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Abstract. For a given sequence a boundedly expressible set is introduced. Three criteria
concerning the Hausdorff dimension of such sets are proved.
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1. Introduction

Following Erdős [2] we say that for a given sequence {an}
∞

n=1 the set

XB{an}
∞

n=1 :=

{

x ∈ R : ∃K ∈ N ∃ {cn}
∞

n=1, cn ∈ {1, . . . , K}, x =

∞
∑

n=1

1

ancn

}

is its boundedly expressible set. In [2] it is shown that if lim
n→∞

a
1/2n

n = ∞ and an ∈ N

for all n ∈ N then XB{an}
∞

n=1 does not contain any rational number. It appears to

be the case that in general evaluating the Lebesgue measure or Hausdorff dimension

of the set XB{an}
∞

n=1 is not easy. In this paper we give conditions on {an}
∞

n=1 to

ensure that the Hausdorff dimension of the set XB{an}
∞

n=1 is zero. We prove the

following.

Theorem 1. Let {bn]}∞n=1 be a non-decreasing sequence of positive integers such

that bn = O
(

22n/2)

. Then dimXB

{

bn + 222[log2 n] }∞

n=1
= 0.

It is unknown to the authors if there exists a sequence of real numbers such that its

boundedly expressible set has Hausdorff dimension greater than zero and Lebesgue
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measure zero. For sequences which converge to infinity slower than
{

22n}

∞

n=1
Hančl

in [3] proved the following theorem.

Theorem 2. Let {an}
∞

n=1 be a sequence of positive real numbers and let K be a

positive integer. Assume that F : N → R
+ is a function such that F (n) < n,

an < K22n−F(n)

and

∞
∑

n=1

2−F (n) < ∞.

Put

B :=
1

8K[a1 + 1]
[

2
4

∞∑

n=2
2−F (n)

+ 2
]

.

Then for every number x ∈ (0, B] there is a sequence {cn}
∞

n=1 ⊆ N such that x =
∞
∑

n=1
1/ancn.

2. Main results

We start with the theorem which is the basis for the other results.

Theorem 3. Let ε be a positive real number. Assume that {an}
∞

n=1 is a non-

decreasing sequence of positive integers such that

(1) L := lim inf
n→∞

2(1 + ε) log Tn

ε log an
∈ [0, 1),

where Tn = lcm(a1, . . . , an−1), and that for every sufficiently large n

(2) an > n1+ε.

Then dimXB{an}
∞

n=1 6 L.

Theorem 1 follows immediately from the following more general result.
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Theorem 4. Let ε be a positive real number. Assume that {an}
∞

n=1 is a non-

decreasing sequence of positive integers such that

(3) lim inf
n→∞

n log an−1

log an
= 0

and that for every sufficiently large n

(4) an > n1+ε.

Then dimXB{an}
∞

n=1 = 0.

Example 1. Set A := 1.1 and an :=
[

2A2[log2 n]

+ n
]

. From n < 1.82 × 2An

we

obtain for K = 3 and F (n) = n log2 2/A that an < K22n−F(n)

. Theorem 2 implies

that for every x ∈
(

0, 1
768

]

there is a sequence {cn}
∞

n=1 of positive integers such that

x =
∞
∑

n=1
1/ancn. Theorem 4 implies that for almost every x such sequence {cn}

∞

n=1

must be unbounded.

In the case that the sequence {an}
∞

n=1 is of the Cantor type we can use the following

criterion.

Theorem 5. Let A, B, S and ε be a positive real numbers such that S > 1 and

(2/S)(A/B)((1 + ε)/ε) < 1. Let {an}
∞

n=1 be a sequence of positive integers such

that an divides an+1 for every n ∈ N. Suppose that for every sufficiently large n

(5) an > n1+ε.

Assume that for infinitely many N

(6) aN−1 6 2ASN−1

and aN > 2BSN

.

Then dimXB{an}
∞

n=1 6 (2/S)(A/B)((1 + ε)/ε).

Let us note that Theorem 5 also holds in the case when A > B. The authors do

not know how to find non-trivial lower bounds for XB.

Corollary 1. Let A, B and S be positive real numbers such that S > 1 and

(2/S)(A/B) < 1. Let {an}
∞

n=1 be a sequence of positive integers such that an divides

an+1 for every n. Assume that an > 2n for every sufficiently large n. Suppose that

aN−1 6 2ASN−1

and aN > 2BSN

for infinitely many N . Then dimXB{an}
∞

n=1 6

(2/S)(A/B).

Example 2. Let S > 2. As an immediate consequence of Corollary 1 we obtain

that dimXB

{

2[(4+(−1)n)Sn]
}

∞

n=1
6 6

5/S.
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Corollary 2. Let A > 0 and S > 2. Let {an}
∞

n=1 be a sequence of positive integers

such that an divides an+1 for every n ∈ N. Assume that ak > 2k for every sufficiently

large k. Suppose that aN 6 2ASN

for infinitely many N and aM > 2ASM

for infinitely

many M . Then dim XB{an}
∞

n=1 6 2/S.

Corollary 3. Let 0 < B < A and S > 2B/A. Let {an}
∞

n=1 be a sequence of

positive integers such that an divides an+1 for every n and 2BSn

6 an 6 2ASn

for

every sufficiently large n. Then dimXB{an}
∞

n=1 6 (2/S)(A/B).

Example 3. Let S > 2. Corollary 3 implies that dim XB

{

2[Sn]
}

∞

n=1
6 2/S.

3. Proofs

We need the following classical Jarník-Besicovitch Theorem which can be found

for example in [1]. See also [4].

Theorem 6. Let α > 2. Then the Hausdorff dimension of the set of all positive

real numbers x such that for infinitely many pairs (p, q) ∈ N

∣

∣

∣
x −

p

q

∣

∣

∣
<

1

qα

is equal to 2/α. In other words,

dim
∞
⋂

N=1

∞
⋃

q=N

∞
⋃

p=1

(p

q
−

1

qα
,
p

q
+

1

qα

)

=
2

α
.

P r o o f of Theorem 3. Let δ > 0 be a sufficiently small real number. Let K ∈ N

and let {cn}
∞

n=1 be a sequence of integers such that cn ∈ {1, . . . , K} for each n ∈ N.

Let N be a sufficiently large integer. Then from (2) and from the fact that the

sequence {an}
∞

n=1 is non-decreasing we obtain that

∞
∑

n=N

1

ancn
6

∞
∑

n=N

1

an
6

∑

n6a
1/(1+ε)
N

1

an
+

∑

n>a
1/(1+ε)
N

1

an
(7)

6
a
1/(1+ε)
N

aN
+

∑

n>a
1/(1+ε)
N

1

n1+ε
6

1

a
(1−δ)ε/(1+ε)
N

.

Set SK := lcm(1, . . . , K),

qN := lcm(a1c1, . . . , aN−1cN−1) and pN := qN

N−1
∑

n=1

1

ancn
.
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We have

qN 6 SKTN 6 T 1+δ
N .

This, (1) and (7) imply that for infinitely many N

q
2(1−δ)/(1+δ)(L+δ)
N

∞
∑

n=N

1

ancn
6

T
2(1−δ)/(L+δ)
N

a
(1−δ)ε/(1+ε)
N

=

(

T
2(1+ε)/(L+δ)ε
N

aN

)(1−δ)ε/(1+ε)

< 1.

Hence

0 <

∞
∑

n=1

1

ancn
−

pN

qN
=

∞
∑

n=N

1

ancn
<

1

q
2(1−δ)/(1+δ)(L+δ)
N

for infinitely many N .

Set

YK :=

{

x ∈ R : ∃ {cn}
∞

n=1 ⊆ {1, . . . , K} s.t. x =

∞
∑

n=1

1

ancn

}

.

Then

XB{an}
∞

n=1 =

∞
⋃

K=1

YK ⊆

∞
⋂

N=1

∞
⋃

q=N

∞
⋃

p=1

(

p

q
,
p

q
+

1

q
2(1−δ)/(1+δ)(L+δ)
N

)

.

The Jarník-Besicovitch Theorem implies that

dim XB{an}
∞

n=1 6
(1 + δ)(L + δ)

1 − δ
.

This holds for every small δ > 0. So the result follows. �

P r o o f of Theorem 4. Use Theorem 3 with L = 0 and the fact that Tn 6 an−1
n−1.

�

P r o o f of Theorem 5. For sequences of the Cantor type we have Tn = an−1.

Again use Theorem 3. �

P r o o f of Theorem 1. Set n = 2m where m ∈ N and m is sufficiently large.

Then an−1 = O(22n/2

) and an = 22n

. So (3) follows. Condition (4) is clear. Now we

can apply Theorem 4. �

P r o o f of Corollary 1. For every sufficiently large ε > 0 we have (2/S)(A/B)

((1 + ε)/ε) < 1. The inequality (5) is obviously fulfilled. Theorem 5 implies that

dimXB{an}
∞

n=1 6 lim
ε→∞

2

S

A

B

1 + ε

ε
=

2

S

A

B
.

�
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P r o o f of Corollary 2. Set B := A and use Corollary 1. �

P r o o f of Corollary 3. This is an immediate consequence of Corollary 1. �
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