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Abstract. The main purpose of this paper is to study the hybrid mean value of L′

L (1, χ)
and Gauss sums by using the estimates for trigonometric sums as well as the analytic
method. An asymptotic formula for the hybrid mean value

∑

χ6=χ0

|τ (χ)| |L
′

L (1, χ)|
2k of L′

L

and Gauss sums will be proved using analytic methods and estimates for trigonometric
sums.
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§1. Introduction

Let χ be the Dirichlet character modulo q > 3. For any integer m, the classical

Gauss sum G(m,χ) is defined as

G(m,χ) =

q
∑

a=1

χ(a)e
(ma

q

)

,

where e(y) = e2πiy. In particular, when m = 1, we denote by τ(χ) = G(1, χ) =
q

∑

a=1
χ(a)e(a/q).

Perhaps the most important property of G(m,χ) is: when (m, q) = 1 and χ

is a primitive character modulo q, we have |G(m,χ)| =
√
q. For a nonprimitive
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character, the value of |G(m,χ)| varies, i.e. the value of |G(m,χ)| is irregular as χ
varies. However, G(m,χ) enjoys many good value distribution properties in some

problems of the weighted mean value.

Similarly, many books about the analytic number theory include a discussion on

the properties of τ(χ) (see Ref. [1]–[3]). Maybe the most important property of τ(χ)

is: when χ is a primitive character mod q, then |τ(χ)| =
√
q. For a nonprimitive

character, the value of τ(χ) is irregular as χ varies and sometimes it may be zero. But

τ(χ) surprisingly enjoys many good value distribution properties in some problems

of the weighted mean value.

Yi Yuan and Zhang Wenpeng [4] studied the first power mean of the Dirichlet

L-function with the weight of Gauss sums and obtained the asymptotic formula

∑

χ6=χ0

|G(m,χ)|2|L(1, χ)| = ϕ2(q) ·
∞
∑′

n=1

r2(n)

n2
+O(q

3
2+ε),

where q is an integer with q > 2, m is an integer satisfying (m, q) = 1, χ0 is the

principal character modulo q,
∑

n

′
denotes the sum over all n which are coprime with

q, ϕ(q) is the Euler function, ε is any given positive number, and r(n) is defined

as follows: for any prime p and positive integer α, r(1) = 1, r(pα) = 4−αCα
2α,

Cα
2α = (2α)!/(α!)2. For any positive integer n, when its standard factorization is

pα1
1 pα2

2 . . . pαk

k , we can easily get

r(n) =
1

4α1+α2+...+αk
Cα1

2α1
Cα2

2α2
. . . Cαk

2αk
.

Yi Yuan and Zhang Wenpeng [5] studied the 2k-th power mean of the Dirichlet

L-function with the weight of Gauss sums and obtained

∑

χ6=χ0

|τ(χ)|m|L(1, χ)|2k = N
m
2 −1ϕ2(N)ζ2k−1(2)

∏

p|q

(

1 − 1

p2

)2k−1

×
∏

p∤q

(

1 −
1 − Ck−1

2k−2

p2

)

∏

p|M

(

p
m
2 +1 − 2p

m
2 + 1

)

+O
(

p
m
2 +ε

)

,

where q > 3 is an integer and q = MN , M =
∏

p‖q

p, (M,N) = 1, m is any positive

number, k is any positive integer,
∏

p‖q

denotes all prime factors of q such that p | q

and p2 ∤ q, ϕ(q) is the Euler function, ζ(s) is the Riemann Zeta function and ε is any

given positive number.

Let χ be the Dirichlet character modulo q and let L(s, χ) denote the corresponding

Dirichlet L-function. L′

L (1, χ) has long history and plays an important role in number
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theory [6], but one can hardly estimate L′

L (1, χ). In fact, it enjoys good mean value

properties. Zhang Wenpeng [7] studied the asymptotic properties of the sums

∑

q6Q

q

ϕ(q)

∑

χ6=χ0

∣

∣

∣

L′

L
(1, χ)

∣

∣

∣

4

,
∑

q6Q

1

ϕ(q)

∑

χ6=χ0

∣

∣

∣

L′

L
(1, χ)

∣

∣

∣

4

,

where Q > 3 is a real number and ϕ(q) is the Euler function. Liu Huaning and

Zhang Xiaobeng [8] studied the mean value of |L′

L (1, χ)|2k and obtained

∑

χ mod q
χ6=χ0

∣

∣

∣

L′

L
(1, χ)

∣

∣

∣

2k

= A(k, q)ϕ(q) +O(qε),

where

(1) A(k, q) =
∞
∑

n=1
(n,q)=1

τ2
k (n)

n2

is a constant depending on k and q, with

(2) τk(n) =
∑

m1m2...mk=n

Λ(m1)Λ(m2) . . .Λ(mk),

Λ(n) the Mangoldt function, ϕ(q) the Euler function and ε any given positive number.

In what follows we shall consider the hybrid mean value of L′

L with Gauss sums

whose asymptotic behavior has not been studied hitherto. We will use the estimates

for trigonometric sums and the analytic method to study the hybrid mean value
∑

χ6=χ0

|τ(χ)|m|L′

L (1, χ)|2k, and obtain a sharper asymptotic formula for it. That is, we

shall prove the following theorem.

Theorem. Let q = MN , M =
∏

p‖q

p, (M,N) = 1. Then for any positive number

m and positive integer k we have the asymptotic formula

∑

χ6=χ0

|τ(χ)|m
∣

∣

∣

L′

L
(1, χ)

∣

∣

∣

2k

= A(k, q)N
m
2 −1ϕ2(N)

∏

p|M

(

p
m
2 +1 − 2p

m
2 + 1

)

+O
(

q
m
2 +ε

)

,

where A(k, q) is defined as in (1),
∏

p‖q

denotes all the prime factors of q such that

p | q and p2 ∤ q, ε is any given positive number.

Throughout the paper, we denote by µ(n) the Möbius function, and ε always

denotes a sufficiently small positive real number which may be different at various

occurrence.
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§2. Some lemmas

To complete the proof of the theorem, we need the following lemmas.

Lemma 1. Let q = uv, u > 2, v > 2 and (u, v) = 1. Then for any χ mod q, there

exist one and only one character χu mod u one and only one character χv mod v

such that χ = χuχv and

|τ(χ)| = |τ(χu)| × |τ(χv)|.

P r o o f. See Theorem 13.3.1. of [2]. �

Lemma 2. Let q and r be integers with q > 2 and (r, q) = 1. Then we have the

identities

∑∗

χ mod q

χ(r) =
∑

d|(q,r−1)

µ
( q

d

)

ϕ(d), J(q) =
∑

d|q

µ(d)ϕ
( q

d

)

,

where
∑∗
denotes the summation over all primitive characters, ϕ(q) is the Euler

function and J(q) denotes the number of primitive characters mod q.

P r o o f. From the properties of characters, we know that for any character χ

mod q there exists one and only one d | q with a primitive character χd
∗ mod d such

that χ = χd
∗χ0

q , where χ
0
q denotes the principal character mod q. So we have

∑

χ mod q

χ(r) =
∑

d|q

∑∗

χ mod d

χ(r)χ0
q(r) =

∑

d|q

∑∗

χ mod d

χ(r).

Combining this formula with the Möbius transformation and noting the identity

∑

χ mod q

χ(r) =

{

ϕ(q), if r ≡ 1 (mod q),

0, otherwise,

we have
∑∗

χ mod q

χ(r) =
∑

d|q

µ(d)
∑

χ mod q/d

χ(r) =
∑

d|(q,r−1)

µ
( q

d

)

ϕ(d).

Taking r = 1, we immediately get

J(q) =
∑

d|q

µ(d)ϕ
( q

d

)

.

This proves Lemma 2. �
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Lemma 3. Let p be a prime, α a positive integer and α > 2, n = pα. Then for

any nonprimitive character χ1 mod n we have the identity

pα

∑

a=1

χ1(a)e
( a

pα

)

= 0.

P r o o f. See [5]. �

Lemma 4. Let N = pα1
1 pα2

2 . . . pαs
s , αi > 2, 1 6 i 6 s, be a positive integer, let

a positive integer M have no square factor and let (M,N) = 1, q = MN . Then for

any given positive integer k and d |M we have

∑∗

χ mod Nd

∣

∣

∣

L′

L
(1, χχ0

M )
∣

∣

∣

2k

= A(k, q)
ϕ2(N)

N
J(d) +O((MN)ε),

where
∑∗
denotes the summation over all primitive characters.

P r o o f. Let χ′χ0
M be the nonprincipal real character mod MN , then from the

properties of the L-function and from C.L. Siegel’s theorem [9] we get

L′

L
(1, χ′χ0

M ) ≪ (MN)ε · log2(MN)

C(ε)
,

where C(ε) is a constant depending on ε.

For any complex character modMN withMN 6 exp
(

C1

√
log x

)

, where C1 is any

positive constant and exp(y) = ey, we get from [6]

ψ(x, χχ0
M ) =

∑

n6x

χ(n)χ0
M (n)Λ(n) ≪ x · exp(−C2

√

log x)

for some positive C2 depending only on C1.

Let T > exp(log2(MN)/C2
1 ), then by Abel’s identity we have

L′

L
(1, χχ0

M ) =

∞
∑

n=1

χ(n)χ0
M (n)Λ(n)

n

=
∑

16n6T

χ(n)χ0
M (n)Λ(n)

n
+

∫ ∞

T

∑

T<n6y

χ(n)χ0
M (n)Λ(n)

y2
dy

=
∑

16n6T

χ(n)χ0
M (n)Λ(n)

n
+O

( logT

exp(C2

√
logT )

)

.
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So if we write τk(n) as in (2), we have

∑∗

χ mod Nd

∣

∣

∣

L′

L
(1, χχ0

M )
∣

∣

∣

2k

=
∑∗

χ mod Nd

∣

∣

∣

∣

∑

16n6T

χ(n)χ0
M (n)Λ(n)

n

∣

∣

∣

∣

2k

+O
(J(Nd) · log2k T

exp(C2

√
logT )

)

+O
( (MN)2kε · log4k(MN)

C2k(ε)

)

=
∑∗

χ mod Nd

∣

∣

∣

∣

∑

16n6T k

χ(n)χ0
M (n)τk(n)

n

∣

∣

∣

∣

2

+O
(J(Nd) · log2k T

exp(C2

√
logT )

)

+O
( (MN)2kε · log4k(MN)

C2k(ε)

)

=
∑

16n16T k

∑

16n26T k

χ0
M (n1n2)τk(n1)τk(n2)

n1n2

∑∗

χ mod Nd

χ(n1)χ̄(n2)

+O
(J(Nd) · log2k T

exp(C2

√
logT )

)

+O
( (MN)2kε · log4k(MN)

C2k(ε)

)

=
∑′

16n16T k

∑′

16n26T k

χ0
M (n1n2)τk(n1)τk(n2)

n1n2

∑

l|(Nd,n1n2−1)

µ
(Nd

l

)

ϕ(l)

+O
(J(Nd) · log2k T

exp(C2

√
logT )

)

+O
( (MN)2kε · log4k(MN)

C2k(ε)

)

=
∑

l|Nd

µ

(

Nd

l

)

ϕ(l)
∑′

16n16T k

∑′

16n26T k

n1≡n2 (mod l)

χ0
M (n1n2)τk(n1)τk(n2)

n1n2

+O
(J(Nd) · log2k T

exp(C2

√
logT )

)

+O
( (MN)2kε · log4k(MN)

C2k(ε)

)

=
∑

l|Nd

µ

(

Nd

l

)

ϕ(l)
∑

16n6T k

(n,NM)=1

τ2
k (n)

n2

+
∑

l|Nd

µ
(Nd

l

)

ϕ(l)
∑′

16n16T k

∑′

16n26T k

n1≡n2 (mod l),n1 6=n2

χ0
M (n1n2)τk(n1)τk(n2)

n1n2

+O
(J(Nd) · log2k T

exp(C2

√
logT )

)

+O
( (MN)2kε · log4k(MN)

C2k(ε)

)

.
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Noting that J(N) = ϕ2(N)/N and (N, d) = 1, we get

∑∗

χ mod Nd

∣

∣

∣

L′

L
(1, χχ0

M )
∣

∣

∣

2k

= J(Nd)

∞
∑

n=1
(n,NM=1)

τ2
k (n)

n2

+O

(

∑

l|Nd

ϕ(l)
∑′

16n16T k

∑′

16n26T k

n1≡n2 (mod l),n1 6=n2

τk(n1)

n1

τk(n2)

n2

)

+O
(J(Nd) · log2k T

exp(C2

√
logT )

)

+ O
( (MN)2kε · log4k(MN)

C2k(ε)

)

= A(k, q)
ϕ2(N)

N
J(d) +O((Nd)ε log2k+2 T )

+O
(J(Nd) · log2k T

exp(C2

√
logT )

)

+ O
( (MN)2kε · log4k(MN)

C2k(ε)

)

.

Taking

T = max
{

exp
( log2(MN)

C2
1

)

, exp
( log2(MN)

C2
2

)}

,

we get immediately

∑∗

χ mod Nd

∣

∣

∣

L′

L
(1, χχ0

M )
∣

∣

∣

2k

= A(k, q)
ϕ2(N)

N
J(d) +O((MN)ε).

This proves Lemma 4. �

§3. Proof of theorem

In this section we present the proof of the theorem.

Let q = p1p2 . . . pkp
αk+1

k+1 . . . pαr
r be the standard factorization of q, where αi > 1,

k + 1 6 i 6 r. Let M = p1p2 . . . pk, N = p
αk+1

k+1 . . . pαr
r , so (M,N) = 1. For any

positive number m and positive integer k, Lemma 1 yields

∑

χ6=χ0

|τ(χ)|m
∣

∣

∣

L′

L
(1, χ)

∣

∣

∣

2k

=
∑

χ1 mod M

∑

χ2 mod N

χ1χ2 6=χ0
q

|τ(χ1χ2)|m
∣

∣

∣

L′

L
(1, χ1χ2)

∣

∣

∣

2k

=
∑

χ1 mod M

∑

χ2 mod N

χ1χ2 6=χ0
q

|τ(χ1)|m|τ(χ2)|m
∣

∣

∣

L′

L
(1, χ1χ2)

∣

∣

∣

2k

.
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From Lemma 2, Lemma 3, Lemma 4 and the above expression, we immediately

get

∑

χ6=χ0

|τ(χ)|m
∣

∣

∣

L′

L
(1, χ)

∣

∣

∣

2k

=
∑

χ1 mod M

∑∗

χ2 mod N

|τ(χ1)|mN
m
2

∣

∣

∣

L′

L
(1, χ1χ2)

∣

∣

∣

2k

=
∑

d|M

∑∗

χ1 mod d

∑∗

χ2 mod N

d
m
2 N

m
2

∣

∣

∣

L′

L
(1, χ1χ2χ

0
M )

∣

∣

∣

2k

=
∑

d|M

d
m
2 N

m
2

(

A(k, q)
ϕ2(N)

N
J(d) +O ((MN)ε)

)

= A(k, q)N
m
2 −1ϕ2(N)

∑

d|M

d
m
2 J(d) +O

(

N
m
2 +εM ε

∑

d|M

d
m
2

)

= A(k, q)N
m
2 −1ϕ2(N)

∏

p|M

( 1
∑

j=0

(pj)
m
2 J(pj)

)

+O
(

q
m
2 +ε

)

= A(k, q)N
m
2 −1ϕ2(N)

∏

p|M

(

1 + p
m
2 (p− 2)

)

+O
(

q
m
2 +ε

)

= A(k, q)N
m
2 −1ϕ2(N)

∏

p|M

(

p
m
2 +1 − 2p

m
2 + 1

)

+O
(

q
m
2 +ε

)

.

This completes the proof of Theorem.
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