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Milica Anđelić, Aveiro and Belgrade, and C. M. da Fonseca, Coimbra

(Received June 3, 2008)
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1. Introduction

For any positive integers m and n, let P(m)
n be the set of all functions with domain

[n] = {1, 2, . . . , n} and range Zm = {0, 1, . . . , m− 1}, i.e., P(m)
n = Z

[n]
m . The set P(m)

n

equipped with the partial order

f 6 g if and only if f(x) 6 g(x) for all x ∈ [n]

is a partially ordered set or, simply, a poset, denoted by (P(m)
n , 6). The so-called

cover graph of this poset, denoted by G(m)
n , is an undirected graph whose vertices

are labeled by the elements of P(m)
n and there is an edge connecting f and g if and

only if one vertex covers the other one, i.e., if f ∼ g, then f and g are comparable

and there is no h ∈ P(m)
n \ {f, g} such that f 6 h 6 g or g 6 h 6 f . Analogously,

we may say that f is adjacent to g if and only if they differ at only one point and

the difference is one unit. The adjacency matrix of G(m)
n , also known as the cover

matrix, will be denoted by A
(m)
n , and the spectrum of P(m)

n , denoted by σ(P(m)
n ), is

the set of eigenvalues of A
(m)
n .
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(CEOC) from the “Fundação para a Ciência e a Tecnologia—FCT“, cofinanced by the
European Community Fund FEDER/POCI 2010. The second author was supported by
CMUC—Centro de Matemática da Universidade de Coimbra.
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Spectral technique for general cover graphs have not been well developed due

to the computational cost for calculating the spectrum, although this concept has

a vast variety of different applications, playing an important role in enumerative

combinatorics, computer and information sciences, quantum mechanics, theoretical

chemistry, statistical physics, among others (cf. [2], [10], [11], [12], [13] and references

therein).

There are some interesting recent extensions to double cover graphs, where the

study of the characteristic polynomial and the spectra is essential to obtain expanders

from magnifiers for studying networks (cf. [1], [9]).

There are other ways of portraying partially ordered sets, as the Hasse diagrams

and zeta matrices. Recently, in [2], Ballantine et al. discussed the properties of the

determinant of the matrix ZP = ZP +Zt
P , where ZP =

(
1 1

0 1

)

is the zeta matrix of

the Boolean algebra P of rank n, providing a combinatorial interpretation of det(ZP )

in terms of the adjacency matrices of comparability graphs, and showing that if n is

even, then det(Zn) = 2αn , where αn = 4αn−2−2 for n > 4, with the initial condition

α2 = 2. The main drawback of Hasse diagrams is the possibility of unduly largeness

of the poset. On the other hand, zeta matrices provide a better analytic approach,

since many operations in posets can be expressed by matrix multiplication. Cover

matrices can be computed from the zeta matrices and the converse is true as well.

So, as a variation of zeta matrices, we shall focus our attention on cover matrices,

since these are more tractable.

In this note we examine the spectra of the cover matrix of the poset (P(m)
n , 6) and

construct a modified Pascal triangle for the multiplicities of the eigenvalues in some

particular cases. Our purpose is to find the adjacency matrix of G(m)
n , and using

Chebyshev polynomials of the second kind, calculate the characteristic polynomial.

We will be able to generalize some recent spectral results on Boolean algebras (cf.

[2], [4]).

2. Cover matrices

Let us fix a positive integer m and recall that

P(m)
n = {f |f : {1, . . . , n} −→ Zm}.

The cardinality of P(m)
n is mn.

To construct the cover matrix A
(m)
n of G(m)

n , we order the elements of P(m)
n in a

reverse lexicographic manner. For example, when m = 3, the 9 maps of P(3)
2 are
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ordered as follows:

f1 := f00 =

(
1 2

0 0

)

, f2 := f10 =

(
1 2

1 0

)

, f3 := f20 =

(
1 2

2 0

)

,

f4 := f01 =

(
1 2

0 1

)

, f5 := f11 =

(
1 2

1 1

)

, f6 := f21 =

(
1 2

2 1

)

,

f7 := f02 =

(
1 2

0 2

)

, f8 := f12 =

(
1 2

1 2

)

, f9 := f22 =

(
1 2

2 2

)

.

Two vertices, f and g, of the cover graph of P(m)
n are adjacent provided they are

comparable and there exists x ∈ {1, . . . , n} such that f(x) = g(x) + 1 or f(x) =

g(x) − 1. Defining f(i) = ai and g(i) = bi for ai, bi ∈ Zm and i = 1, . . . , n, an

induction argument leads to the concise formula for the distance between f and g:

d(f, g) =

n∑

i=1

|ai − bi| .

Still, about the structure of the cover graph G(m)
n , we can also say that the number

of shortest paths between f and g is given by

( n∑

i=1

|ai − bi|
)

!

n∏

i=1

(|ai − bi|!)
.

If one considers the maximum of the distance between any two vertices, one gets

the following proposition:

Proposition 2.1. The diameter of G(m)
n is (m − 1)n.

If m = 2, i.e., in the Boolean case, the diameter of G(2)
n is n.

Taking into account that the adjacency matrix of the cover graph of P(m)
1 is the

tridiagonal Toeplitz matrix

A
(m)
1 =








0 1

1
. . .

. . .
. . .

. . . 1

1 0








m×m

,

and since we have the decomposition

P(m)
n = G

(m)
0 ⊕ G

(m)
1 ⊕ . . . ⊕ G

(m)
m−1,
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where

G
(m)
i = {f ∈ P(m)

n |f(n) = i},
we may conclude that the adjacency matrix of G(m)

n is

(2.1) A(m)
n =









A
(m)
n−1 Imn−1

Imn−1

. . .
. . .

. . .
. . . Imn−1

Imn−1 A
(m)
n−1









mn×mn

for any integer n > 2. Of course, we can use the convention that A
(m)
0 = (0).

3. Chebyshev polynomials of second kind

We proceed with one of the most important families of orthogonal polynomials:

the Chebyshev polynomials of the second kind, denoted by {Um(x)}m>0. These

polynomials satisfy the three-term recurrence relation

(3.1) Um+1(x) = 2xUm(x) − Um−1(x) for all m = 1, 2, . . . ,

with the initial conditions U0(x) = 1 and U1(x) = 2x. Since each Um(x) verifies

Um(x) =
sin(m + 1)θ

sin θ
, with x = cos θ (0 6 θ < π)

for all m = 0, 1, 2 . . ., we can deduce the orthogonality relations

∫ 1

−1

Ui(x)Uj(x)
√

1 − x2 dx = 1
2πδi,j

(cf. [3], e.g.). It is also well known that the explicit formula for Chebyshev polyno-

mials of the second kind is

Um(x) =

⌊m/2⌋
∑

k=0

(−)k (m − k)!

k!(m − 2k)!
(2x)m−2k.

If we consider the m×m tridiagonal Toeplitz matrix A
(m)
1 , the recurrence relation

(3.1) can be rewritten in the matrix form:

2x










U0(x)

U1(x)
...

Um−2(x)

Um−1(x)










= A
(m)
1










U0(x)

U1(x)
...

Um−2(x)

Um−1(x)










+ Um(x)










0

0
...

0

1










.
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Hence, the characteristic polynomial of A
(m)
1 is pm(x) = Um(1

2x) and it follows

immediately (see [5]) that the eigenvalues are

(3.2) λl = 2 cos
( lπ

m + 1

)

for l = 1, 2 . . . , m.

Therefore, if X is any square matrix, then

(3.3) pm(X) =

m∏

l=1

(X − λlI) .

4. The spectra

Finding the characteristic polynomials of the adjacency matrices of comparability

graphs is a hard task. The same difficulties can be met with the determinant of

special structured integral matrices (cf. e.g. [7], [8]). In this section, we focus our

attention on the characteristic polynomial of A
(m)
n .

Let us define

(4.1) A(m)
n (t) = tImn − A(m)

n .

Thus, the characteristic polynomial of A
(m)
n is detA

(m)
n (t).

Theorem 4.1.

(4.2) det A
(m)
n+1(t) = det pm(A(m)

n (t)).

P r o o f. From (2.1) and (4.1) we have

det A
(m)
n+1(t) = det









A
(m)
n (t) Imn

Imn

. . .
. . .

. . .
. . . Imn

Imn A
(m)
n (t)









mn+1×mn+1

.

To simplify the notation, from now on we write An(t) = A
(m)
n − tImn and I = Imn .

To establish the relation (4.2), we perform block-wise row and column operations.
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First we switch the positions of the first and the second rows to obtain

det
















I An(t) I

An(t) I 0 0

I An(t) I 0
. . .

. . .
. . .

. . .
. . .

. . .
. . . 0

. . .
. . . I

I An(t)
















mn+1×mn+1

.

Applying the Schur complement to the determinant (cf., e.g., [6]), the previous de-

terminant is equal to

det











A2
n(t) − I An(t)

I An(t) I

I
. . .

. . .
. . .

. . . I

I An(t)











(m−1)mn×(m−1)mn

.

We can apply the same procedure (m − 2) times more. In the k-th step we get

det











pk+1(An(t)) pk(An(t))

I An(t) I

I
. . .

. . .
. . .

. . . I

I An(t)











(m−k)mn×(m−k)mn

,

where pk(x) = Uk(x
2 ), Uk(x) being the Chebyshev polynomial of the second kind

defined e.g. by the three-term recurrence relation (3.1). Therefore, in the final (m−1)-

st step we obtain (4.2) as desired. �

Theorem 4.2. The eigenvalues of A
(m)
n+1 are of the form

λ + λl,

where λ is an eigenvalue of A
(m)
n and λl is an eigenvalue of A

(m)
1 defined as in (3.2).

P r o o f. From (3.3) we have

pm(A(m)
n (t)) =

m∏

l=1

(A(m)
n (t) − λlImn).
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Applying now (4.2), we obtain

detA
(m)
n+1(t) =

m∏

l=1

det(A(m)
n (t) − λlImn).

This means that all eigenvalues of A
(m)
n+1 have the form λ + λl for an eigenvalue λ of

A
(m)
n . �

Corollary 4.3. If λ1, . . . , λm are the eigenvalues of A
(m)
1 , as in (3.2), then the

spectrum of A
(m)
n consists of the real numbers

λi1 + . . . + λin
for ik ∈ {1, . . . , m}.

Corollary 4.4. The largest eigenvalue of A
(m)
n is

2n cos
(

π

m + 1

)

.

Obviously, the multiplicity of the largest (and the lowest) eigenvalue of A
(m)
n is

1. In fact, the value symmetric to any eigenvalue of A
(m)
n is also an eigenvalue with

the same multiplicity. In the next section, we will give a more detail account on the

spectra and on the eigenvalue multiplicity of A
(m)
n for m = 2, 3.

5. Examples

We start this final section considering m = 2. In this case the poset P(2)
n is

commonly known as the Boolean algebra of rank n.

By Corollary 4.3, A
(2)
n has n + 1 distinct eigenvalues, and they are of the form

±1 ± . . . ± 1
︸ ︷︷ ︸

n

,

i.e.,

n − 2k, for k = 0, 1, . . . , n.

We can display them in the triangle, for each n,

n = 0 0

n = 1 −1 1

n = 2 −2 0 2

n = 3 −3 −1 1 3

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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The multiplicities are, respectively,

n = 0 1

n = 1 1 1

n = 2 1 2 1

n = 3 1 3 3 1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .

which corresponds to the Pascal triangle, i.e., the multiplicity of the eigenvalue n−2k

is
(
n
k

)
for k = 0, 1, . . . , n. These results were also obtained in [4] by a different

approach.

Let us now consider P(3)
n . From Theorem 4.2 we get

n = 0 0

n = 1 −
√

2 0
√

2

n = 2 −2
√

2 −
√

2 0
√

2 2
√

2

n = 3 −3
√

2 −2
√

2 −
√

2 0
√

2 2
√

2 3
√

2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

In fact, the eigenvalues of A
(3)
n are of the form ±k

√
2, for k = 0, . . . , n, and, in this

case, the multiplicities are, respectively,

n = 0 1

n = 1 1 1 1

n = 2 1 2 3 2 1

n = 3 1 3 6 7 6 3 1

. . . . . . . . . . . . . . . . . . . . . . . . . . .

In general, we may state the following proposition:

Proposition 5.1. For k = 0, . . . , n, the multiplicity of the eigenvalue ±k
√

2 of

A
(3)
n is

⌊n−k

2
⌋

∑

l=0

(
n

k + l

)(
n − k − l

l

)

.

P r o o f. The multiplicity of k
√

2 coincides with the number of all possible ways

in which the nonnegative integer k can be decomposed as a sum of n summands 1,

0 or −1, bearing in mind that here we do not apply commutative rule. In general,

we consider all sums of the form

1 + . . . + 1
︸ ︷︷ ︸

k+l

+ 0 + . . . + 0
︸ ︷︷ ︸

n−k−2l

+ (−1) + . . . + (−1)
︸ ︷︷ ︸

l

,
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and the number of them is (
n

k + l

)(
n − k − l

l

)

.

The greatest integer l is determined by the condition: k + 2l 6 n, i.e., when l =

⌊ 1
2 (n − k)⌋. Summing up all possibilities we reach the desired conclusion. �
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