
Czechoslovak Mathematical Journal

Ágnes M. Backhausz; Vilmos Komornik; Tivadar Szilágyi
A simplified multidimensional integral

Czechoslovak Mathematical Journal, Vol. 59 (2009), No. 3, 721–739

Persistent URL: http://dml.cz/dmlcz/140512

Terms of use:
© Institute of Mathematics AS CR, 2009

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/140512
http://dml.cz


Czechoslovak Mathematical Journal, 59 (134) (2009), 721–739

A SIMPLIFIED MULTIDIMENSIONAL INTEGRAL

Ágnes M. Backhausz, Budapest, Vilmos Komornik, Strasbourg, and

Tivadar Szilágyi, Budapest

(Received February 19, 2008)

Abstract. We present a simplified integral of functions of several variables. Although less
general than the Riemann integral, most functions of practical interest are still integrable.
On the other hand, the basic integral theorems can be obtained more quickly. We also give
a characterization of the integrable functions and their primitives.
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1. Introduction

In many undergraduate textbooks (see, e.g., [3]) the one-dimensional Riemann

integral is replaced by a simpler theory: a function f : [a, b] → R is integrable if it

is the uniform limit of a sequence of step functions, i.e., finite linear combinations of

characteristic functions of bounded intervals. Although not all Riemann integrable

functions are integrable in this narrower sense, many functions of practical interest

are still integrable and the theory can be developed more quickly.

It is straightforward to generalize this integral to functions of several variables

by changing the intervals to products of intervals but the resulting theory is less

satisfactory because the class of integrable functions is too small. For example, in

the two-dimensional case the characteristic functions of triangles and disks are not

integrable.

A slight modification of the definition, however, leads to a substantially broader

integral concept. The proofs remain short and simple but many functions of practical

interest become again integrable, including the characteristic functions of Jordan

measurable sets.
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In Section 2 we outline briefly the general theory. The subsequent three sections

are devoted to the characterization of integrable functions, of their indefinite integrals

and to the clarification of the relations between this new integral and the Riemann

integral.

2. BKSz-integrable functions

Given a positive integer n, by a brick T we mean a product of n bounded intervals:

T = I1 × . . .× In. Its volume λ(T ) is by definition the product of the lengths of the

intervals.

For the rest of this section we fix a brick T and all bricks are supposed to be

subsets of T . All functions in this section are assumed to map T into R.

A step function g is by definition a finite linear combination of characteristic

functions of bricks:

g =

M
∑

j=1

cjχTj

whereM is a positive integer, c1, . . . , cM are real numbers and T1, . . . , TM are bricks.

The integral of a step function is defined by the usual formula:

I(g) :=

M
∑

j=1

cjλ(Tj).

It is well-known that this integral does not depend on the particular choice of the

bricks Tj and that it is a positive linear form on the vector space of step functions,

satisfying the estimate

|I(g)| 6 max
T

|g|
M
∑

j=1

λ(Tj).

In order to extend the integral to more general functions we introduce the following

convergence notion:

Definition 2.1. A sequence of functions f1, f2, . . . converges nearly uniformly

to f , if

(1) the sequence (fm) is uniformly bounded;

(2) for every δ > 0 there exist finitely many bricks of total volume less than δ such

that fm converges uniformly to f on the complement of their union.

Now we generalize the integral as follows:
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Definition 2.2. A function f is BKSz-integrable if there is a sequence (gm) of

step functions converging nearly uniformly to f . Then the BKSz-integral of f is

defined by the formula
∫

T

f := lim
m→∞

I(gm).

Using the above mentioned properties of the integral of step functions, one can

readily verify that this limit exists, and its value does not depend on the particular

choice of the sequence of step functions (this also implies that for step functions we

obtain the same integral as before):

Proposition 2.3.

(a) The BKSz-integral is well-defined, it extends the integral of step functions.

(b) The BKSz-integrable functions form a vector lattice on which the integral is a

positive linear form.

P r o o f. (a) First we show that if a sequence (fm) of step functions converges

nearly uniformly to f , then the integrals I(fm) form a Cauchy sequence in R. Fix

a number M such that |fm| < M on T for all m, and then for any given ε > 0 fix

a finite number of bricks, say T1, . . . , Tp, and a large integer K such that the total

volume of the bricks Tj is less than ε/ (4M), and |fm − f | < ε/ (4λ(T )) outside these

bricks for all m > K. Then for all m, k > K we have

|I(fm) − I(fk)| = |I(fm − fk)| 6 2
ε

4λ(T )
· λ(T ) + 2M

p
∑

j=1

λ(Tj) 6
ε

2
+
ε

2
= ε.

This shows that the sequence of integrals I(fm) converges to some real number.

If two sequences (fm), (gm) of step functions converge nearly uniformly to f ,

then the sequence f1, g1, f2, g2, . . . also converges nearly uniformly to f , so that the

sequence I(f1), I(g1), I(f2), I(g2), . . . converges to some real number α. It follows

that the subsequences I(f1), I(f2), . . . and I(g1), I(g2), . . . converge to the same value

α. Hence
∫

T
f is correctly defined.

If f is a step function, then choosing fm = f for every m we obtain that
∫

T f =

I(f).

(b) If two sequences (fm), (gm) of step functions converge nearly uniformly to f

and g, respectively, and c is a real number, then (fm + cgm) is a sequence of step

functions converging nearly uniformly to f + cg, so that

∫

T

(f + cg) = lim I(fm + cgm) = lim I(fm) + c lim I(gm) =

(
∫

T

f

)

+ c

∫

T

g,

proving the linearity of the integral.
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Analogously, using the notation ϕ ∧ ψ and ϕ ∨ ψ for the functions

x 7→ min{ϕ(x), ψ(x)}, x 7→ max{ϕ(x), ψ(x)},

respectively, the sequences of step functions (fm∧gm) and (fm∨gm) converge nearly

uniformly to f ∧ g and f ∨ g, respectively.

If f is a nonnegative BKSz-integrable function and (fm) is a sequence of step

functions converging nearly uniformly to f , then the nonnegative step functions

gm := max{fm, 0} also converge nearly uniformly to f . Then I(gm) > 0 for every m

by the definition and therefore

∫

T

f = lim I(gm) > 0.

�

In order to show that many functions of practical interest are BKSz-integrable,

we recall that a set is a Jordan null set if for each ε > 0 it can be covered by finitely

many bricks of total volume less than ε, and that a set is Jordan measurable if it is

bounded and its boundary is a Jordan null set. We say that a property holds Jordan

almost everywhere if it holds outside a Jordan null set.

We have the following results:

Proposition 2.4.

(a) If f is BKSz-integrable and g = f Jordan almost everywhere, then g is also

BKSz-integrable and
∫

T g =
∫

T f .

(b) If f is continuous on a compact Jordan measurable set C and vanishes on T \C,

then f is BKSz-integrable.

(c) If A ⊂ T is Jordan measurable, then χA is BKSz-integrable and
∫

T
χA is equal

to the Jordan measure of A.

P r o o f. (a) If a sequence of step functions fm converges nearly uniformly to f ,

then it converges nearly uniformly to g, too.

(b) Consider a tiling of T with mn translates Ti of the brick m
−1T , m = 1, 2, . . .,

and introduce the step function gm :=
mn
∑

i=1

f(xi)χTi
where xi is the center of Ti.

Using the uniform continuity of f |C and the fact that the total volume of the bricks

Ti meeting the boundary of C tends to zero as m → ∞, one can readily show that

gm converges nearly uniformly to f .

(c) This is a special case of (b) and
∫

T gm converges to the Jordan measure of A

by the definition of the Jordan measure. �
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It is easy to prove that for n > 2 the BKSz-integral of continuous functions may

be computed by successive integration:

Proposition 2.5. If f : T = [a1, b1] × . . . × [an, bn] → R is continuous (n > 2),

then

(2.1)

∫

f(x) dx =

∫ b1

a1

(

. . .

(
∫ bn

an

f(x1, . . . , xn) dxn

)

. . .

)

dx1.

P r o o f. Assume for simplicity that n = 2. (The proof is easily adapted to the

general case.) Using the uniform continuity of f one may readily verify that the

function

x1 7→

∫ b2

a2

f(x1, x2) dx2

is well-defined and continuous on [a1, b1], so that both sides of (2.1) are defined in

the sense of BKSz-integrals.

Using the uniform continuity of f again, there exists a sequence of step functions

gm converging uniformly to f on [a1, b1] × [a2, b2]. Since the equality (2.1) clearly

holds for step functions, it suffices to prove that

∫ b1

a1

(
∫ b2

a2

gm(x1, x2) dx2

)

dx1 →

∫ b1

a1

(
∫ b2

a2

f(x1, x2) dx2

)

dx1.

This can be proved easily: for any given ε > 0, we have |f − gm| < ε on T for all

sufficiently large m. For every such m we then also have

∫ b2

a2

f(x1, x2) − ε dx2 6

∫ b2

a2

gm(x1, x2) dx2 6

∫ b2

a2

f(x1, x2) + ε dx2

for every x1 ∈ [a1, b1]. It follows that

∫ b1

a1

(
∫ b2

a2

f(x1, x2) − ε dx2

)

dx1 6

∫ b1

a1

(
∫ b2

a2

gm(x1, x2) dx2

)

dx1

6

∫ b1

a1

(
∫ b2

a2

f(x1, x2) + ε dx2

)

dx1,

i.e.,

∣

∣

∣

∣

∫ b1

a1

(
∫ b2

a2

gm(x1, x2) dx2

)

dx1 −

∫ b1

a1

(
∫ b2

a2

f(x1, x2) dx2

)

dx1

∣

∣

∣

∣

6 ε · λ(T ).

�

The nearly uniform convergence is not topological:

725



Proposition 2.6. The nearly uniform convergence of BKSz-integrable functions

cannot be derived from a topology on the set of BKSz-integrable functions.

P r o o f. We enumerate the rational vectors in T : Qn ∩ T = {q1, q2, . . . , qm, . . .},

and for every m ∈ N we set gm(qm) = 1 and gm(x) = 0 for x ∈ T \ {qm}. For a

fixed m ∈ N the constant sequence of step functions gm, gm, gm, . . . converges nearly

uniformly to the constant zero function 0. In a topological space this would imply

that each gm is in the intersection of the neighborhoods of 0, thus the sequence (gm)

converges nearly uniformly to the function 0, too. But this contradicts Definition 2.1.

�

Remarks.

• The above sequence (gm) and g ≡ 0 show that the condition

lim
m→∞

inf
{

sup
x∈T\H

{|fm(x) − f(x)|} : H ⊂ T is of Jordan measure zero
}

= 0

does not imply that the sequence (fm) converges nearly uniformly to f .

• On the other hand, the sequence gm = χ[0,1/m] on [0, 1] converges nearly uni-

formly to the constant zero function, but

inf
{

sup
x∈T\H

{|gm(x) − f(x)|} : H ⊂ T is of Jordan measure zero
}

= 1

for every m ∈ N.

It follows from the definitions that neither the BKSz-integrability of a function

f : T → R, nor the value of the integral changes if we replace f by its restriction to

the open brick int(T ). We may therefore restrict our investigation without loss of

generality to functions defined on a closed brick.

3. Characterization of BKSz-integrable functions:

bounds and discontinuities

In this section we fix a closed brick T = [a1, b1] × . . .× [an, bn] and all bricks are

supposed to be subsets of T . All functions in this section are assumed to map T

into R.

We are going to describe the BKSz-integrable functions f . To this end we need

an extension of the notion of the right-hand limit and left-hand limit to the case of

functions defined on T with n > 1.
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Definition 3.1. Given a function f , a point x = (x1, x2, . . . , xn) ∈ int(T ) and a

nonzero vector α = (α1, α2, . . . , αn) ∈ {−1, 0, 1}n, which we consider as a direction,

we set

Ik =











[ak, xk) if αk = −1,

{xk} if αk = 0,

(xk, bk] if αk = 1

for k = 1, 2, . . . , n, and we define Tx,α := I1 × I2 × . . .× In.

If the restriction of f to Tx,α has a limit L at x, then we say that f has a limit at

x in the direction α, and that this limit is equal to L. We write

lim
x,α

f = lim
t→x

f |Tx,α
(t).

Since we assumed that x ∈ int(T ), x is a limit point of each Tx,α. Furthermore,

T \ {x} is the disjoint union of the sets Tx,α.

There are 3n − 1 different nonzero vectors in {−1, 0, 1}n \ {0}, so we can consider

the limit of f in 3n − 1 directions. If f is continuous at x ∈ int(T ), then f has a

finite limit at x in every direction, equal to f(x).

In the one-dimensional case, when T = [a, b], the limits in direction −1 and 1 are

the left-hand and right-hand limits of f , respectively. According to this, we introduce

another definition:

Definition 3.2. Assume that the function f is not continuous at a point x ∈

int(T ). We say that x is a discontinuity point of the first kind of f if f has a finite

limit at x in every direction α. Otherwise we say that x is a discontinuity point

of the second kind of f . We denote the set of discontinuity points of the first and

second kind of f by dis1(f) and dis2(f), respectively.

The main result of this section is

Theorem 3.3.

(a) A function f is BKSz-integrable if and only if the following two conditions are

satisfied:

(1) f is bounded outside some Jordan null set;

(2) its discontinuities of the second kind form a Jordan null set.

(b) Moreover, the discontinuities of a BKSz-integrable function may be covered by

a Jordan null set H and countably many hyperplanes whose normal vectors

are parallel to some of the coordinate axes; in particular, a BKSz-integrable

function is continuous Lebesgue almost everywhere.

We divide the proof into several parts.
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P r o o f of the necessity of condition (1) in (a). Let f be BKSz-integrable and

consider a sequence of step functions gm which converges nearly uniformly to f . By

the first part of Definition 2.1 there is a positive number C > 0 such that |gm(x)| < C

for everym ∈ N and x ∈ T . Furthermore, it follows from the second part of Definition

2.1 that gm(x) → f(x) for all x ∈ T , except perhaps a Jordan null set. We conclude

by observing that |f(x)| 6 C at all these points. �

P r o o f of the necessity of condition (2) in (a). Let f be a BKSz-integrable func-

tion and δ a positive number. We will show that the set dis2(f) can be covered by

finitely many closed bricks of total volume less than δ.

Since f is BKSz-integrable, by definition there is a sequence of step functions gm

which converges nearly uniformly to f . There exist therefore finitely many closed

bricks of total volume < δ such that gm converges uniformly to f outside the union

Aδ of these bricks. It suffices to prove the inclusion dis2(f) ⊂ Aδ. Equivalently, we

prove that if x ∈ int(T ) \Aδ, then f has a finite limit in every direction α.

Since Aδ is closed, gm → f uniformly on an open neighborhood of x. Since gm is

a step function for each m ∈ N, it has a finite limit

lim
y,α

fm = lim
t→y

fm|Tx,α
(t)

at every point y ∈ int(T ), in every direction α. The uniform convergence in an open

neighborhood of x implies that

lim
x,α

f = lim
t→x

f |Tx,α
(t)

also exists and is finite in every direction. �

Our proof of the sufficiency part of the theorem is based on the so-called Cousin’s

lemma (see for example [1], [4]):

Lemma 3.4. For every positive function δ : T → (0,∞) there exists a δ-fine

tagged partition of T , i.e., a finite number of pairs (T1, ξ1), (T2, ξ2), . . . , (TN , ξN )

satisfying the following conditions:

• Ti ⊂ T is a closed brick for i = 1, 2, . . . , N ;

• int(Ti) ∩ int(Tj) = ∅ if i 6= j;

• T =
N
⋃

i=1

Ti;

• ξi ∈ Ti ⊂ B(ξi, δ(ξi)) for i = 1, 2, . . . , N .

P r o o f of the sufficiency part in (a). It follows from the boundedness and dis-

continuity conditions that for some positive C

H0 = ∂T ∪ dis2(f) ∪ (T \ f−1[−C,C])
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is a Jordan null set. There exists therefore for each m ∈ N an open set Bm, which is

the union of finitely many open bricks of total volume < 1/m, such that H0 ⊂ Bm.

We may also assume that Bm+1 ⊂ Bm for every m ∈ N.

We need to define a sequence of step functions which converges nearly uniformly

to f . Let us fix a positive integer m ∈ N. First we define a function p = pm as

follows. For each x ∈ Bm we choose p(x) > 0 such that the open ball of center x

and radius p(x), denoted by B(x, p(x)), is a subset of Bm. This is possible because

Bm is open. In the other case, if x ∈ T \ Bm, then x /∈ H0, hence x cannot be a

discontinuity of the second kind of f . It follows that for each direction α there is a

number pα(x) > 0 such that

|f(y) − lim
x,α

f | < 1/m for every y ∈ Tx,α ∩B(x, pα(x)).

We denote by p(x) the minimum of the 3n−1 values pα(x). Then p(x) is well-defined

and positive for x ∈ T , and

|f(y) − lim
x,α

f | < 1/m for every x ∈ T \Bm and y ∈ Tx,α ∩B(x, p(x)).

Applying Cousin’s lemma for δ = p, we obtain a p-fine tagged partition of T . Now

we define a step function gm.

For any fixed point y ∈ T we choose the smallest i such that y ∈ Ti. If for this

index i we have ξi ∈ Bm, then we set gm(y) = 0. If ξi /∈ Bm, then ξi cannot be a

discontinuity point of the second kind of f . If y = ξi, then we set gm(y) = f(y).

Finally, if y 6= ξi, then there is a unique direction α such that y ∈ Tξi,α. In this case

we set gm(y) = lim
ξi,α

f .

It is clear that for each m ∈ N, gm is a well-defined step function. We complete

the proof of the theorem by proving that gm converges nearly uniformly to f .

Since the mth tagged partition is pm-fine, using the definition of pm and gm we

obtain for every m ∈ N that

|f(y) − gm(y)| < 1/m for all y ∈ T \Bm.

Furthermore, since BM ⊇ BM+1 for every M ∈ N, this implies that gm → f

uniformly on T \ BM as m approaches ∞. Since BM is the union of finitely many

bricks of total volume< 1/M , we conclude that the second condition of Definition 2.1

is satisfied.

If gm(y) 6= 0 for some m ∈ N and y ∈ T , then gm(y) is the value or the limit of f

at some point ξi /∈ Bm. Since H0 is closed and H0 ⊂ Bm, we conclude that ξi has

an open neighborhood, disjoint from H0, so that |gm(y)| 6 C. This means that the

first condition of Definition 2.1 is also satisfied. �
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P r o o f of part (b) of the theorem. Let f : T → R be a BKSz-integrable function

and let (gm) be a sequence of step functions, nearly uniformly converging to f . The

discontinuities of each step function may be covered by finitely many hyperplanes of

the form xj = cj with 1 6 j 6 n and cj ∈ R. Let us denote by H the union of all

these, countably many hyperplanes.

By the definition of the nearly uniform convergence, for each positive integer M

there exist finitely many closed bricks of total volume < 1/M such that gm converges

uniformly to f outside the union AM of these bricks. We may assume that each AM

contains the boundary of T . The proof will be completed if we show that f is

continuous at every point x ∈ T \ (H ∪A) with A := ∩AM .

If x is such a point, then x ∈ T \ (H ∪AM ) for a suitable M . Since T \AM is an

open set, gm converges uniformly to f in a neighbourhood of x. Since, furthermore,

x /∈ H , each gm is continuous in x and therefore f is also continuous in x. �

Using part (b) of Theorem 3.3 we can prove easily the converse of part (c) of

Proposition 2.4:

Corollary 3.5. IfA ⊂ T and χA is BKSz-integrable, thenA is Jordanmeasurable.

P r o o f. If χA is BKSz-integrable, then the set of discontinuities of χA, which

is the boundary of A, is a Lebesgue null set. Being compact it is also a Jordan null

set, which implies that A is Jordan measurable. �

4. Relation to Riemann-integrability

We fix again a closed brick T and we consider only real-valued functions defined

on T . The following proposition clarifies the relations between BKSz-integrable and

Riemann-integrable functions.

Proposition 4.1.

(a) If f is an unbounded, BKSz-integrable function, then there exists a bounded

BKSz-integrable function g which is equal to f Jordan almost everywhere, so

that
∫

T f =
∫

T g.

(b) Every bounded BKSz-integrable function f is Riemann integrable, and its

BKSz-integral is equal to its Riemann integral.

(c) There exist Riemann integrable functions that are not BKSz-integrable.

P r o o f. (a) We have shown at the beginning of the proof of Theorem 3.3 that

there exists a constant C such that |f | < C outside a Jordan null set. Then the

function

g := med {−C, f, C} = min{max{−C, f}, C}
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is bounded and f = g outside a Jordan null set. We conclude by using part (a) of

Proposition 2.4.

(b) By part (b) of Theorem 3.3 the discontinuities of f form a Lebesgue null set.

Since f is bounded, this implies that f is Riemann integrable.

By Definition 2.2 there is a sequence of step functions gm which converges nearly

uniformly to f . Since f is bounded, we may assume that for some C > 0 the

inequalities |f(x)| < C and |gm(x)| < C hold for all x ∈ T and m ∈ N.

Since the BKSz-integral of a step function is clearly equal to its Riemann integral,

it suffices to prove that, considering all the integrals below as Riemann integrals,

lim
m→∞

∫

T

gm =

∫

T

f.

For a given ε > 0 there exist finitely many open bricks of total volume λ(A) < ε/C,

where the union of the bricks is denoted by A, such that gm → f uniformly on T \A.

Because of the uniform convergence, for Riemann integrals we know that

lim
m→∞

∫

T\A

gm =

∫

T\A

f.

Hence for large values of m we have
∣

∣

∣

∣

∫

T

gm −

∫

T

f

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

A

gm −

∫

A

f +

∫

T\A

gm −

∫

T\A

f

∣

∣

∣

∣

6

∣

∣

∣

∣

∫

A

gm

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

A

f

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

T\A

gm −

∫

T\A

f

∣

∣

∣

∣

6 C · λ(A) + C · λ(A) +

∣

∣

∣

∣

∫

T\A

(gm − f)

∣

∣

∣

∣

< 2C ·
ε

C
+ ε = 3ε.

(c) We construct a function f : [0, 1] → R which is Riemann integrable but not

BKSz-integrable. We use the construction of the fat Cantor set S, which is of

Lebesgue measure 1/2.

First we remove the open middle one fourth of [0, 1]. Then for k = 2, 3, . . . we

remove the open subintervals of length 4−k from the middle of each of the 2k−1

remaining closed intervals. Let In = (an, bn), n = 1, 2, . . . be an enumeration of the

removed disjoint open intervals, then S = [0, 1] \
∞
⋃

n=1
(an, bn) has Lebesgue measure

1/2.

By means of this construction we define f : [0, 1] → R. We set f(x) = 0 if x ∈ S,

and

f(x) =
1

n
·
(

sin
1

x− an
+ sin

1

bn − x

)
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if x ∈ In for some n. It is easy to see that f is well-defined and the set of its

discontinuities is
∞
⋃

n=1
{an, bn}. This set is countable, f is bounded, hence f is Riemann

integrable. But every discontinuity is of the second kind, and the set
∞
⋃

n=1
{an, bn}

is not of Jordan measure zero, because if we choose finitely many closed intervals

covering this set, then they cover S, which is of positive Lebesgue measure. Applying

Theorem 3.3 we conclude that f is not BKSz-integrable. �

We give now three examples which exhibit three unusual properties of the BKSz-

integral.

First we show Proposition 2.5 on the successive integration is not true for all

BKSz-integrable functions, not even for all bounded BKSz-integrable functions.

Example. There exists a bounded BKSz-integrable function h : [0, 1]× [0, 4] → R

such that the function [0, 4] ∋ y 7→ h(x, y) is BKSz-integrable for each x ∈ [0, 1] but

the function [0, 1] ∋ x 7→
∫ 4

0
h(x, y) dy is not BKSz-integrable.

Indeed, consider the function f : [0, 1] → R defined in the proof of part (c) of

Proposition 4.1. We proved that f is Riemann integrable but not BKSz-integrable.

Now we set h(x, y) = 1 if 0 6 y 6 f(x)+2 and h(x, y) = 0 otherwise. It follows from

the definition of f that for each m ∈ N, |f(x)| 6 1/m except finitely many intervals,

and that f is continuous on the interior of these intervals. These properties imply

that h is continuous Jordan almost everywhere, and thus h is BKSz-integrable on

[0, 1] × [0, 4] by Theorem 3.3. It is obvious that h is bounded and [0, 1] ∋ x 7→
∫ 4

0
h(x, y) dy = f(x) + 2 is not BKSz-integrable.

In order to investigate the rotations it is convenient to extend slightly the definition

of BKSz-integrable functions to functions defined on arbitrary subsets of Rn.

Definition 4.2. A function f : D → R, D ⊂ Rn, is BKSz-integrable if there

exists a brick T ⊂ D such that f |T is BKSz-integrable and f vanishes in D \ T . In

this case the BKSz-integral of f is defined by

∫

D

f :=

∫

T

f |T .

The following example shows that the BKSz-integrability is not invariant under

rotations in R2.

Example. Let g denote the rotation with center (0, 0) by a fixed angle 0 < α <

π/2 in the plane R2. Consider Thomae’s function H : [0, 1] → R defined byH(x) := 0

if x is irrational or zero, and H(x) = 1/q if x = p/q with relatively prime integers

satisfying p 6= 0 and q > 0. Then the formula h(x, y) := H(x) defines a BKSz-

integrable function h : [0, 1] × [0, 1] → R by Theorem 3.3 because it is bounded and
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has no discontinuity points of the second kind, but h ◦ g is not BKSz-integrable

because the image of (Q∩ (0, 1])× [0, 1] under the rotation g consists of discontinuity

points of the second kind and this set is not a Jordan null set.

The last example shows that the set of BKSz-integrable functions is not closed

under uniform convergence.

Example. Using the notations introduced in the proof of Proposition 4.1 (c),

for each positive integer m, let fm : [0, 1] → R be the function for which fm(x) =

f(x) if x ∈
m
⋃

i=1

(ai, bi) and fm(x) = 0 otherwise. fm is bounded, and the finite set

dis2(fm) =
m
⋃

i=1

{ai, bi} is a Jordan null set, hence, by Theorem 3.3, fm is BKSz-

integrable. The sequence (fm) converges uniformly to f , because for each m and x

we have |fm(x) − f(x)| < 2/m. This example shows that a function which is not

BKSz-integrable, can be the uniform limit of BKSz-integrable functions.

Proposition 4.3. If the sequence (fm) of BKSz-integrable functions converges

nearly uniformly to the BKSz-integrable function f , then the sequence (
∫

T fm) con-

verges to
∫

T
f .

P r o o f. We may assume that f is the constant 0 function (first, using Proposi-

tion 4.1 (a), f can be substituted by a bounded BKSz-integrable function g, second,

using Proposition 2.3 (b), the sequence (fm) can be substituted by (fm − g)). If

K > 0 is a uniform bound for the sequence (|fm|) and ε is a given positive number,

then choose the finite set of bricks J1, . . . , Jp for δ = ε/ (2K) according to Defini-

tion 2.1. We may and do suppose that the system of bricks J1, . . . , Jp is part of a

partition {J1, . . . , Jp+q} of T . By Proposition 2.3 (b), |fm| is BKSz-integrable. If m

is large enough then |fm| can be majorized by the step function h =
p+q
∑

i=1

ciχJi
, where

ci = K for i 6 p and ci = ε/(2λ(T )) for p < i 6 p + q. By Proposition 2.3 (b), we

have |
∫

T fm| 6
∫

T |fm| 6
∫

T h, and the latter is not greater then ε. �

5. Indefinite integrals of BKSz-integrable functions

We fix again a closed brick T = [a1, b1]× [a2, b2]× . . .× [an, bn] and we denote by

Σ the family of all closed bricks contained in T :

Σ = {[α1, β1] × [α2, β2] × . . .× [αn, βn] : ai 6 αi 6 βi 6 bi, i = 1, 2, . . . , n} .

If f : T → R a is BKSz-integrable function, then f |S is BKSz-integrable for all

S ∈ Σ. Therefore the following definition is meaningful:
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Definition 5.1. If f : T → R is a BKSz-integrable function, then the indefinite

integral of f is the set function Ψ: Σ → R defined by the formula

Ψ(S) :=

∫

S

f, S ∈ Σ.

In order to characterize the indefinite integrals we need two more definitions.

Definition 5.2. A function Φ: Σ → R is strongly differentiable at a point u ∈

int(T ) with strong derivative t ∈ R, if for every ε > 0 there exists δ > 0 such that

∣

∣

∣

Φ(S)

λ(S)
− t

∣

∣

∣
< ε

for every S ∈ Σ satisfying λ(S) > 0 and S ⊂ B(u, δ). The strong derivative of Φ at

u is denoted by Φ′(u).

Definition 5.3. A function Φ: Σ → R is strongly differentiable at a point u ∈

int(T ) in direction α ∈ {−1, 1}n with strong derivative t ∈ R, if for any ε > 0 there

exists δ > 0 such that
∣

∣

∣

Φ(S)

λ(S)
− t

∣

∣

∣
< ε

for every S ∈ Σ satisfying λ(S) > 0 and S ⊂ B(u, δ) ∩ Tu,α. The strong derivative

of Φ at u in direction α is denoted by Φ′
α(u).

We need the condition α ∈ {−1, 1}n because for other directions α the brick Tu,α

has volume zero.

The main result of this section is

Theorem 5.4. A function Ψ: Σ → R is the indefinite integral of a suitable

BKSz-integrable function f : T → R if and only if Ψ has the following properties:

(1) Ψ is a Lipschitz function, i.e., there exists L > 0 such that |Ψ(S)| 6 L ·λ(S) for

every S ∈ Σ;

(2) Ψ is finitely additive;

(3) Ψ is strongly differentiable Lebesgue almost everywhere;

(4) Ψ is strongly differentiable in every direction α ∈ {−1, 1}n Jordan almost ev-

erywhere.

Remark. Omitting the last one from the four conditions we get a characterization

of the indefinite integral of Riemann integrable functions.

For the proof we need the following easy corollary of Definitions 3.2, 5.2 and 5.3.
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Lemma 5.5. Let Ψ be the indefinite integral of a BKSz-integrable function f :

T → R.

If f is continuous at u ∈ int(T ) and f(u) = t, then Ψ is strongly differentiable at

u and Ψ′(u) = t.

If f has a limit t at u ∈ int(T ) in direction α ∈ {−1, 1}n, then Ψ is strongly

differentiable at u in direction α and Ψ′
α(u) = t.

P r o o f of the necessity part of Theorem 5.4. If f : T → R is BKSz-integrable,

then by Theorem 3.3 there exists C > 0 such that {x ∈ T : |f(x)| > C} is a Jordan

null set. Hence
∣

∣

∫

S f
∣

∣ < C · λ(S) for every S ∈ Σ, because this is well known for

Riemann integrals, and parts (a) and (b) of Proposition 4.1 show that this implies the

inequality for BKSz-integrals. We conclude that Ψ satisfies the Lipschitz condition

with the constant C:

|Ψ(S)| 6 C · λ(S) for every S ∈ Σ.

Similarly, we deduce from the relation between the BKSz-integral and the Riemann

integral that Ψ is finitely additive:

Ψ(S) =

m
∑

i=1

Ψ(Si)

if S ∈ Σ, Si ∈ Σ for i = 1, 2, . . . ,m, S =
m
⋃

i=1

Si and int(Si) ∩ int(Sj) = ∅ whenever

i 6= j. By part (b) of Theorem 3.3 the set of discontinuities of f is a Lebesgue null

set, and by Lemma 5.5 this implies that {u ∈ T : Ψ′(u) does not exist} is also a

Lebesgue null set. Similarly, by Theorem 3.3 the set of discontinuities of the second

kind of f is a Jordan null set, and by Lemma 5.5 this implies that

{u ∈ T : ∃α ∈ {−1, 1}n such that Ψ′
α(u) does not exist}

is a Jordan null set, too. �

The rest of this section is devoted to the proof of the sufficiency part of Theo-

rem 5.4. Given a function Ψ: Σ → R satisfying the four conditions of the theorem,

we define a function f : T → R by setting f(x) = 0 for x ∈ ∂T and

f(x) = lim
δ→0+

sup
{Ψ(S)

λ(S)
: S ∈ Σ, λ(S) > 0, S ⊂ B(x, δ)

}

for x ∈ int(T ).

We are going to prove in several steps that f is BKSz-integrable and that Ψ is its

indefinite integral.
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Lemma 5.6. If the strong derivative Ψ′
α(u) = t exists at a point u ∈ int(T ) in

some direction α ∈ {−1, 1}n, then lim
u,α

f = t.

P r o o f. Given an arbitrary ε > 0, by definition there exists δ0 > 0 such that

t− ε <
Ψ(S)

λ(S)
< t+ ε

for all bricks S ∈ Σ satisfying λ(S) > 0 and S ⊂ B(u, δ0)∩Tu,α. We may assume that

B(u, δ0) ⊂ T . It suffices to show that |f(x) − t| 6 ε for every x ∈ B(u, δ0) ∩ Tu,α.

Since α ∈ {−1, 1}n, Tu,α ∩ B(u, δ0) is an open set, for every x ∈ B(u, δ0) ∩ Tu,α

there exists δ1 > 0 such that B(x, δ1) ∩ T ⊂ B(u, δ0) ∩ Tu,α. This implies that for

every positive number 0 < δ < δ1 we have

t− ε 6 sup
{Ψ(S)

λ(S)
: S ∈ Σ, λ(S) > 0, S ⊂ B(x, δ)

}

6 t+ ε.

It follows that

t− ε 6 lim
δ→0+

sup
{Ψ(S)

λ(S)
: S ∈ Σ, λ(S) > 0, S ⊂ B (x, δ)

}

6 t+ ε,

i.e., |f(x) − t| 6 ε. �

Lemma 5.7. If the strong derivative Ψ′
α(u) = t exists at a point u ∈ int(T ) in

every direction α ∈ {−1, 1}n, then u cannot be a discontinuity point of the second

kind of f .

P r o o f. By the previous lemma, it is sufficient to prove that f has a finite limit

lim
u,α

f in each nonzero direction α ∈ {−1, 0, 1}n \ {−1, 1}n. We claim that this limit

is equal to t := max{Ψ′
β(u) : β ∈ B} where

B = {β ∈ {−1, 1}n : if 1 6 k 6 n and αk 6= 0, then βk = αk}.

Let ε > 0 be given. According to Definition 5.3 there exists δ0 > 0 such that

∣

∣

∣

Ψ(σ)

λ(σ)
− Ψ′

β(u)
∣

∣

∣
< ε

for every β ∈ B and σ ∈ Σ satisfying λ(σ) > 0 and σ ⊂ B(u, δ0) ∩ Tu,β .

If x ∈ Tu,α ∩B(u, δ0), then there exists 0 < δx < δ0 such that B(x, δx) ⊂ B(u, δ0)

and

δx < min{|xk − uk| : xk 6= uk}.

Let us consider a brick S ∈ Σ such that λ(S) > 0 and S ⊂ B(x, δx) ⊂ B(u, δ0).
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The definition of δx implies that sgn(yk − uk) = sgn(xk − uk) for every y ∈ S and

for each positive integer k 6 n satisfying xk 6= uk. Therefore S is covered by the

pairwise nonoverlapping bricks Tu,β (β ∈ B). Using the finite additivity of Ψ and

setting Sβ = S ∩ Tu,β for β ∈ B we get

Ψ(S) =
∑

β∈B

Ψ(Sβ).

Since the volume function λ : Σ → R is finitely additive, too, we have also

λ(S) =
∑

β∈B

λ(Sβ)

for the same sets S and Sβ .

It follows from our choice of δ0 that

Ψ(Sβ) < (Ψ′
β(u) + ε) · λ(Sβ) 6 (t+ ε)λ(Sβ).

Summing them for all β ∈ B we obtain that

Ψ(S) =
∑

β∈B

Ψ(Sβ) < (t+ ε)
∑

β∈B

λ(Sβ) = (t+ ε)λ(S).

Since this holds for every S ∈ Σ satisfying λ(S) > 0 and S ⊂ B(x, δx), it follows that

f(x) = lim
δ→0+

sup
{Ψ(S)

λ(S)
: S ∈ Σ, λ(S) > 0, S ⊂ B(x, δ)

}

6 t+ ε.

In order to obtain a lower bound of f(x) we choose a direction βmax ∈ B such

that Ψ′
βmax

(u) = t. Since x ∈ Tu,α ∩ B(u, δ0) and βmax ∈ B ⊂ {−1, 1}n, for every

δ > 0 there is a brick Sδ ∈ Σ such that Sδ ⊂ B(x, δ) ∩ Tu,βmax
. If δ < δx < δ0, then

Sδ ⊂ B(x, δx) ⊂ B(u, δ0). Thanks to the choice of δ0, we conclude that

Ψ (Sδ)

λ(Sδ)
> t− ε.

Since there exists such a brick Sδ for every 0 < δ < δx, this implies that

f(x) = lim
δ→0+

sup
{Ψ(S)

λ(S)
: S ∈ Σ, λ(S) > 0, S ⊂ B(x, δ)

}

> t− ε.

We have proved that for every ε > 0 there exists δ0 > 0 such that

t− ε 6 f(x) 6 t+ ε

for every x ∈ B(u, δ0) ∩ Tu,α. In other words, lim
u,α

f = t. �
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Now we are ready to prove that f is BKSz-integrable. By Theorem 3.3 it suffices

to show that f is bounded and that its discontinuities of the second kind form a

Jordan null set. The boundedness of f follows from the Lipschitz property of Ψ.

The second property follows from Lemma 5.7 and from the fourth condition on Ψ.

According to Hypothesis (3) and Lemma 5.6 Ψ is strongly differentiable and

Ψ′(u) = f(u) Lebesgue almost everywhere. Since f is BKSz-integrable, it follows

from the already established necessity part of Theorem 5.4 that its indefinite integral

Ψ0 is also strongly differentiable and Ψ′
0(u) = f(u) Lebesgue almost everywhere. It

remains to prove that Ψ = Ψ0. This follows from the following lemma applied for

Φ = Ψ − Ψ0.

Lemma 5.8. Assume that Φ: Σ → R is finitely additive and satisfies the Lip-

schitz condition. If Φ is strongly differentiable and Φ′(u) = 0 Lebesgue almost

everywhere, then Φ(S) = 0 for every S ∈ Σ.

P r o o f. We adapt a method of M.W.Botsko [2]. We fix a Lebesgue null set

H ⊂ int(T ) such that Φ′(u) = 0 for every u ∈ int(T ) \H and choose L > 0 such that

|Φ(σ)| 6 L · |λ(σ)| for every σ ∈ Σ.

Assume on the contrary that |Φ(S)| = c > 0 for some brick S ∈ Σ. We may

assume that S ⊂ int(T ). Since H is a Lebesgue null set, there exist open bricks

S1, S2, . . . such that

H ⊂
∞
⋃

i=1

Si and

∞
∑

i=1

λ(Si) <
c

2L
.

We define a function p : S → (0,∞) as follows. If x ∈ H ∩ S, then we choose

the first brick Si which contains x, and we define p(x) such that B(x, p(x)) ⊂ Si. If

x ∈ S \H , then Φ is strongly differentiable at x with strong derivative 0. According

to Definition 5.2 we may fix p(x) > 0 such that

∣

∣

∣

Φ(σ)

λ(σ)

∣

∣

∣
<

c

2λ(S)
for every σ ∈ Σ satisfying σ ⊂ B(x, p(x)) and λ(σ) > 0.

Applying Cousin’s lemma 3.4 we find a p-fine tagged partition of S:

S =

J
⋃

j=1

Tj with ξj ∈ Tj ⊂ B(ξj , p(ξj)), j = 1, . . . , J,

and int(Tj) ∩ int(Tk) = ∅ whenever j 6= k.

Since the bricks Tj are pairwise nonoverlapping and Φ is additive, we get

c = |Φ(S)| =

∣

∣

∣

∣

J
∑

j=1

Φ(Tj)

∣

∣

∣

∣

6
∑

ξj∈H

|Φ(Tj)| +
∑

ξj /∈H

|Φ(Tj)|.
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In view of the definition of L, p and Si we obtain that

∑

ξj∈H

|Φ(Tj)| 6 L ·
∑

ξj∈H

λ(Tj) 6 L ·
∞
∑

i=1

λ(Si) < L ·
c

2L
=
c

2
.

On the other hand, using the definition of p for x /∈ H we get

∑

ξj /∈H

|Φ(Tj)| <
∑

ξj /∈H

λ(Tj) ·
c

2λ(S)
6
c

2

because the union of the bricks Tj is S.

It follows from these inequalities that

c 6
∑

ξj∈H

|Φ(Tj)| +
∑

ξj /∈H

|Φ(Tj)| <
c

2
+
c

2
= c,

a contradiction. �
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