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Abstract. We investigate the relationship between the Gröbner-Shirshov bases in free
associative algebras, free left modules and “double-free” left modules (that is, free modules
over a free algebra). We first give Chibrikov’s Composition-Diamond lemma for modules
and then we show that Kang-Lee’s Composition-Diamond lemma follows from it. We give
the Gröbner-Shirshov bases for the following modules: the highest weight module over a
Lie algebra sl2, the Verma module over a Kac-Moody algebra, the Verma module over the
Lie algebra of coefficients of a free conformal algebra, and a universal enveloping module
for a Sabinin algebra. As applications, we also obtain linear bases for the above modules.
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1. Introduction

In literature, the Composition-Diamond lemma for modules was first proved by

S.-J.Kang and K.-H.Lee in [16], [17]. According to their approach, a Gröbner-

Shirshov basis of a cyclic module M over an algebra A is a pair (S, T ), where S is

the defining relations of A = k〈X |S〉 and T is the defining relations of the A-module

AM = modA〈e|T 〉. Then Kang-Lee’s lemma says that (S, T ) is a Gröbner-Shirshov

pair for the A-module AM = modA〈e|T 〉 if S is a Gröbner-Shirshov basis of A and

T is closed under the right-justified composition with respect to S and T , and for

f ∈ S, g ∈ T such that (f, g)w is defined, (f, g)w ≡ 0 mod(S, T ; w). They also

gave some applications of this lemma for irreducible modules over sln(k) in [17], the

Specht modules over the Hecke algebras and the Ariki-Koike algebras in [18], [19].

Some years later, E. S. Chibrikov [11] proposed a new Composition-Diamond lemma
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for modules that treats any module as a factor module of a “double-free” module

modk〈X〉〈Y 〉 over a free algebra k〈X〉. When using this approach, any A-module

AM is presented in the form

AM = modk〈X〉〈Y |SX∗Y, T 〉,

where A = k〈X |S〉, AM = modA〈Y |T 〉, X∗ is the free monoid generated by X .

The aim of this paper is to describe a relationship between the Gröbner-Shirshov

bases in free associative algebras, free left modules and “double-free” left modules,

respectively. We also give some applications of the Composition-Diamond lemma to

“double-free” modules. The paper is organized as follows. In Section 2, we deal with

the Gröbner-Shirshov bases and the Composition-Diamond lemma for left ideals of a

free algebra. Actually, this is a special case of cyclic “double-free” modules. By using

this lemma, we can easily get the well-known Cohn’s theorem (see [12] p. 333). In Sec-

tion 3, we give a relationship between the Gröbner-Shirshov bases in free associative

algebras, free left modules and “double-free” modules, respectively. In particular, we

give a proof of Chibrikov’s Composition-Diamond lemma and formulate Kang-Lee’s

Composition-Diamond lemma. Then we show that the latter follows from the for-

mer. In Sections 4, 5, 6 and 7, we give Gröbner-Shirshov bases for the highest weight

module over the Lie algebra sl2, the Verma module over a Kac-Moody algebra, the

Verma module over the Lie algebra of coefficients of a free conformal algebra, and

a universal enveloping module for a Sabinin algebra, respectively. As applications,

in particular, we also obtain linear bases for the above modules. For the universal

enveloping module for a Sabinin algebra it was done before by Perez-Izquierdo [21]

using another method.

Let k be a field and X a set. Let X∗ be the free monoid generated by X and k〈X〉

the free associative algebra over X and k. For a word w ∈ X∗, we denote the length

of w by deg(w). Suppose that < is a well ordering on X∗. For any polynomial f , let

f be the leading term of f . If the coefficient of f is 1, then this polynomial is said

to be monic. The following lemma will be used in Sections 4, 5 and 6.

Lemma 1.1 ([9], [10], [3]). Let Lie(X) be a free Lie algebra over a set X and a

field k. Let S ⊂ Lie(X) be a nonempty set of monic Lie polynomials. Then, with a

deg-lex ordering on X∗, S is a Gröbner-Shirshov basis in Lie(X) if and only if S(−)

is a Gröbner-Shirshov basis in k〈X〉 where S(−) is just S but all [xy] substituted by

xy − yx.

60



2. Composition-Diamond lemma for left ideals of a free algebra

Let X be a set and < a well ordering on X∗. Let S ⊂ k〈X〉 in which every s ∈ S

is monic. Then k〈X〉S is the left ideal of k〈X〉 generated by S. For the left ideal

k〈X〉S, we define the compositions in S as follows.

Definition 2.1. For any f, g ∈ S, if f = ag for some a ∈ X∗, then the compo-

sition of f and g is defined to be (f, g)f = f − ag. The transformation f → f − ag

is called the elimination of the leading word (ELW) of g in f . If (f, g)f =
∑

αiaisi,

where αi ∈ k, ai ∈ X∗, si ∈ S and ais̄i < f , then the composition (f, g)f is trivial

modulo (S, f), denoted by (f, g)f ≡ 0 mod(S, f).

Definition 2.2. Let S ⊂ k〈X〉 with each s ∈ S monic. Then S is called a

Gröbner-Shirshov basis of the left ideal k〈X〉S if all compositions are trivial modulo

S. The set S is now called the minimal Gröbner-Shirshov basis of k〈X〉S if there

exists no composition of polynomials in S, i.e., f 6= ag for any a ∈ X∗, f , g ∈ S,

f 6= g.

A well ordering < on X∗ is left compatible if for any u, v ∈ X∗,

u > v ⇒ wu > wv for all w ∈ X∗.

That < is right compatible can be similarly defined. Moreover, < is monomial if it

is both left and right compatible.

Now we formulate the Composition-Diamond lemma for left ideals of a free asso-

ciative algebra.

Lemma 2.3 (Composition-Diamond lemma for left ideals of k〈X〉). Let S ⊂

k〈X〉 in which every s ∈ S is monic and let < be a left compatible well ordering on

X∗. Then the following statements are equivalent:

(1) S is a Gröbner-Shirshov basis of the left ideal k〈X〉S.

(2) If 0 6= f ∈ k〈X〉S, then f = as̄ for some a ∈ X∗, s ∈ S.

(2′) If 0 6= f ∈ k〈X〉S, then f =
∑

αiaisi with a1s̄1 > a2s̄2 > . . ., where each

αi ∈ k, ai ∈ X∗, si ∈ S.

(3) Irr(S) = {w ∈ X∗ | w 6= as̄, a ∈ X∗, s ∈ S} is a k-linear basis for the factor

k〈X〉-module k〈X〉k〈X〉/k〈X〉S.

Lemma 2.3 is a special case of Lemma 3.2 (see the next section).

Assume that S is a Gröbner-Shirshov basis for the left ideal k〈X〉S of k〈X〉. We

may assume that the leading terms of the elements in S are different. Then

S1 = {s ∈ S | s̄ 6= at̄, a ∈ X∗, t ∈ S \ {s}}
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is clearly a minimal Gröbner-Shirshov basis for the left ideal k〈X〉S. Then k〈X〉S

is a free k〈X〉-module with the basis S1 by Lemma 2.3. Thus, we get the following

well-known result.

Corollary 2.4 (Cohn [12]). Any left (right) ideal of a free algebra k〈X〉 is a free

left (right) k〈X〉-module.

Now, we quote below Kang-Lee’s Composition-Diamond lemma. Let S, T ⊂ k〈X〉,

A = k〈X |S〉, let AM =A A/A(T + Id(S)) be a left A-module and f, g ∈ k〈X〉. In

Kang-Lee’s paper [16], the composition of f and g is defined as follows.

Definition 2.5 ([16], [17]). Let < be a monomial ordering on X∗.

(a) If there exist a, b ∈ X∗ such that w = fa = bg with deg(f) > deg(b), then the

composition of intersection is defined to be (f, g)w = fa − bg.

(b) If there exist a, b ∈ X∗ such that w = afb = g, then the composition of inclusion

is defined to be (f, g)w = afb − g.

(c) A composition (f, g)w is said to be right-justified if w = f = ag for some a ∈ X∗.

If f − g =
∑

αiaisibi +
∑

βjcjtj , where αi, βj ∈ k, ai, bi, cj ∈ X∗, si ∈ S, tj ∈ T

with aisibi < w and cjtj < w for each i and j, then f − g is called trivial with

respect to S and T and denoted by f ≡ g mod(S, T ; w). When T = ∅, we simply

write f ≡ g mod(S, w). If for any f, g ∈ S, (f, g)w is defined and f ≡ g mod(S, w),

then we say S is closed under composition. Note that if this is the case, S is called

a Gröbner-Shirshov basis in k〈X〉 which was first introduced by Shirshov [26] (see

also [1], [2]).

Remark. A Gröbner-Shirshov basis S in k〈X〉 is called minimal if there is no in-

clusion composition in S. If a subset S of k〈X〉 is not a Gröbner-Shirshov basis, then

we can add to S all nontrivial compositions of polynomials of S, and by continuing

this process (maybe infinitely) many times, we eventually obtain a Gröbner-Shirshov

basis Sc in k〈X〉. Such a process is called the Shirshov algorithm. If we delete from Sc

all polynomials with the leading term containing the leading term of other polynomi-

als in Sc as subwords, then we will get a minimal Gröbner-Shirshov basis equivalent

to Sc.

Definition 2.6 ([16], [17]). Let S, T be monic subsets of k〈X〉. We call (S, T ) a

Gröbner-Shirshov pair for the A-module AM =A A/A(T+Id(S)), where A = k〈X |S〉,

if S is closed under composition, T is closed under the right-justified composition

with respect to S and T , and for any f ∈ S, g ∈ T and w ∈ X∗ such that if

(f, g)w is defined (it means that afb = cg, where a, b, c ∈ X∗, f ∈ S, g ∈ T and

deg(f) > deg(c)), we have (f, g)w ≡ 0 mod(S, T ; w).
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The following is Kang-Lee’s Composition-Diamond lemma for a left module.

Theorem 2.7 ([16], [17]). Let (S, T ) be a pair of subsets of monic elements in

k〈X〉 and A = k〈X |S〉 the associative algebra defined by S. Let AM =A A/A(T +

Id(S)) be a left A-module defined by (S, T ). If (S, T ) is a Gröbner-Shirshov pair for

the A-module AM and p ∈ k〈X〉T +Id(S), then p̄ = as̄b or p̄ = ct̄, where a, b, c ∈ X∗,

s ∈ S, t ∈ T .

Lemma 2.3 is a special case of Theorem 2.7 when S = ∅.

3. Composition-Diamond lemma for “double-free” modules

Let X , Y be sets and modk〈X〉〈Y 〉 a free left k〈X〉-module with the basis Y .

Then modk〈X〉〈Y 〉 =
⊕

y∈Y

k〈X〉y is called a “double-free” module. We now define

the Gröbner-Shirshov basis in modk〈X〉〈Y 〉. Suppose that < is a monomial ordering

on X∗, < a well ordering on Y and X∗Y = {uy | u ∈ X∗, y ∈ Y }. We define an

ordering ≺ on X∗Y as follows: for any w1 = u1y1, w2 = u2y2 ∈ X∗Y ,

(∗) w1 ≺ w2 ⇔ u1 < u2 or u1 = u2, y1 < y2.

It is clear that the ordering ≺ is left compatible in the sense

w ≺ w′ ⇒ aw ≺ aw′ for any a ∈ X∗.

Let S ⊂ modk〈X〉〈Y 〉 with each s ∈ S monic. Then we define the composition

in S only the inclusion composition which means f = ag for some a ∈ X∗, where

f, g ∈ S. If (f, g)f = f −ag =
∑

αiaisi, where αi ∈ k, ai ∈ X∗, si ∈ S and ais̄i ≺ f ,

then this composition is called trivial modulo (S, f) and is denoted by

(f, g)f ≡ 0 mod(S, f).

Definition 3.1 ([11]). Let S ⊂ modk〈X〉〈Y 〉 be a non-empty set with each s ∈ S

monic. Let the ordering ≺ be defined as before. Then we call S a Gröbner-Shirshov

basis in the module modk〈X〉〈Y 〉 if all compositions in S are trivial modulo S.

The proof of the following lemma is basically taken from [11]. For the sake of

convenience, we sketch the proof.
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Lemma 3.2 ([11], Composition-Diamond lemma for “double-free” modules). Let

S ⊂ modk〈X〉〈Y 〉 be a non-empty set with each s ∈ S monic and ≺ the ordering on

X∗Y as before. Then the following statements are equivalent:

(1) S is a Gröbner-Shirshov basis in modk〈X〉〈Y 〉.

(2) If 0 6= f ∈ k〈X〉S, then f = as̄ for some a ∈ X∗, s ∈ S.

(2′) If 0 6= f ∈ k〈X〉S, then f =
∑

αiaisi with a1s̄1 ≻ a2s̄2 ≻ . . ., where each

αi ∈ k, ai ∈ X∗, si ∈ S.

(3) Irr(S) = {w ∈ X∗Y | w 6= as̄, a ∈ X∗, s ∈ S} is a k-linear basis for the factor

modk〈X〉〈Y |S〉 = modk〈X〉〈Y 〉/k〈X〉S.

P r o o f. (1) ⇒ (2). Suppose that 0 6= f ∈ k〈X〉S. Then f =
∑

αiaisi for some

αi ∈ k, ai ∈ X∗, si ∈ S. Let wi = ais̄i and w1 = w2 = . . . = wl ≻ wl+1 � . . .. We

now prove that f = as̄ for some a ∈ X∗, s ∈ S, by using induction on l and w1. If

l = 1, then the result is clear. If l > 1, then a1s̄1 = a2s̄2. Thus, we may assume that

a1 = a2a, s̄2 = as̄1 for some a ∈ X∗. Now, by (1),

a1s1 − a2s2 = a2as1 − a2s2 = a2(as1 − s2) = a2

∑

βjbjuj =
∑

βja2bjuj,

where βj ∈ k, bj ∈ X∗, uj ∈ S and bj ūj ≺ s̄2. Therefore, a2bj ūj ≺ w1. By using

induction on l and w1, we obtain the result.

It is clear that (2) is equivalent to (2′).

(2) ⇒ (3). For any 0 6= f ∈ modk〈X〉〈Y 〉, if f = u1 ∈ Irr(S), then f = β1u1 + . . ..

If f 6∈ Irr(S), then f = α1a1s1 + . . .. Consequently, f can be expressed by

f =
∑

αiaisi +
∑

βjuj ,

where αi, βj ∈ k, ai ∈ X∗, si ∈ S and uj ∈ Irr(S). Then Irr(S) generates the

factor module. Moreover, if 0 6=
∑

αiaisi =
∑

βjuj , where ai ∈ X∗, si ∈ S,

uj ∈ Irr(S), a1s̄1 ≻ a2s̄2 ≻ . . . and u1 ≻ u2 ≻ . . . , then u1 = a1s̄1, which is clearly a

contradiction. Hence, Irr(S) is a k-linear basis of the factor module.

(3) ⇒ (1). For any f, g ∈ S, suppose that f = ag. Since (f, g)f ∈ k〈X〉S, by (3)

we have (f, g)f = f − ag =
∑

αiaisi, where si ∈ S, ai ∈ X∗ and ais̄i � (f, g)f ≺ f .

Now, it is clear that S is a Gröbner-Shirshov basis in modk〈X〉〈Y 〉. �

Remark. We view k〈X〉 as a free left k〈X〉-module with one generator e. Then

modk〈X〉〈e〉 = k〈X〉e =k〈X〉k〈X〉 is a cyclic k〈X〉-module. If S ⊂ k〈X〉, then k〈X〉S

is a left ideal of k〈X〉 which is also a left k〈X〉-submodule of k〈X〉e. This implies

that Lemma 2.3 is a special case of Lemma 3.2.

Let S ⊂ k〈X〉 and let A = k〈X |S〉 be an associative algebra. Then, for any

left A-module AM , we can regard AM as a k〈X〉-module in a natural way: for any
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f ∈ k〈X〉, m ∈ M ,

fm = (f + Id(S))m.

We note that AM is an epimorphic image of some free A-module. Now, we assume

that AM = modA〈Y |T 〉 = modA〈Y 〉/AT , where T ⊂ modA〈Y 〉 and modA〈Y 〉 is

a free left A-module with the basis Y . Let T1 = {
∑

fiyi ∈ modk〈X〉〈Y 〉|
∑

(fi +

Id(S))yi ∈ T } and R = SX∗Y ∪ T1. Then, by the following Lemma 3.3, we have, as

k〈X〉-modules, AM ∼= modk〈X〉〈Y |R〉.

Lemma 3.3 ([11]). Let the notation be the same as above. Then, as k〈X〉-

modules,

σ : AM → modk〈X〉〈Y |R〉,
∑

(fi + Id(S))(yi + AT ) 7→
∑

fiyi + k〈X〉R

is an isomorphism, where each fi ∈ k〈X〉.

P r o o f. For any
∑

(fi +Id(S))(yi +AT ),
∑

(gi +Id(S))(yi +AT ) ∈A M we have

∑

(fi + Id(S))(yi + AT ) =
∑

(gi + Id(S))(yi + AT ) in AM

⇔
∑

(fi − gi)yi ∈ AT in AM

⇔
∑

(fi − gi)yi ∈ k〈X〉R

⇔
∑

fiyi + k〈X〉R =
∑

giyi + k〈X〉R.

Hence, σ is injective. It is easy to see that σ is also surjective and consequently, it is

a k〈X〉-module isomorphism. �

By Lemma 3.2 and Lemma 3.3, we know that if we want to find a k-linear basis for

the module AM = modA〈Y |T 〉, where A = k〈X |S〉, we only need to find a Gröbner-

Shirshov basis for the module modk〈X〉〈Y |SX∗Y ∪ T1〉, where T1 = {
∑

fiyi ∈

modk〈X〉〈Y 〉 |
∑

(fi + Id(S))yi ∈ T }.

The next theorem gives a relationship between the Gröbner-Shirshov bases (pairs)

in free associative algebras and in “double-free” modules.

Theorem 3.4. Let X , Y be well ordered sets, < a monomial ordering on X∗

and ≺ the ordering on X∗Y as in (∗). Let S, T ⊂ k〈X〉 be monic sets. Then the

following statements hold:

(1) S ⊂ k〈X〉 is a Gröbner-Shirshov basis in k〈X〉 with respect to the ordering <

if and only if SX∗Y ⊂ modk〈X〉〈Y 〉 is a Gröbner-Shirshov basis in modk〈X〉〈Y 〉

with respect to the ordering ≺.
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(2) We consider k〈X〉 as a free k〈X〉-module having one generator e. Then (S, T )

is a Gröbner-Shirshov pair for the A-module M = A/A(T + Id(S)), where

A = k〈X |S〉 if and only if S is a Gröbner-Shirshov basis in the algebra k〈X〉

with respect to the ordering < and (SX∗ ∪ T )e is a Gröbner-Shirshov basis in

the free module modk〈X〉〈e〉 with respect to the ordering ≺.

P r o o f. (1) Suppose that S is a Gröbner-Shirshov basis in k〈X〉. We shall prove

that all compositions in SX∗Y are trivial modulo SX∗Y . For any f , g ∈ SX∗Y ,

let f = s1a1y, g = s2a2y, s1, s2 ∈ S, a1, a2 ∈ X∗, y ∈ Y and w = f = ag. Then

s̄1a1 = as̄2a2. Since S is a Gröbner-Shirshov basis in k〈X〉, we have

(f, g)w = f − ag = s1a1y − as2a2y = (s1a1 − as2a2)y =
∑

(αiuirivi)y,

where ui, vi ∈ X∗, ri ∈ S and uir̄iviy ≺ w. Thus, every composition is trivial modulo

SX∗Y and hence, SX∗Y is a Gröbner-Shirshov basis in modk〈X〉〈Y 〉. Conversely,

assume that SX∗Y is a Gröbner-Shirshov basis in the module modk〈X〉〈Y 〉. For any

f , g ∈ S and w = fa = bg, we have w1 = fay = bgy and

(fay, bgy)w1
= (fa − bg)y =

∑

αi(airi)y,

where αi ∈ k, ri = sibi, ai, bi ∈ X∗, si ∈ S and air̄iy ≺ w1. Then

(f, g)w = fa − bg =
∑

αiaisibi

with ais̄ibi < w. This shows that each composition of intersection in S is trivial mod-

ulo S. Similarly, every composition of inclusion in S is trivial modulo S. Therefore,

S is indeed a Gröbner-Shirshov basis in k〈X〉.

(2) The results follow directly from Definitions 2.6 and 3.1. �

Remark. By Theorem 3.4 it is clear that Theorem 2.7 follows from Lemma 3.2.

4. Highest weight modules over sl2

In this section we give a Gröbner-Shirshov basis for the highest weight module over

sl2. By using this result and Lemma 3.2, we re-prove that the highest weight module

over sl2 is irreducible (see [13]) and show that any finite dimensional irreducible

sl2-module has the presentation (∗∗) given below.

Let X = {x, y, h} and let sl2 = Lie(X |S) be a Lie algebra over a field k with

chk = 0, where

x =

(

0 1

0 0

)

, y =

(

0 0

1 0

)

, h =

(

1 0

0 −1

)

and S = {[hx]−2x, [hy]+2y, [xy]−h}.
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Then the universal enveloping algebra of sl2 is U(sl2) = k〈X |S(−)〉. Define the deg-

lex ordering on X∗ with x > h > y. Then S is a Gröbner-Shirshov basis in the free

Lie algebra Lie(X) since S(−) is a Gröbner-Shirshov basis in k〈X〉 (see Lemma 1.1).

Let

sl2V (λ) = modsl2〈v0 | xv0 = 0, hv0 = λv0, ym+1v0 = 0〉

be a highest weight module generated by v0 with the highest weight λ. We can

rewrite it as

sl2V (λ) = modU(sl2)〈v0 | xv0 = 0, hv0 = λv0, ym+1v0 = 0〉

= modk〈X〉〈v0 | xv0 = 0, hv0 = λv0, ym+1v0 = 0, S(−)X∗v0 = 0〉.

Let S1 = {xv0, hv0−λv0, y
m+1v0}∪S(−)X∗v0. It is easy to see that all compositions

in S1 are trivial modulo S1. Thus, S1 is a Gröbner-Shirshov basis for this module

with respect to the ordering (∗) as in Section 3, and by Lemma 3.2, Irr(S1) = {yiv0 |

0 6 i 6 m} is a k-linear basis for the module sl2V (λ), and so dim(V (λ)) = m + 1.

Let y(i) = i!−1yi, vi = i!−1yiv0 and v−1 = 0. Then vi (0 6 i 6 m) is a linear basis

of V (λ). Now, by using ELW of the relations in S1 on the left parts, we have the

following equalities (see also [13], p. 32):

Lemma 4.1. hvi = (λ − 2i)vi,

yvi = (i + 1)vi+1,

xvi = (λ − i + 1)vi−1 (0 6 i).

Since vm+1 = 0 and chk = 0, we have 0 = xvm+1 = (λ − m)vm and therefore,

λ = m.

Lemma 4.2. V (λ) is irreducible.

P r o o f. Let 0 6= V1 6 V (λ) be a submodule. Since V1 6= 0, there exists

0 6= aivi + ai+1vi+1 + . . . + amvm, where i is the least number such that ai 6= 0.

Applying y to it m− i times, we get ai(i+1)(i+2) . . . mvm ∈ V1 and hence, vm ∈ V1.

Applying x to vm, we get vi ∈ V1 (0 6 i < m) and hence V1 = V (λ). �

For any finite dimensional irreducible sl2-module V , choose a maximal vector

v0 ∈ V and vi = i!−1yiv0. Then we have the formulas as in Lemma 4.1. We can

suppose that dimV = m. Thus, vm 6= 0, vm+1 = 0 and hence, V can be represented

as

(∗∗) sl2V = modsl2〈v0|xv0 = 0, hv0 = λv0, ym+1v0 = 0〉.

This means that any finite dimensional irreducible sl2-module has the above form.
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5. Verma modules over Kac-Moody algebras

Gröbner-Shirshov bases for Kac-Moody algebras of types A
(1)
n , C

(1)
n , D

(1)
n and B

(1)
n

are found by E.N. Poroshenko in [22], [23], [24].

In this section we give the definitions of Kac-Moody algebra G(A) and the Verma

module over G(A). We find a Gröbner-Shirshov basis for this Verma module.

Let A = (aij) be an (integral) symmetrizable n-by-n Cartan matrix over C, where

C is the complex field. It means that aii = 2, aij 6 0 (i 6= j), and there exists a

diagonal matrix D with nonzero integer diagonal entries di such that the product

DA is symmetric. Let G(A) = Lie(X |S) be a Lie algebra, where X = {xi, yi, h | 1 6

i 6 n, h ∈ H} and S consists of the following relations (see [14], p. 159):

[xi, yj ] = δijα
∨
i (i, j = 1, . . . , n),(5.1)

[h, h′] = 0 (h, h′ ∈ H),(5.2)

[h, xi] = 〈αi, h〉xi, [h, yi] = −〈αi, h〉yi, (i = 1, . . . , n; h ∈ H),(5.3)

(adxi)
1−aij xj = 0, (adyi)

1−aij yj = 0 (i 6= j),(5.4)

where ad is the derivation, H a complex vector space, Π = {α1, . . . , αn} ⊂ H⋆

(the dual space of H) and Π∨ = {α∨
1 , . . . , α∨

n} ⊂ H indexed subsets in H⋆ and H ,

respectively, satisfying the following conditions (see [14], p. 1):

(a) both the sets Π and Π∨ are linearly independent,

(b) 〈α∨
i , αj〉 = aij (i, j = 1, . . . , n),

(c) n − l = dimH − n rank(A) = l.

Then we call this Lie algebra G(A) the Kac-Moody algebra. Let N+ (N−) be the

subalgebra of G(A) generated by xi (yi) (0 6 i 6 n). Then G(A) = N− ⊕ H ⊕ N+

and U(G(A)) = U(N+)⊗ k[H ]⊗U(N−) is the universal enveloping algebra of G(A),

where U(N+) (U(N−)) is the universal enveloping algebra of N+ (N−). Let {hj | 1 6

j 6 2n − l} be a basis of H . We order the set X = {xi, hj, ym | 1 6 i, m 6 n, 1 6

j 6 2n − l} by xi > xj , hi > hj, yi > yj , if i > j, and xi > hj > ym for all i, j, m.

Then we define the deg-lex ordering on X∗. By [8], we can get a Gröbner-Shirshov

basis T for U(G(A)), where T consists of the following relations:

hihj − hjhi, xjhi − hixj + diaijxi, hiyj − yjhi + diaijyj ,(5.5)

xiyj − yjxi − δijhi,(5.6)
{ 1−aij

∑

ν=0

(−1)ν

[

1 − aij

ν

]

x
1−aij−ν

i xjx
ν
i

}c

(i 6= j),(5.7)
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{ 1−aij
∑

ν=0

(−1)ν

[

1 − aij

ν

]

y
1−aij−ν

i yjy
ν
i

}c

(i 6= j),(5.8)

where Sc is a Gröbner-Shirshov basis containing S.

Definition 5.1 ([14]). A G(A)-module V is called a highest weight module with

highest weight Λ ∈ H⋆ if there exists a non-zero vector v ∈ V such that

N+(v) = 0, h(v) = Λ(h)v, h ∈ H

and U(G(A))(v) = V .

A Verma module M(Λ) with highest weight Λ has the following presentation:

G(A)M(Λ) = modU(G(A))〈v|N+(v) = 0, h(v) = Λ(h)v, h ∈ H〉

= modk〈X〉〈v|TX∗(v) = 0, N+(v) = 0, h(v) = Λ(h)v, h ∈ H〉.

The proof of the following theorem is straightforward.

Theorem 5.2. With the ordering ≺ on X∗v as (∗), R = {TX∗(v), N+(v), h(v)−

Λ(h)v} is a Gröbner-Shirshov basis for the Verma module G(A)M(Λ).

Remark. In the book [13], the author considered only the semisimple Lie algebras

and called this highest weight module the standard cyclic module.

6. Verma modules over the coefficient algebra of a

free Lie conformal algebra

In this section we give a Gröbner-Shirshov basis for the Verma module over a Lie

algebra having coefficients of some free conformal algebras. By using this result and

Lemma 3.2, we find a linear basis for such a module.

Let B be a set of symbols. Let the locality function N : B × B → Z+ be a

constant, i.e., N(a, b) ≡ N for any a, b ∈ B. Let X = {b(n) | b ∈ B, n ∈ Z} and let

L = Lie(X |S) be a Lie algebra generated by X with the relation S, where

S =

{

∑

s

(−1)s

(

n

s

)

[b(n − s)a(m + s)] = 0
∣

∣

∣
a, b ∈ B, m, n ∈ Z

}

.

For any b ∈ B, let b̃ =
∑

n

b(n)z−n−1 ∈ L[[z, z−1]]. Then it is well-known that they

generate a free Lie conformal algebra C with data (B, N) (see [25]). Moreover, the
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coefficient algebra of C is just L. Let B be a well ordered set. Define an ordering on

X in the following way:

a(m) < b(n) ⇔ m < n or (m = n and a < b).

We use the deg-lex ordering on X∗. Then, it is clear that the leading term of each

polynomial in S is b(n)a(m) so that

n − m > N or (n − m = N and (b > a or (b = a and N is odd))).

The following lemma is essentially taken from [25].

Lemma 6.1. With the deg-lex ordering on X∗, S is a Gröbner-Shirshov basis in

Lie(X).

Corollary 6.2. Let U = U(L) be a universal enveloping algebra of L. Then a

k-basis of U consists of monomials

a1(n1)a2(n2) . . . ak(nk), ai ∈ B, ni ∈ Z

such that for any 1 6 i < k,

(∗∗∗) ni − ni+1 6

{

N − 1 if ai > ai+1 or (ai = ai+1 and N is odd),

N otherwise.

P r o o f. We first regard U as a k〈X〉-module. Then we have

UU = modk〈X〉〈e| S(−)X∗e〉.

Since S is a Gröbner-Shirshov basis in Lie(X), S(−) is a Gröbner-Shirshov basis in

k〈X〉 by Lemma 1.1. Therefore, by Theorem 3.4, S(−)X∗e is a Gröbner-Shirshov

basis in the free module modk〈X〉〈e〉. Now, the result follows from Lemma 3.2. �

Definition 6.3 ([14], [15]).

(a) An L-module M is called restricted if for any a ∈ C, v ∈ M there is an integer

T such that for any n > T one has a(n)v = 0.

(b) An L-module M is called a highest weight module if it is generated over L by

a single element m ∈ M such that L+m = 0, where L+ is the subspace of L

generated by {a(n) | a ∈ B, n > 0}. In this case, m is called the highest weight

vector.
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Now we construct a universal highest weight module V over L which is usually

referred to as the Verma module. Let kev be a 1-dimensional trivial L+-module

generated by ev, i.e., a(n)ev = 0 for all a ∈ B, n > 0. Clearly,

V = IndL
L+

kev = U(L) ⊗U(L+) kev
∼= U(L)/U(L)L+.

Then V has a structure highest weight module over L with the action given by

the multiplication on U(L)/U(L)L+ and the highest weight vector e ∈ U(L). Also,

V = U(L)/U(L)L+ is the universal enveloping vertex algebra of C and the embedding

ϕ : C → V is given by a 7→ a(−1)e (see also [25]).

Theorem 6.4. Let the notions be defined as above. Then a k-basis of V consists

of elements

a1(n1)a2(n2) . . . ak(nk), ai ∈ B, ni ∈ Z

such that the condition (∗∗∗) holds and nk < 0.

P r o o f. Clearly, as the k〈X〉-modules,

UV =U (U(L)/U(L)L+) = modk〈X〉〈e| S(−)X∗e, a(n)e, n > 0〉 =k〈X〉 〈e| S′〉,

where S′ = {S(−)X∗e, a(n)e, n > 0}. In order to prove that S′ is a Gröbner-Shirshov

basis, we only need to check that w = b(n)a(m)e, where m > 0. Let

f =
∑

s

(−1)s

(

n

s

)

(b(n − s)a(m + s) − a(m + s)b(n − s))e and g = a(m)e.

Then (f, g)w = f−b(n)a(m)e ≡ 0 mod(S′, w) since n−m > N , m+s > 0, n−s > 0,

0 6 s 6 N . It follows that S′ is a Gröbner-Shirshov basis. Now, the result follows

from Lemma 3.2. �

7. Universal enveloping module for a Sabinin algebra

In this section we give a Gröbner-Shirshov basis for a universal enveloping module

for a Sabinin algebra. By using this result and Lemma 3.2, we find a linear basis for

such a module.

Definition 7.1 ([21]). A vector space V is called a Sabinin algebra if it is en-

dowed with a multilinear operation 〈; 〉 such that for any x1, x2, . . . , xm, y, z ∈ V and

any m > 0,

〈x1, x2, . . . , xm; y, z〉
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satisfies the identities

〈x1, x2, . . . , xm; y, z〉 = −〈x1, x2, . . . , xm; z, y〉,

〈x1, x2, . . . , xr , a, b, xr+1, . . . , xm; y, z〉 − 〈x1, x2, . . . , xr, b, a, xr+1, . . . , xm; y, z〉

+

r
∑

k=0

∑

α

〈xα1
, . . . , xαk

, 〈xαk+1
, . . . , xαr

; a, b〉, . . . , xm; y, z〉 = 0,

σx,y,z(〈x1, x2, . . . , xr, x; y, z〉 +

r
∑

k=0

∑

α

〈xα1
, . . . , xαk

; 〈xαk+1
, . . . , xαr

; y, z〉, x〉) = 0,

where α runs over the set of all bijections of type α : {1, 2, . . . , r} → {1, 2, . . . , r},

i 7→ αi, α1 < α2 < . . . < αk, αk+1 < . . . < αr, r > 0 and σx,y,z denotes the cyclic

sum by x, y, z.

Let X = {ai | i ∈ Λ} be a well ordered basis of V . We define the deg-lex ordering

on X∗. Let ∆ : V → V ⊗ V be a linear map which satisfies ∆(ai) = 1⊗ ai + ai ⊗ 1,

(Id⊗∆)∆ = (∆ ⊗ Id)∆ (coassociativity) and if τ∆ = ∆ then τ(x ⊗ y) = y ⊗ x

(cocommutativity). It is customary to write ∆(x) =
∑

x(1) ⊗ x(2).

Let T (V ) be the tensor algebra over V endowed with its natural structure of

cocommutative Hopf algebra, that is, V ⊆ Prim (T (V )) (the primitive element of

T (V )). Let 〈; 〉 : T (V ) ⊗ V ⊗ V → V be a map. Then we may shortly write the

definition of a Sabinin algebra as

〈x; a, b〉 = −〈x; b, a〉, 〈x[a, b]y; c, e〉 +
∑

〈x(1)〈x(2); a, b〉y; c, e〉 = 0,

σa,b,c(〈xc; a, b〉 +
∑

〈x(1); 〈x(2); a, b〉, c〉) = 0,

where [a, b] = ab − ba.

Definition 7.2 ([21]). Let (V, 〈; 〉) be a Sabinin algebra. Then

S̃(V ) = T (V )/span
〈

xaby − xbay +
∑

x(1)〈x(2); a, b〉y|x, y ∈ T (V ), a, b ∈ V
〉

is called the universal enveloping module for V .

Since T (V ) ≃ k〈X〉 as k-algebras, we can view S̃(V ) as a right k〈X〉-module:

S̃(V ) = mod〈X |I〉k〈X〉,

where I = {xab − xba +
∑

x(1)〈x(2); a, b〉 | x ∈ X∗, a > b, a, b ∈ X}.

For the right module, we have a right compatible well ordering ≺ on XX∗ by a

similar definition as in (∗). Then we have the following theorem.
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Theorem 7.3. Let I be as above. Then, with the ordering ≺ on XX∗ as above,

I is a Gröbner-Shirshov basis in mod〈X〉k〈X〉.

P r o o f. There are two kinds of compositions: w1 = xabc (a > b > c) and

w2 = ucdvab (c > d, a > b). Denote

f1 = xabc − xacb +
∑

(xa)(1)〈(xa)(2); b, c〉,

f2 = xab − xba +
∑

x(1)〈x(2); a, b〉,

f3 = ucdvab − ucdvba +
∑

(ucdv)(1)〈(ucdv)(2); a, b〉,

f4 = ucd − udc +
∑

u(1)〈u(2); c, d〉.

Then, since σa,b,c(〈xc; a, b〉 +
∑

〈x(1); 〈x(2); a, b〉, c〉) = 0, we have

(f1, f2)w1
= xabc − xacb +

∑

x(1)a〈x(2); b, c〉 +
∑

x(1)〈x(2)a; b, c〉

− xabc + xbac −
∑

x(1)〈x(2); a, b〉c

≡ −xcab +
∑

x(1)〈x(2); a, c〉b +
∑

x(1)a〈x(2); b, c〉 +
∑

x(1)〈x(2)a; b, c〉

+ xbca −
∑

x(1)b〈x(2); a, c〉 −
∑

x(1)〈x(2)b; a, c〉 −
∑

x(1)〈x(2); a, b〉c

≡
∑

x(1)c〈x(2); a, b〉 +
∑

x(1)〈x(2)c; a, b〉 +
∑

x(1)〈x(2); a, c〉b

+
∑

x(1)a〈x(2); b, c〉 +
∑

x(1)〈x(2)a; b, c〉 −
∑

x(1)〈x(2); b, c〉a

−
∑

x(1)b〈x(2); a, c〉 −
∑

x(1)〈x(2)b; a, c〉 −
∑

x(1)〈x(2); a, b〉c

≡
∑

x(1)〈x(2)a; b, c〉 +
∑

x(1)〈x(2); 〈x(3); b, c〉, a〉 +
∑

x(1)〈x(2)b; c, a〉

+
∑

x(1)〈x(2)c; a, b〉 +
∑

x(1)〈x(2); 〈x(3); c, a〉, b〉

+
∑

x(1)〈x(2); 〈x(3); a, b〉, c〉

≡ 0

and since 〈x[a, b]y; c, e〉 +
∑

〈x(1)〈x(2); a, b〉y; c, e〉 = 0,

(f3, f4)w2

= ucdvab − ucdvba +
∑

u(1)v(1)〈u(2)cdv(2); a, b〉 +
∑

u(1)cv(1)〈u(2)dv(2); a, b〉

+
∑

u(1)dv(1)〈u(2)cv(2); a, b〉 +
∑

u(1)cdv(1)〈u(2)v(2); a, b〉

− ucdvab + udcvab −
∑

u(1)〈u(2); c, d〉vab
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≡ −udcvba +
∑

u(1)〈u(2); c, d〉vba +
∑

u(1)v(1)〈u(2)cdv(2); a, b〉

+
∑

u(1)cv(1)〈u(2)dv(2); a, b〉 +
∑

u(1)dv(1)〈u(2)cv(2); a, b〉

+
∑

u(1)cdv(1)〈u(2)v(2); a, b〉 + udcvba−
∑

u(1)v(1)〈u(2)dcv(2); a, b〉

−
∑

u(1)cv(1)〈u(2)dv(2); a, b〉 −
∑

u(1)dv(1)〈u(2)cv(2); a, b〉

−
∑

u(1)dcv(1)〈u(2)v(2); a, b〉 +
∑

u(1)v(1)〈u(2)〈u(3); c, d〉v(2); a, b〉

+
∑

u(1)〈u(2); c, d〉v(1)〈u(3)v(2); a, b〉 −
∑

u(1)〈u(2); c, d〉vba

≡
∑

u(1)v(1)〈u(2)[c, d]v(2); a, b〉 +
∑

u(1)[c, d]v(1)〈u(2)v(2); a, b〉

+
∑

u(1)v(1)〈u(2)〈u(3); c, d〉v(2); a, b〉 +
∑

u(1)〈u(2); c, d〉v(1)〈u(3)v(2); a, b〉

≡
∑

(u(1)[c, d] + u(1)〈u(2); c, d〉)v(1)〈u(3)v(2); a, b〉

+
∑

u(1)v(1)〈u(2)[c, d]v(2); a, b〉 +
∑

u(1)v(1)〈u(2)〈u(3); c, d〉v(2); a, b〉

≡ 0.

Hence, I is a Gröbner-Shirshov basis in mod〈X〉k〈X〉. �

Remark. From the above proof we can easily see that for S̃(V ) = mod〈X |I〉k〈X〉,

the minimal Gröbner-Shirshov basis is

G =
{

xab − xba +
∑

x(1)〈x(2); a, b〉
∣

∣

∣
x = ai1 . . . ain

(i1 6 . . . 6 in, n > 0), a > b, a, b ∈ X
}

.

Now, by Lemma 3.2 and Theorem 7.3, we can easily get the following theorem.

Theorem 7.4 ([21], Poincaré-Birkhoff-Witt basis). Let {ai | i ∈ Λ} be a well

ordered basis of V . Then {ai1 . . . ain
| i1 6 i2 6 . . . 6 in, n > 0} is a basis of S̃(V ).
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