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Abstract. A three-valued function f : V → {−1, 0, 1} defined on the vertices of a graph
G = (V, E) is a minus total dominating function (MTDF) if the sum of its function values
over any open neighborhood is at least one. That is, for every v ∈ V , f(N(v)) > 1, where
N(v) consists of every vertex adjacent to v. The weight of an MTDF is f(V ) =

∑
f(v),

over all vertices v ∈ V . The minus total domination number of a graph G, denoted γ−

t (G),
equals the minimum weight of an MTDF of G. In this paper, we discuss some properties
of minus total domination on a graph G and obtain a few lower bounds for γ−

t (G).
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1. Introduction

Let G = (V, E) be a simple graph and v be a vertex in V . The open neighborhood

of v, denoted by N(v), is the set of vertices adjacent to v, i.e., N(v) = {u ∈ V : uv ∈
E}. The closed neighborhood of v is the set N [v] = N(v) ∪ {v}. The degree of v in
G is dG(v) = |N(v)|. A vertex v of a tree T is called a leaf of T if dT (v) = 1. ∆(G)

and δ(G) denote the maximum degree and the minimum degree of the vertices of G.

When no ambiguity can occur, we often simply write d(v), δ, ∆ instead of dG(v),

δ(G) and ∆(G), respectively. Let S ⊆ V , G[S] denote the subgraph of G induced

by S. For S ⊆ V and v ∈ V , the degree of v in S, denoted by dS(v), is the number

of neighbors v has in S.

In the following we introduce a definition of a dominating function on a graph G.

Definition 1. Let R be the real numbers set and Y ⊆ R. A function f : V → Y

defined on the vertices of a graph G = (V, E) is a (Y, α)-dominating function if

f satisfies some condition α. For S ⊆ V , let f(S) =
∑

v∈S

f(v). The weight of f

is defined as f(V ). A (Y, α)-dominating function f is minimal (Y, α)-dominating
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function if there does not exist a (Y, α)-dominating function g, g 6= f , for which

g(v) 6 f(v) for every v ∈ V . The (Y, α)-domination number of G is γ(Y,α)(G) = min

{f(V ) : f is a (Y, α)-dominating function of G}.

From the above definition we can easily see the following facts:

(i) If Y1 = {0, 1} and α1 = “f(N(v)) > 1 for every v ∈ V ”, then a (Y1, α1)-

dominating function is a total dominating function (TDF) of a graph G without

isolated vertices and γ(Y1,α1)(G) = γt(G) is the total domination number of G. (Total

domination has been studied in [1]–[4], [8], [10], [11].)

(ii) If Y2 = {−1, 0, 1} and α2 = “f(N [v]) > 1 for every v ∈ V ”, then a (Y2, α2)-

dominating function is aminus dominating function (MDF) and γ(Y2,α2)(G) = γ−(G)

is theminus domination number of G. (Minus domination has been studied in [5]–[7],

[10], [13].)

(iii) If Y3 = {−1, 1} and α3 = “f(N(v)) > 1 for every v ∈ V ”, then a (Y3, α3)-

dominating function is a signed total dominating function (STDF) of a graph G

without isolated vertices and γ(Y3,α3)(G) = γs
t (G) is the signed total domination

number of G. (Signed total domination has been studied in [12], [14]–[16].)

(iv) If Y4 = {−1, 0, 1} and α4 = “f(N(v)) > 1 for every v ∈ V ”, then a (Y4, α4)-

dominating function is a minus total dominating function (MTDF) of a graph G

without isolated vertices and γ(Y4,α4)(G) = γ−

t (G) is the minus total domination

number of G. We call a MTDF of weight γ−

t (G) a γ−

t (G)-function. (Minus total

domination has been defined in [9].)

In this paper, we discuss some properties of minus total domination on a graph

G and obtain a few lower bounds for γ−

t (G). To ensure existence of an MTDF, we

henceforth restrict our attention to graphs without isolated vertices.

2. Properties on minus total domination

Theorem 1. A MTDF f on a graph G is minimal if and only if for every vertex

v ∈ V with f(v) > 0, there exists a vertex u ∈ N(v) with f(N(u)) = 1.

P r o o f. Let f be a minimal MTDF and assume that there is a vertex v with

f(v) > 0 and f(N(u)) > 1 for every vertex u ∈ N(v). Define a new function

g : V → {−1, 0, 1} by g(v) = f(v) − 1 and g(u) = f(u) for all u 6= v. Then for all

u ∈ N(v), g(N(u)) = f(N(u)) − 1 > 1. For w /∈ N(v), g(N(w)) = f(N(w)) > 1.

Thus g is an MTDF on G. Since g < f , the minimality of f is contradicted.

Conversely, let f be an MTDF on G such that for every v ∈ V with f(v) > 0, there

exists a vertex u ∈ N(v) with f(N(u)) = 1. Assume f is not minimal, i.e., there is

an MTDF g on G such that g < f . Then g(w) 6 f(w) for all w ∈ V , and there is at

least a vertex v0 ∈ V with g(v0) < f(v0). Therefore, f(v0) > 0, and by assumption,
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there exists a vertex u0 ∈ N(v0) with f(N(u0)) = 1. But since g(w) 6 f(w) for all

w ∈ V and g(v0) < f(v0), we know that g(N(u0)) < f(N(u0)) = 1. This contradicts

the fact that g is a MTDF. Therefore f is a minimal MTDF. �

Consider the graph in Fig. 1. One can see that the function f given in Fig. 1(a) is

a minimal TDF but is not a minimal MTDF (cf. Fig. 1(b)). Notice that the vertex v

in Fig. 1(a) satisfies f(v) > 0 and N(v) = {u}, but f(u) = 2 > 1, so the minimality

condition of Theorem 1 is not satisfied.

0 1 1 1 0

0 0 0

u

v

(a)

0 1 1 1 0

0 −1 0

u

v

(b)

Fig. 1

From [14] we know that γt and γs
t are not comparable in general. Furthermore,

every TDF (or STDF) on a graph is an MTDF. Therefore, the total domination

number, signed total domination number and minus total domination number of a

graph are related as follows.

Theorem 2. For any graph G, γ−

t (G) 6 min(γt(G), γs
t (G)).

Theorem 3. For any positive integer k, there exists an outerplanar graph G with

γ−

t (G) 6 −k.

P r o o f. Consider the class of outerplanar graphs Gk which can be constructed

as in Fig. 2. Then |V (Gk)| = 3(k + 3) + 3 = 3k + 12 and there are 2k + 8 vertices

of degree 1. By assigning to the 2(k + 3) vertices of degree 1 the value −1 and

to the remaining vertices the value 1, we produce an MTDF f of Gk of weight

(k + 6) − 2(k + 3) = −k as illustrated. �

1
1 1

1

1 1 1

−1 −1 −1 −1 −1 −1 −1 −1

. . .

(k + 3 copies)

Fig. 2 An outerplanar graph Gk with γ−

t (Gk) 6 −k.
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We introduce the following notation which we shall frequently use in the proofs

that follow. For a given MTDF f on a graph G, let Pf = {v ∈ V (G) : f(v) = 1},
Mf = {v ∈ V (G) : f(v) = −1}, and let Qf = {v ∈ V (G) : f(v) = 0}.

Lemma 1. Let f be an MTDF of a tree T of order n > 2. Then |Pf | > |Mf |+ 2.

P r o o f. Case 1 : T [Pf ] is connected.

Since every vertex inMf must have a neighbor in Pf , we have
∑

v∈Mf

dPf
(v) > |Mf |.

Since every vertex has higher degree in Pf than in Mf , it follows that
∑

v∈Pf

dMf
(v) 6

∑

v∈Pf

(dPf
(v) − 1). Thus |Mf | 6

∑

v∈Mf

dPf
(v) =

∑

v∈Pf

dMf
(v) 6

∑

v∈Pf

(dPf
(v) − 1). But

∑

v∈Pf

dPf
(v) is equal to twice the number of edges in the subgraph T [Pf ] induced by

Pf . As T [Pf ] is connected, T [Pf ] is a subtree of T . Thus |Mf | 6
∑

v∈Pf

(dPf
(v)− 1) =

2|E(T [Pf ])| − |Pf | = 2(|Pf | − 1) − |Pf | = |Pf | − 2. Hence |Pf | > |Mf | + 2.

Case 2 : T [Pf ] is disconnected.

Then T [Pf ] is a forest. Assume that P1, P2, . . . , Pk are the components of T [Pf ].

Then |V (Pi)| > 2 for 1 6 i 6 k. Let Mi =
⋃

v∈V (Pi)

(N(v) ∩ Mf ) and let Ti =

T [V (Pi) ∪ Mi]. Then Ti is a subtree of T . Similarly to Case 1, we have |V (Pi)| >

|Mi| + 2. Therefore, |Pf | =
k
∑

i=1

|V (Pi)| >
k
∑

i=1

(|Mi| + 2) > |Mf | + 2k > |Mf | + 2. �

Theorem 4. If T is a tree of order n > 4, then γt(T ) − γ−

t (T ) 6 1
2 (n − 4).

P r o o f. Let f be a γ−

t (G)-function of T . If Mf = ∅, then γt(T )− γ−

t (T ) = 0 6
1
2 (n− 4). So assume that Mf 6= ∅. Let v ∈ Mf . Since f(N(v)) > 1, there is a vertex

u ∈ Pf ∩ N(v) such that |N(u) ∩ Pf | > 2. Let P ′ be the component of T [Pf ] which

contains the vertex u. Then P ′ is a subtree of T and |V (P ′)| > 3. Moreover, by

Lemma 1, |Pf | > |Mf |+ 2. Hence |Mf | = n− |Pf | − |Qf | 6 n− (|Mf |+ 2)− |Qf | =

n − |Mf | − |Qf | − 2. Thus, |Mf | 6 1
2 (n − |Qf | − 2).

Case 1 : |Qf | > 2.

Since Pf is a total domination set of T , γt(T ) 6 |Pf |. Furthermore, γ−

t (T ) = |Pf |−
|Mf |. Thus γt(T )−γ−

t (T ) 6 |Pf |−(|Pf |−|Mf |) = |Mf | 6 1
2 (n−|Qf |−2) 6 1

2 (n−4).

Case 2 : |Qf | 6 1.

Since P ′ is a subtree of T and |V (P ′)| > 3, there are at least two leaves in P ′. Let

w be a leaf of P ′ such that N(w) ∩Qf = ∅. Since w is not adjacent to any vertex in

Mf . it follows that Pf −{w} is a total domination set of T . Hence γt(T ) 6 |Pf | − 1.

Thus γt(T )−γ−

t (T ) 6 (|Pf |−1)−(|Pf |−|Mf |) = |Mf |−1 6 1
2 (n−2)−1 = 1

2 (n−4).

�
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Theorem 5. For any complete graph Kn on n (n > 2) vertices, γ−

t (Kn) = 2.

P r o o f. Let f be a γ−

t (G)-function of Kn. Obviously, |Pf | > 2. Let v ∈ Pf .

Since f(N(v)) > 1, γ−

t (Kn) = f(N [v]) = f(N(v)) + f(v) > 2.

On the other hand, let g be the function of Kn defined as follows. Assign to a

pair of vertices the value 1 and to the remaining vertices the value 0. It is easy to

see that g is an MTDF of Kn and the weight g(V ) = 2. Thus γ−

t (G) 6 g(V ) = 2.

Consequently, γ−

t (Kn) = 2. �

Theorem 6. For any path Pn on n (n > 2) vertices,

γ−

t (Pn) = γt(Pn) =

{

⌈ 1
2n⌉, n ≡ 0, 1, 3 (mod 4),

1
2n + 1, n ≡ 2 (mod 4).

P r o o f. Let f be a γ−

t (G)-function of Pn. We claim that for every vertex V (Pn),

f(v) > 0. If this is not the case, then there exists a vertex v ∈ V (Pn) such that

f(v) = −1. Let u ∈ N(v). Then f(N(u)) 6 0, a contradiction. Thus f is a total

dominating function of Pn. Then γt(Pn) 6 f(V (Pn)) = γ−

t (Pn). On the other hand,

by Theorem 2, we have γ−

t (Pn) 6 γt(Pn). Consequently, γ−

t (Pn) = γt(Pn). �

The proof of the following result is similar to that of Theorem 6 and is therefore

omitted.

Theorem 7. For any cycle Cn on n (n > 2) vertices,

γ−

t (Cn) = γt(Cn) =

{

⌈ 1
2n⌉, n ≡ 0, 1, 3 (mod 4),

1
2n + 1, n ≡ 2 (mod 4).

Theorem 8. For any complete multipartite graph G ∼= K(m1, m2, . . . , mn),

γ−

t (G) = 2.

P r o o f. Let f be a γ−

t (G)-function on G and let A1, A2, . . . , An denote the

partite sets of G. For 1 6 i 6 n, let Pi = {v ∈ Ai : f(v) = 1} and Mi = {v ∈ Ai :

f(v) = −1}. Obviously, there exists an integer j (1 6 j 6 n) such that |Pj | > |Mj |
(otherwise for every v ∈ V (G), f(N(v)) 6 0 ). Let v0 ∈ Aj . Since f(N(v0)) =

∑

v∈V −Aj

f(v) > 1, it follows that γ−

t (G) = f(V ) =
∑

v∈V

f(v) = f(N(v0))+
∑

v∈Aj

f(v) >

1 + |Pj | − |Mj| > 2.

On the other hand, assume that v1 ∈ A1 and v2 ∈ A2. Let g be the function

on G defined as follows. Assign to the vertices v1 and v2 the value 1 and to the

remaining vertices the value 0. It is easy to see that g is an MTDF of G and the

weight g(V ) = 2. Thus γ−

t (G) 6 g(V ) = 2. Consequently, γ−

t (G) = 2. �
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3. Lower bounds on minus total domination number

Theorem 9. If T is a tree of order n > 2, then γ−

t (T ) > 2.

P r o o f. Let f be a γ−

t (G)-function of T . By Lemma 1, |Pf | > |Mf | + 2. Thus

γ−

t (T ) = |Pf | − |Mf | > 2. �

Theorem 10. For any graph G of order n, maximum degree ∆ and minimum

degree δ > 1,

γ−

t (G) >
δ − ∆ + 2

δ + ∆
n.

P r o o f. Let f be a γ−

t (G)-function on G. Let Pf , Mf and Qf be the sets of

vertices in G that are assigned the values +1, −1 and 0 under f , respectively. Let

Pf = P∆∪Pδ∪PΘ where P∆ and Pδ are the sets of all vertices of Pf with degree equal

to ∆ and δ, respectively, and PΘ contains all other vertices in Pf , if any. Similarly,

we define Mf = M∆ ∪Mδ ∪MΘ and Qf = Q∆ ∪Qδ ∪QΘ. Further, for i ∈ {∆, δ, Θ},
let Vi be defined by Vi = Pi ∪ Mi ∪ Qi. Thus n = |V∆| + |Vδ| + |VΘ|.
Since for each v ∈ V , f(N(v)) > 1, we have

∑

v∈V

f(N(v)) > |V | = n. The sum
∑

v∈V

f(N(v)) counts the value f(v) exactly d(v) times for each vertex v ∈ V , i.e.,
∑

v∈V

f(N(v)) =
∑

v∈V

f(v)d(v). Thus,
∑

v∈V

f(v)d(v) > n. Breaking the sum up into the

nine summations and replacing f(v) by the corresponding value of 1, 0 or −1 yields

∑

v∈P∆

d(v) +
∑

v∈Pδ

d(v) +
∑

v∈PΘ

d(v) −
∑

v∈M∆

d(v) −
∑

v∈Mδ

d(v) −
∑

v∈MΘ

d(v) > n.

We know that d(v) = ∆ for all v in P∆ or M∆, and d(v) = δ for all v in Pδ or Mδ.

For any vertex v in either PΘ or MΘ, δ + 1 6 d(v) 6 ∆ − 1. Thus

∆|P∆| + δ|Pδ| + (∆ − 1)|PΘ| − ∆|M∆| − δ|Mδ| − (δ + 1)|MΘ| > n.

For i ∈ {∆, δ, Θ}, we replace |Pi| with |Vi| − |Mi| − |Qi| in the above inequality.
Therefore, we have

∆|V∆| + δ|Vδ| + (∆ − 1)|VΘ|
> n + 2∆|M∆| + 2δ|Mδ| + (∆ + δ)|MΘ| + ∆|Q∆| + δ|Qδ| + (∆ − 1)|QΘ|.
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It follows that

(∆ − 1)n > 2∆|M∆| + 2δ|Mδ| + (∆ + δ)|MΘ| + ∆|Q∆| + δ|Qδ| + (∆ − 1)|QΘ|
+ (∆ − δ)(|Pδ | + |Qδ| + |Mδ|) + (|PΘ| + |QΘ| + |MΘ|)

= 2∆|M∆| + (δ + ∆)|Mδ| + (δ + ∆ + 1)|MΘ|
+ ∆|Q∆| + ∆|Qδ| + ∆|QΘ| + (∆ − δ)|Pδ| + |PΘ|

> (∆ + δ)|M∆| + (∆ + δ)|Mδ| + (∆ + δ)|MΘ| + ∆|Qf |
> (∆ + δ)|Mf | + ∆|Qf |

>
1

2
(∆ + δ)(2|Mf | + |Qf |).

Thus 2|Mf | + |Qf | 6 2(∆ − 1)(∆ + δ)−1n.

Therefore, γ−

t (G) = n − (2|Mf | + |Qf |) > n − (2∆ − 2)(∆ + δ)−1n = (δ − ∆ +

2)(∆ + δ)−1n. �

Corollary 1. If G is an r-regular graph of order n, then γ−

t (G) > n/r, and the

bound is sharp.

P r o o f. Since G is an r-regular graph, ∆ = δ = r. By Theorem 10, the result

follows.

That the bound is sharp may be seen by considering a complete bipartite graph

Kr,r of order n = 2r. By Theorem 8, γ−

t (Kr,r) = 2 = n/r. �

Corollary 2 ([12], [16]). If G is an r-regular graph of order n, then γs
t (G) > n/r.

In the following, we give a lower bound on the minus total domination number

of a bipartite graph in terms of its order and characterize the graphs attaining this

bound. For this purpose, we define a family G of bipartite graphs as follows.

For s > 2, let Gs be the bipartite graph obtained from the disjoint union of 2s

stars K1,s−1 with centers {x1, x2, . . . , xs, y1, y2, . . . , ys} by adding all edges of the
type xiyj , 1 6 i 6 j 6 s. Then |V (Gs)| = 2s2 and |E(Gs)| = 3s2 − 2s. Let

G = {Gs : s > 2}.

Theorem 11. If G is a bipartite graph of order n, then γ−

t (G) > 2
√

2n−n, with

equality if and only if G ∈ G .

P r o o f. Let f be a γ−

t (G)-function on G and let X and Y be the partite

sets of G. Further, let X+ = {v ∈ X : f(v) = 1}, X− = {v ∈ X : f(v) = −1},
Y + = {v ∈ Y : f(v) = 1}, Y − = {v ∈ Y : f(v) = −1}. Then Pf = X+ ∪ Y +,

Mf = X− ∪ Y −. For convenience, let x1 = |X+|, x2 = |X−|, y1 = |Y +|, y2 = |Y −|,
p = |Pf |, m = |Mf |, q = |Qf |. Obviously, x1 > 1, y1 > 1. Then x1 + y1 = p > 2.
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Since each vertex in X− is adjacent to at least one vertex in Y +, by the Pigeonhole

Principle, at least one vertex v0 of Y
+ is adjacent to at least ⌈x2/y1⌉ vertices of X−.

Since 1 6 f(N(v0)) = |N(v0) ∩ X+| − |N(v0) ∩ X−| 6 |N(v0) ∩ X+| − ⌈x2/y1⌉, it
follows that x1 = |X+| > |N(v0) ∩ X+| > ⌈x2/y1⌉ + 1 > x2/y1 + 1. Thus x1y1 >

x2 + y1. Using a similar argument, we may show that x1y1 > y2 + x1. Thus

2x1y1 > x1 + y1 + x2 + y2 = n − q. Furthermore, since 2x1y1 6 1
2 (x1 + y1)

2 = 1
2p2,

we have 1
2p2 > n − q. Thus p2 + 2q > 2n. Since p = x1 + y1 > 2, it follows that

(p + 1
2q)2 > 2n. So 2p + q > 2

√
2n. Therefore

γ−

t (G) = p − m = p − (n − p − q) = (2p + q) − n > 2
√

2n − n.

IfG is a bipartite graph of order n such that γ−

t (G) = 2
√

2n−n, then 2p+q = 2
√

2n

and q = 0. Further, 2x1y1 = 1
2 (x1 +y1)

2 and x1y1 = x1 +y2 = x2 +y1. Thus x1 = y1

and x2 = y2 = x1(x1 − 1). Furthermore, each vertex of X− (respectively, Y −) has

degree 1 and is adjacent to a vertex of Y + (respectively, X+), while each vertex of

X+ is adjacent to all x1 vertices of Y
+ and to x1 − 1 vertices of Y − and each vertex

of Y + is adjacent to all x1 vertices of X+ and to x1 − 1 vertices of X−. Thus, if

γ−

t (G) = 2
√

2n − n, then G ∈ G .

On the other hand, suppose G ∈ G . Then G = Gs for some s > 2. So Gs has order

n = 2s2. Assigning to the 2s central vertices of stars the value 1, and to all other

vertices the value −1, we produce an MTDF f of weight f(V ) = 2s − 2s(s − 1) =

2s − (n − 2s) = 4s − n = 2
√

2n − n. Therefore, γ−

t (G) 6 f(V ) = 2
√

2n − n.

Consequently, γ−

t (G) = 2
√

2n − n. �

Let F2 = K2 and for s > 3, let Fs be the graph obtained from the disjoint union

of s stars K1,s−2 by adding all edges between the central vertices of the s stars. Let

F = {Fs|s > 2}.

Theorem 12. If G is a graph of order n, then γ−

t (G) >
√

4n + 1 + 1 − n, with

equality if and only if G ∈ F .

P r o o f. Let f be a γ−

t (G)-function on G and let |Pf | = p, |Mf | = m and

|Qf | = q. Then γ−

t (G) = |Pf | − |Mf | = p − m = p − (n − p − q) = 2p + q − n. Each

vertex in Mf is adjacent to at least one vertex of Pf . Thus, by Pigeonhole Principle,

at least one vertex v of Pf is adjacent to at least ⌈|Mf |/|Pf |⌉ = ⌈m/p⌉ vertices
of Mf . It follows, therefore, that 1 6 f(N(v)) = |N(v) ∩ Pf | − |N(v) ∩ Mf | 6

(|Pf | − 1) − ⌈m/p⌉ = (p − 1) − ⌈m/p⌉ 6 p − 1 − m/p, and so p2 − 2p − m > 0.

Hence, we have p2 − p + q − n > 0. Thus p > 1
2

(
√

4(n − q) + 1 + 1
)

, and so

γ−

t (G) = 2p + q − n >
√

4(n − q) + 1 + 1 − (n − q).

Let g(x) =
√

4x + 1+1−x. Then g′(x) = 2(4x+1)−1/2 −1. For x > 1, g′(x) < 0.

That is, g(x) is a monotone decreasing function when x > 1. Furthermore, since
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p = |Pf | > 2, we have n− q = p + m > 2. Therefore, g(n− q) > g(n). Consequently,

γ−

t (G) >
√

4(n − q) + 1 + 1 − (n − q) >
√

4n + 1 + 1 − n.

If G is a graph of order n such that γ−

t (G) =
√

4n + 1 + 1 − n, then 2p + q =√
4n + 1 + 1 and q = 0. Thus n = p(p − 1) and m = p(p − 2). Furthermore, each

vertex of Mf has degree 1 and is adjacent to a vertex of Pf , while each vertex of Pf

is adjacent to all the other p−1 vertices of Pf and to p−2 vertices of Mf . It follows

that G ∈ F .

On the other hand, suppose G ∈ F . Then G = Fs for some s > 2. So Fs has

order n = s(s − 1), and so s = 1
2

(√
4n + 1 + 1

)

. Assigning to the s central vertices

of stars the value 1, and to all other vertices the value -1, we produce an MTDF f

of weight f(V ) = s− s(s− 2) = s− (n− s) = 2s− n =
√

4n + 1 + 1 − n. Therefore,

γ−

t (G) 6 f(V ) =
√

4n + 1 + 1 − n. Consequently, γ−

t (G) =
√

4n + 1 + 1 − n. �
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