ X×X∗

a nonempty maximally monotone subset of type NI. For every ε ∈ (0,∞) and every

(w, w∗) ∈ X × X∗ there exists (sε, s
∗

ε) ∈ S such that

(2) ‖s∗ε − w∗‖2 + ‖sε − w‖2 + 2〈s∗ε − w∗, sε − w〉 6 ε.

Moreover, there are ε0 ∈ (0,∞) and R > 0 such that if ε ∈ (0, ε0), (sε, s
∗

ε) ∈ S and

(2) is satisfied then ‖s∗ε‖ + ‖sε‖ 6 R.

A simple consequence of the above property is

Property 2.5 ([10, Corollary 3.5]). LetX be a real Banach space and S ⊂ X×X∗

a nonempty maximal monotone subset of type NI. Then cl R(S) is a convex set.

We close this section recalling a property of monotone sets which allows us to

construct maximally monotone sets with their range being in a given compact set.

The property is a consequence of an extension of the Debrunner-Flor theorem, see [1],

[2], [4].

Property 2.6 ([2, Lemma 2.4]). Suppose that C∗ is a compact convex subset

of X∗ and thatM ⊂ X×C∗ is a monotone set. For any x0 ∈ X there exists x∗

0 ∈ C∗

such that {(x0, x
∗

0)} ∪ M is a monotone set.

3. Results

In this section we prove that any maximally monotone subset S ⊂ X × X∗

with R(S) included in a compact subset of X∗ is of type NI. Next, for a given

maximal monotone subset T ⊂ X × X∗ we construct an approximation of T by

maximal monotone subsets of type NI.

Theorem 3.1. Let X be a real Banach space and let S ⊂ X×X∗ be a maximally

monotone subset such that R(S) ⊂ C∗ for some compact subset C∗ ⊂ X∗. Then S is

of type NI.

P r o o f. Let us fix (a∗, a∗∗) ∈ X∗ × X∗∗. We are able to choose a sequence of

finite subsets of C∗, say {C∗

i }
∞

i=1, such that

(3) ∀ i ∈ N, C∗

i ⊂ C∗

i+1 ⊂ C∗ ⊂ C∗

i + B∗(0, i−1),

where B∗(0, r) := {x∗ ∈ X∗ : ‖x∗‖ 6 r} and

C∗

i + B∗(0, r) = {y∗ ∈ X∗ | ∃ c∗ ∈ C∗

i , z∗ ∈ B∗(0, r) : y∗ = c∗ + z∗}.
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By Property 2.2 we have

(4) ∀ i ∈ N, ∃xi ∈ B(0, ‖a∗∗‖) : ∀ c∗ ∈ C∗

i , |〈a∗∗, a∗ − c∗〉 − 〈a∗ − c∗, xi〉| 6 i−1.

It follows from Property 2.3 that for every i ∈ N we are able to choose x∗

i ∈ C∗ such

that (xi, x
∗

i ) ∈ S, where xi is given in (4). Thus for every i ∈ N and c∗ ∈ C∗

i we get

〈a∗∗ − ϕ(xi), a
∗ − x∗

i 〉 = 〈a∗∗, a∗ − x∗

i 〉 − 〈a∗ − x∗

i , xi〉

= 〈a∗∗, a∗ − c∗〉 + 〈a∗∗, c∗ − x∗

i 〉 − 〈a∗ − c∗, xi〉 − 〈c∗ − x∗

i , xi〉.

Using (3) we infer that for every i ∈ N there is c̄∗i ∈ C∗

i , ‖c̄
∗

i −x∗

i ‖ 6 i−1, thus by (4)

we obtain

〈a∗∗ − ϕ(xi), a
∗ − x∗

i 〉 6 i−1 + (‖xi‖ + ‖a∗∗‖)‖c̄∗i − x∗

i ‖ 6 i−1(1 + 2‖a∗∗‖),

hence

inf
(s,s∗)∈S

〈a∗∗ − ϕ(s), a∗ − s∗〉 6 lim
i→∞

i−1(1 + 2‖a∗∗‖) = 0.

�

As a simple consequence of the above theorem and Property 2.5 we get that for any

maximal monotone subset with relatively compact range, the closure of the range is

convex (in the norm topology).

The Debrunner-Flor theorem, see Property 2.6, is a convenient tool for construct-

ing maximal monotone subsets with their range in a given compact set (to construct

NI operators), we refer to [2], [4] for more on the method. Below such a construction

is presented.

Property 3.2. LetX be a real Banach space and C∗ ⊂ X∗ a compact (nonempty)

convex subset. If M ⊂ X × C∗ is monotone, then there is a maximally monotone

subset T ⊂ X × X∗ such that M ⊂ T and T ⊂ X × C∗.

P r o o f. Let us define the family of subsets

F := {S ⊂ X × C∗ : S is monotone and M ⊂ S}.

Let us observe that if F1 ⊂ F is such that

∀A, B ∈ F1, A ⊂ B or B ⊂ A,

then for every C ∈ F1 we get

C ⊂ {(x, x∗) ∈ X × C∗ | ∃A ∈ F1 : (x, x∗) ∈ A} ∈ F .
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By the Kuratowski-Zorn lemma there is T ∈ F which is maximal, i.e.

∀C ⊂ F , C ⊂ T or (C \ T 6= ∅ ⇒ T \ C 6= ∅).

We shall show that D(T ) = X . Let x ∈ X . It follows from Property 2.6 that there

is c∗ ∈ C∗ such that (x, c∗) ∪ T is monotone, so {(x, c∗) ∪ T } ∈ F . The choice of T

implies that (x, c∗) ∈ T , so D(T ) = X . In order to complete the proof we need to

show that T is maximally monotone. To this end let us fix (a, a∗) ∈ X × X∗ such

that

(5) ∀ (t, t∗) ∈ T, 〈a∗ − t∗, a − t〉 > 0.

Since C∗ is compact (in the strong topology of X∗), so it is compact in the w(X∗, X)

topology (in the weak∗ topology). Let us assume that a∗ 6∈ C∗. By the Hahn-Banach

theorem (see [7], [The Hahn-Banach Theorems]) there are x0 ∈ X and ε > 0 such

that

(6) ∀ c∗ ∈ C∗, 〈a∗, x0〉 + ε 6 〈c∗, x0〉.

Let us put t0 := a − x0 and take c∗0 ∈ C∗ such that (t0, c
∗

0) ∈ T . By (5) and (6) we

get

−ε > 〈a∗ − c∗0, x0〉 = 〈a∗ − c∗0, a − t0〉 > 0,

a contradiction, so a∗ ∈ C∗ and {(a, a∗)} ∪ T ∈ F . By the choice of T we have

(a, a∗) ∈ T , thus T is maximally monotone with the desired properties. �

Let us observe that a direct consequence of Property 3.2 is that if S ⊂ X × X∗

is maximally monotone and D(S) is included in some compact convex subset of X ,

say C, then R(S) = X∗, so S is of type NI. In order to get it let us observe that

M∗ := {(s∗, ϕ(s)) : (s, s∗) ∈ S} ⊂ X∗ × ϕ(C) ⊂ X∗ × X∗∗

is monotone, so there exists T ∗ ⊂ X∗ × ϕ(C) which is maximally monotone and

M∗ ⊂ T ∗, thus by Property 2.3, D(T ∗) = X∗. It is easy to observe that D(T ∗) =

R(S). Let us also notice, that if C is convex, weakly compact then we still have

R(S) = X∗ (it is enough to repeat the above reasoning using Whitley’s construction,

see [3] and [4, Lemma 1.7].
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Property 3.3. Let X be a real Banach space and let a sequence {(ti, t∗i )}
∞

i=1 be

a monotone set, i.e.

∀ i, j ∈ N, 〈t∗j − t∗i , tj − ti〉 > 0.

Then there exists a sequence of maximal monotone sets {Ti}∞i=1 such that

(i) ∀ i ∈ N, {(t1, t∗1), . . . , (ti, t
∗

i )} ⊂ Ti ⊂ X × X∗;

(ii) ∀ i ∈ N, {z∗ ∈ X∗ | ∃ z ∈ conv{t1, . . . , ti} : (z, z∗) ∈ Ti} = conv{t∗1, . . . , t
∗

i },

where conv stands for the convex hull;

(iii) ∀ i ∈ N, R(Ti) = conv{t∗1, . . . , t
∗

i }.

P r o o f. Let us put C∗

i := conv{t∗1, . . . , t
∗

i } and Q∗∗

i := conv{ϕ(t1), . . . , ϕ(ti)},

where ϕ is given in (1). Let us put

Fi := {M ⊂ X∗ × X∗∗ : M ⊂ C∗

i × Q∗∗

i and

M is a monotone set, and {(t∗1, ϕ(t1)), . . . , (t
∗

i , ϕ(ti))} ⊂ M}.

It is easy to observe that for every i ∈ N there is a maximal with respect to the

inclusion set in Fi, say Si, i.e.

∀C ∈ Fi, C ⊂ Si or (C \ Si 6= ∅ ⇒ Si \ C 6= ∅).

We shall show that

C∗

i ⊂ D(Si) := {x∗ ∈ C∗

i | ∃x∗∗ ∈ Q∗∗

i : (x∗, x∗∗) ∈ Si}.

Let a∗ ∈ C∗

i . By Property 2.6 we are able to choose a∗∗ ∈ Q∗∗ such that the set

{(a∗, a∗∗)}∪Si is monotone. Thus, by the choice of Si, (a
∗, a∗∗) ∈ Si and a∗ ∈ D(Si).

Let us put

Mi := {(x, x∗) ∈ X × X∗ : (x∗, ϕ(x)) ∈ Si}

and observe that R(Mi) = D(Si) = C∗

i . Of course the set Mi is monotone. By

Property 3.2 we are able to construct a maximal monotone subset Ti ⊂ X×X∗ such

that R(Ti) ⊂ C∗

i , Mi ⊂ Ti. Hence, (i)–(iii) are satisied for Ti and we are done. �

Below an approximation technique for maximally monotone operators on separable

Banach space is presented. It corresponds to the result by Fitzpatrick and Phelps,

see [2, Theorem 2.3], which was obtained in the real Banach space set-up for bounded

approximants.
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Property 3.4. Let X be a real Banach space such that its dual spaceX∗ is separ-

able, let T ⊂ X×X∗ be a maximal monotone subset, and let {(s1, s
∗

1), . . . , (sk, s∗k)} ⊂

T be given. Then for every countable and dense subset {(t1, t∗1), (t2, t
∗

2), . . .} ⊂ T

there exists a sequence of maximal monotone subsets of X × X∗, say {Ti}∞i=1, such

that

(i) ∀ i ∈ N, {(s1, s
∗

1), . . . (sk, s∗k)} ⊂ Ti;

(ii) ∀ i ∈ N, {(t1, t∗1), . . . , (ti, t
∗

i )} ⊂ Ti and R(Ti) = conv{s∗1, . . . , s
∗

k, t∗1, . . . , t
∗

i };

(iii) ∀ (t, t∗) ∈ T, ∃ {(xi, x
∗

i )}
∞

i=1 : ∀ i ∈ N, {(x1, x
∗

1), . . . , (xi, x
∗

i )} ⊂ Ti ∩ T and

lim
i→∞

(xi, x
∗

i ) = (t, t∗).

P r o o f. Let us choose a countable and dense subset of T , say {(t1, t∗1),

(t2, t
∗

2), . . .} ⊂ T . For every (t, t∗) ∈ T we are able to find a subsequence

{(tim
, t∗im

)}∞m=1 ⊂ {(t1, t∗1), (t2, t
∗

2), . . .} such that (tim
, t∗im

) → (t, t∗) whenever

m → ∞. It follows from Property 3.3 that for every i ∈ N there is a maximal mono-

tone subset Ti ⊂ X×X∗ for which {(s1, s
∗

1), . . . , (sk, s∗k)}∪{(t1, t∗1), . . . , (ti, t
∗

i )} ⊂ Ti

and R(Ti) = conv{s∗1, . . . , s
∗

k, t∗1, . . . , t
∗

i }, which implies (i)–(ii). In order to get (iii),

let us fix (t, t∗) ∈ T and take a subsequence {(tim
, t∗im

)}∞m=1 ⊂ {(t1, t∗1), (t2, t
∗

2), . . .}

such that (tim
, t∗im

) → (t, t∗) with i1 = 1. For every m, i ∈ N, im 6 i < im+1 let us

put

(xi, x
∗

i ) := (tim
, t∗im

).

Of course {(x1, x
∗

1), . . . , (xi, x
∗

i )} ⊂ Ti and lim
i→∞

(xi, x
∗

i ) = (t, t∗). �

Let us notice that if S ⊂ X × X∗ is a maximally monotone set with its range

included in a compact subset of X∗, then Theorem 3.1 together with Property 2.4

ensures the existence of pairs from S, (s, s∗) ∈ S, which are not far from the graph of

the subdifferential of 2−1‖·‖; we refer to [5], [9], [8] for several facts on subdifferentials

of convex functions. In view of that we can use Property 3.3 to get some additional

information on S, namely, we have

Corollary 3.5. Let X be a real Banach space such that its dual spaceX∗ is separ-

able, let T ⊂ X×X∗ be a maximal monotone subset, and let {(s1, s
∗

1), . . . , (sk, s∗k)} ⊂

T , (w, w∗) ∈ X × X∗ be given. For every countable and dense subset {(t1, t∗1),

(t2, t
∗

2), . . .} ⊂ T and every sequence {λ}∞i=1 ⊂ (0,∞) there exists a sequence of

maximal monotone subsets of X × X∗, say {Ti}∞i=1, such that

(i) ∀ i ∈ N, {(s1, s
∗

1), . . . , (sk, s∗k)} ⊂ Ti;

(ii) ∀ i ∈ N, {(t1, t∗1), . . . , (ti, t
∗

i )} ⊂ Ti and R(Ti) = conv{s∗1, . . . , s
∗

k, t∗1, . . . , t
∗

i };

(iii) ∀ (t, t∗) ∈ T, ∃ {(xi, x
∗

i )}
∞

i=1 : ∀ i ∈ N, {(x1, x
∗

1), . . . , (xi, x
∗

i )} ⊂ Ti ∩ T and

lim
i→∞

(xi, x
∗

i ) = (t, t∗);

(iv) ∀ i ∈ N, ∃ (zi, z
∗

i ) ∈ Ti : λ2
i ‖w − zi‖2 + ‖w∗ − z∗i ‖

2 + 2λi〈w∗ − z∗i , w − zi〉 6

min{i−2, λ−2
i , λ−1

i }.
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We present three examples which shed some new lights on the domain of a maximal

monotone set.

Example 3.6. Let X be a real Banach space such that its dual space X∗ is

separable and let T ⊂ X × X∗ be a maximally monotone subset. Assume that

a ∈ conv D(T ) \ D(T ) and {ri}∞i=1 ⊂ (0,∞) is such that ri → ∞ whenever i → ∞.

For any approximation {Ti}∞i=1 the existence of which is ensured in Property 3.4, we

are able to choose a sequence {(zi, z
∗

i )}∞i=1 ⊂ X × X∗ such that

∀ i ∈ N, (zi, z
∗

i ) ∈ Ti

and

zi → a, ri‖a− zi‖ → ∞, ‖z∗i ‖ → ∞.

In fact, since a ∈ conv D(T ), so there are (s1, s
∗

1) ∈ T, . . . , (sk, s∗k) ∈ T such that

for some λ1 > 0, . . . , λk > 0 with
k
∑

i=1

λi = 1 we get a =
k
∑

i=1

λisi. It follows from

Corollary 3.5 that there exists a sequence of maximal monotone subsets of X × X∗,

say {Ti}∞i=1, such that (i)–(iii) of the corollary are satisfied and for every i ∈ N we

can find (zi, z
∗

i ) ∈ Ti such that

(7) r2
i ‖a − zi‖

2 + ‖ − z∗i ‖
2 + 2ri〈−z∗i , a − zi〉 6 i−2.

Because of (zi, z
∗

i ) ∈ Ti and {(s1, s
∗

1), . . . , (sk, s∗k)} ⊂ Ti we have

∀ i ∈ N, ∀ j ∈ {1, . . . , k}, 〈z∗i − s∗j , zi − sj〉 > 0,

hence

〈z∗i , zi − a〉 > −
k

∑

j=1

λj〈−s∗j , a − sj〉 +

〈 k
∑

j=1

λjs
∗

j , zi − a

〉

.

Hence, by (7) we obtain

∀ i ∈ N, r2
i ‖a − zi‖

2 + ‖ − z∗i ‖
2

+ 2ri

(

−
k

∑

j=1

λj〈−s∗j , a − sj〉 −

∥

∥

∥

∥

k
∑

j=1

λjs
∗

j

∥

∥

∥

∥

‖zi − a‖

)

6 i−2,

which implies ‖zi − a‖ → 0 whenever i → ∞. If there is a bounded subsequence of

the sequence {z∗i }
∞

i=1, say {z∗im
}∞m=1, then by Property 2.1 we are able to choose a

subsequence which is weak∗ convergent to some z∗ ∈ X∗ (we assume that z∗im

weak∗

−→ z∗

in order to avoid too many indices). Let us take any (t, t∗) ∈ T and a sequence
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{(xi, x
∗

i )}
∞

i=1 ⊂ X ×X∗ such that for all i ∈ N, {(x1, x
∗

1), . . . , (xi, x
∗

i )} ⊂ Ti ∩ T , and

(xi, x
∗

i ) → (t, t∗) whenever i → ∞. We have

∀m ∈ N, 〈z∗im
− x∗

im
, zim

− xim
〉 > 0,

so letting m → ∞ we get 〈z∗ − t∗, a − t〉 > 0, thus (a, z∗) ∈ T and a ∈ D(T ), which

is impossible. Hence lim
i→∞

‖z∗i ‖ = +∞ and by (7) we get

lim
i→∞

‖z∗i ‖

ri‖a− zi‖
= 1,

so lim
i→∞

ri‖a − zi‖ = +∞.

Example 3.7. Let X be a real Banach space such that its dual space X∗ is

separable and let T ⊂ X × X∗ be a maximally monotone subset. Assume that

a ∈ conv D(T ) and there is a sequence {(wi, w
∗

i )}∞i=1 ⊂ T such that ‖w∗

i ‖ → ∞

whenever i → ∞, and

(8) lim sup
i→∞

‖w∗

i ‖
−1‖wi − a‖−1〈w∗

i , wi − a〉 < 0.

Then a ∈ cl D(T ). Moreover, if a 6∈ D(T ), then a = lim
i→∞

wi.

In fact, since a ∈ conv D(T ), so there are (s1, s
∗

1) ∈ T, . . . , (sk, s∗k) ∈ T such

that for some λ1 > 0, . . . λk > 0 with
k
∑

i=1

λi = 1 we get a =
k
∑

i=1

λisi. Let us put

a∗ :=
k
∑

i=1

λis
∗

i and choose a dense countable subset of T , say Z ⊂ T , such that

(s1, s
∗

1) ∈ Z, . . . , (sk, s∗k) ∈ Z, {(wi, w
∗

i )}∞i=1 ⊂ Z. By Property 3.3 we are able to

construct a sequence of maximally monotone subsets of X × X∗, say {Ti}∞i=1, such

that

(a) Z ⊂
∞
⋃

i=1

Ti;

(b) ∀ i ∈ N, {(s1, s
∗

1), . . . , (sk, s∗k)} ⊂ Ti;

(c) ∀ i ∈ N, Ti ∩ Z ⊂ Ti+1;

(d) the range of Ti is a compact subset of X
∗.

For every i ∈ N let us put ri := ‖w∗

i ‖ and choose a subsequence {ji} for which

(9) ∀ i ∈ N, (wi, w
∗

i ) ∈ Tji
.

Since Tji
are maximally monotone of type NI, so the sets

Si := {(rit, t
∗) : (t, t∗) ∈ Tji

}
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are also maximally monotone of type NI. By Property 2.4 we are able to find (zi, z
∗

i ) ∈

Tji
such that

(10) ∀ i ∈ N, r2
i ‖a − zi‖

2 + ‖a∗ − z∗i ‖
2 + 2ri〈a

∗ − z∗i , a − zi〉 6 i−1,

hence, similarly to Example 3.6, zi → a whenever i → ∞. If lim inf
i→∞

(‖a − zi‖2 +

‖a∗ − z∗i ‖
2) > 0, then by (10)

(11) lim
i→∞

‖a∗ − z∗i ‖

ri‖a− zi‖
= 1.

If lim inf
i→∞

(‖a − zi‖2 + ‖a∗ − z∗i ‖
2) = 0, then (a, a∗) ∈ T , so a ∈ D(T ).

In order to complete the proof it is enough to consider the case a 6∈ D(T ). Let us

observe that in this case the reasoning above yields the implication if a 6∈ D(T ) then

(11) holds true. By (9) we have

∀ i ∈ N, 0 6 〈w∗

i − z∗i , wi − zi〉,

and by (10) we obtain

∀i ∈ N, 0 6 ri(〈w
∗

i − a∗, wi − a〉 + 〈z∗i − a∗, a − wi〉

+ 〈z∗i − a∗, zi − a〉 + 〈w∗

i − a∗, a − zi〉)

6 ri〈w
∗

i − a∗, wi − a〉 − 2−1(r2
i ‖a− zi‖

2 + ‖a∗ − z∗i ‖
2)

+ ri‖a
∗ − z∗i ‖‖a− wi‖ + ri‖a

∗ − w∗

i ‖‖a − zi‖ + i−1.

If lim inf
i→∞

‖a − wi‖ > 0, then we have

∀ i ∈ N, 0 6 (ri‖a − wi‖)
−1〈w∗

i − a∗, wi − a〉 + r−1
i ‖a∗ − z∗i ‖

+ (ri‖a − wi‖)
−1‖a∗ − w∗

i ‖‖a− zi‖ + (ri‖a− wi‖i)
−1.

It follows from (11) that lim
i→∞

r−1
i ‖a∗ − z∗i ‖ = 0, thus by (8)

0 6 lim inf
i→∞

(‖w∗

i ‖‖a − wi‖)
−1〈w∗

i − a∗, wi − a〉

= lim inf
i→∞

(‖w∗

i ‖‖a − wi‖)
−1〈w∗

i , wi − a〉 < 0,

a contradiction, so wi → a whenever i → ∞.

Example 3.8. Let X be a real Banach space such that its dual space X∗ is

separable, and let S ⊂ X×X∗ be a maximally monotone subset with 0 ∈ conv D(S).

Assume that there is a convex function p : [0,∞) → R such that lim inf
t→∞

p(t)/t > 0

and

(12) ∃ s̄ ∈ D(S) : ∀s∗ ∈ R(S), 〈s∗, s̄〉 > p(‖s∗‖).

Then 0 ∈ D(S).
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In fact, let (s̄, s̄∗) ∈ S. If 0 6∈ D(S) then a reasoning similar to that in Example 3.6

gives a sequence {(zi, z
∗

i )}∞i=1 ⊂ X × X∗ such that zi → 0, ‖z∗i ‖ → ∞ whenever

i → ∞, and

∀ i ∈ N, z∗i ∈ conv R(S) and 〈s̄∗ − z∗i , s̄ − zi〉 > 0.

It follows from (12) that

∀ i ∈ N, 〈z∗i , s̄〉 > p(‖z∗i ‖)

and

0 > − lim inf
i→∞

p(‖z∗i ‖)

‖z∗i ‖
> lim inf

i→∞

〈s̄∗ − z∗i , s̄ − zi〉

‖z∗i ‖
> 0,

a contradiction, so 0 ∈ D(S).

References

[1] H. Debrunner, P. Flor: Ein Erweiterungssatz für monotone Mengen. Arch. Math. 15
(1964), 445–447. (In German.)

[2] S.P. Fitzpatrick, R.R. Phelps: Bounded approximants to monotone operators on Ba-
nach spaces. Ann. Inst. Henri Poincaré 9 (1992), 573–595.

[3] R.B. Holmes: Geometric Functional Analysis and its Applications. Springer, New York,
1975.

[4] R.R. Phelps: Lecture on maximal monotone operators. Lecture given at Prague/Paseky,
Summer school, arXiv:math/9302209v1 [math.FA] (1993).

[5] R.R. Phelps: Convex Functions, Monotone Operators and Differentiability. Lecture
Notes in Mathematics 1364. Springer, Berlin, 1989.

[6] R.T. Rockafellar: On the virtual convexity of the domain and range of a nonlinear
maximal monotone operator. Math. Ann. 185 (1970), 81–90.

[7] W. Rudin: Functional Analysis (2nd edition). McGraw-Hill, New York, 1991.
[8] S. Simons: From Hahn-Banach to Monotonicity. Lecture Notes in Mathematics 1693
(2nd expanded ed.). Springer, Berlin, 2008.

[9] S. Simons: Minimax and Monotonicity. Lecture Notes in Mathematics 1693. Springer,
Berlin, 1998.

[10] D. Zagrodny: The closure of the domain and the range of a maximal monotone multi-
function of type NI. Set-Valued Anal. 16 (2008), 759–783.

[11] E. Zeidler: Nonlinear Functional Analysis and its Applications, II/B: Nonlinear Mono-
tone Operators. Springer, Berlin, 1990.

Author’s address: D . Z a g r o d n y, Faculty of Mathematics and Natural Science, Col-
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