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ON POTENTIALLY NILPOTENT DOUBLE STAR SIGN PATTERNS

Honghai Li, Nanchang, Jiongsheng Li, Hefei

(Received September 10, 2007)

Abstract. A matrix A whose entries come from the set {+,−, 0} is called a sign pat-
tern matrix, or sign pattern. A sign pattern is said to be potentially nilpotent if it has a
nilpotent realization. In this paper, the characterization problem for some potentially nilpo-
tent double star sign patterns is discussed. A class of double star sign patterns, denoted
by DSSP(m, 2), is introduced. We determine all potentially nilpotent sign patterns in
DSSP(3, 2) and DSSP(5, 2), and prove that one sign pattern in DSSP(3, 2) is potentially
stable.
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1. Introduction

A matrix A whose entries come from the set {+,−, 0} is called a sign pattern

matrix, or sign pattern. Let A = [aij ] and B = [bij ] be n × n sign patterns. If

bij = aij whenever aij 6= 0, then B is a superpattern of A and A is a subpattern

of B. If A is a sign pattern and A is a real matrix for which each entry has the

same sign as the corresponding entry of A , then A is said to be a realization of A ,

and we write A ∈ Q(A ). The inertia of a square matrix A is the ordered triple

i(A) = (i+(A), i−(A), i0(A)), in which i+(A), i−(A) and i0(A) are the numbers

of eigenvalues of A with positive, negative and zero real parts, respectively. The

inertia of sign pattern A is the set of ordered triples i(A ) = {i(A) : A ∈ Q(A )}.

A square matrix A is stable if i(A) = (0, n, 0). A pattern A is potentially stable

if (0, n, 0) ∈ i(A ). A pattern A is inertially arbitrary if (r, s, t) ∈ i(A ) for every
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nonnegative triple (r, s, t) with r + s + t = n. In particular, an n × n (n > 2)

sign pattern matrix A is spectrally arbitrary if given any monic polynomial r(x) of

degree n with real coefficients, there exists A ∈ Q(A ) such that the characteristic

polynomial of A is r(x).

In the following discussion, we need some notations about the cycles in a sign

pattern, since every real matrix associated with it has the same qualitative cycle

structure, and such cycle structure is crucial in studying the eigenvalues. The directed

graph D(A ) associated with a patternA = (aij) is the directed graph with vertex set

{1, 2, . . . , n} and arc (i, j) if aij 6= 0, for all 1 6 i, j 6 n. A simple k-cycle γ of length

|γ| = k of A is a sequence of k arcs (i1, i2), (i2, i3) . . . (ik, i1) in D(A ) such that the

vertices i1, i2, . . . , ik are distinct. We denote the cycle γ by (i1, i2, . . . , ik, i1). Write
∏

γ

= ai1i2ai2i3 . . . aiki1 , the cycle product of A associated with a simple k-cycle γ.

It is well known that the determinant of an n × n matrix A is the sum of all

possible terms of the form

(1.1) (−1)|γ1|−1
∏

γ1

(−1)|γ2|−1
∏

γ2

. . . (−1)|γp|−1
∏

γp

where γ1, . . . , γp are disjoint simple cycles the sum of whose lengths is equal to n.

Similarly, Ek(A), the sum of all k×k principal minors of A, is equal to the sum of all

terms of the form (1.1) where γ1, . . . , γp are disjoint simple cycles whose length sum

equals k. The computation of the characteristic polynomial of A is then expressed

in terms of its cycle products as follows:

(1.2) PA(x) = xn +

n
∑

k=1

(−1)kEk(A)xn−k.

An n×n sign patternA is said to be potentially nilpotent if there exists A ∈ Q(A )

such that PA(x) = xn. From (1.2), this is equivalent to finding A ∈ A such that

Ek(A) = 0 for all 1 6 k 6 n. Clearly, if A is spectrally arbitrary, then A is po-

tentially nilpotent, but not conversely. Two sign patterns A and B are equivalent

if B may be obtained from A by some combination of negation, transposition, per-

mutation similarity, and signature similarity. Note that if A and B are equivalent,

then A is potentially nilpotent if and only if B is potentially nilpotent. In [6],

Lina Yeh characterized some star sign patterns and linear tree sign patterns that are

potentially nilpotent. In [3], Eschenbach and Li obtained a number of qualitative

necessary or sufficient conditions for a sign pattern to be potentially nilpotent. In [5],

all star sign patterns that are potentially nilpotent are characterized. In this paper,

we introduce one class of double star sign patterns which is denoted by DSSP(m, 2)
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and determine all potentially nilpotent sign patterns in DSSP(3, 2) and DSSP(5, 2).

Moreover, we prove that one sign pattern in DSSP(3, 2) is potentially stable.

2. Double star sign patterns

A sign pattern A = [aij ] is combinatorially symmetric if aij 6= 0 whenever aji 6= 0.

The graph G(A ) of a combinatorially symmetric sign pattern A of order n has

vertices 1, 2, . . . , n and an edge joining vertices i and j if and only if aij 6= 0. Note

that loops are allowed. A star is the graph with vertex set {1, 2, . . . , n} and an edge

joining a fixed center vertex i and each leaf vertex j for all j 6= i (and no other edges).

A double star is the graph obtained from two stars by joining the two centers of stars

with an edge. The notion of center and leaf vertices of the two stars is preserved for

the resulting double star. A combinatorially symmetric sign pattern A is a double

star sign pattern if the graph obtained from G(A ) by deleting all loops is a double

star.

For n > 4 and 2 6 m 6 n − 2, consider the double star matrix

A =































a1 b2 . . . bm bm+1

c2 a2

...
. . .

cm am

cm+1 am+1 bm+2 . . . bn

cm+2 am+2

...
. . .

cn an































.

The entries b2, . . . , bn, c2, . . . , cn are nonzero real numbers. The entries not specified

in the matrix are all zeros. Let Ak (Ak) denote the principal submatrix of A lying in

the first k rows and columns (lying in the last n− k rows and columns). Expanding

the determinant det(xI − A) along the first row, we obtain

Proposition 2.1. The characteristic polynomial of A (as above) is

PA(x) = PAm
(x)PAm

(x) − bm+1cm+1

n
∏

j=2

j 6=m+1

(x − aj),

where

PAm
(x) =

(

m
∏

j=1

(x − aj) −

m
∑

i=2

(

bici

m
∏

j=2

j 6=i

(x − aj)

))

491



and

PAm
(x) =

(

n
∏

j=m+1

(x − aj) −

n
∑

i=m+2

(

bici

n
∏

j=m+2

j 6=i

(x − aj)

))

.

From Proposition 2.1, the off-diagonal entries bi and ci enter into the characteristic

polynomial of A only as a product bici. It is therefore sufficient to consider only

matrices with bi = 1 for 2 6 i 6 n and for double star sign patterns it is sufficient

to take entries (1, i) and (m + 1, j) for 2 6 i 6 m + 1 and m + 2 6 j 6 n as +.

Proposition 2.2. Let n > 4. If A = [aij ] is an inertially arbitrary double star

sign pattern, then aii = 0 for at most one leaf vertex i.

P r o o f. Let n > 4, 2 6 m 6 n − 2 and let A = [aij ] be an inertially arbitrary

double star sign pattern. Let the real matrix

(2.1) A =































a1 1 . . . 1 1

b2 a2

...
. . .

bm am

bm+1 am+1 1 . . . 1

bm+2 am+2

...
. . .

bn an































be a realization of A . Then,

det(A) =

(

m
∏

j=1

aj −

m
∑

i=2

(

bi

m
∏

j=2

j 6=i

aj

))(

n
∏

j=m+1

aj −

n
∑

i=m+2

(

bi

n
∏

j=m+2

j 6=i

aj

))

− bm+1

n
∏

j=2

j 6=m+1

aj .

By the definition of a double star sign pattern, bi 6= 0 for all i. Suppose that

ai = 0 for exactly two i’s with one in {2, . . . , m} and another in {m + 2, . . . , n}.

Then det(A) 6= 0 and A has only non-zero eigenvalues. The eigenvalues of A with

zero real parts must be conjugate pairs of purely imaginary numbers. Therefore

i0(A) is even for any real matrix A ∈ Q(A ). Hence A is not inertially arbitrary,

giving a contradiction.

Now suppose that ai = 0 for more than one i with 2 6 i 6 m or m + 2 6 i 6 n.

Then det(A) = 0. But this implies that i0(A) > 1 for all A ∈ Q(A ), again giving a

contradiction. �
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Corollary 2.1. Let n > 4. If A = [aij ] is a spectrally arbitrary double star sign

pattern, then aii = 0 for at most one leaf vertex i.

Proposition 2.3. Let n > 4 and A be a real matrix as in (2.1). If A is

nilpotent, then the non-zero entries among a2, . . . , am are distinct and so are the

non-zero entries among am+2, . . . , an.

P r o o f. By Proposition 2.1, the characteristic polynomial of A is

PA(x) =

(

m
∏

j=1

(x − aj) −
m
∑

i=2

(

bi

m
∏

j=2

j 6=i

(x − aj)

))

×

(

n
∏

j=m+1

(x − aj) −

n
∑

i=m+2

(

bi

n
∏

j=m+2

j 6=i

(x − aj)

))

− bm+1

n
∏

j=2

j 6=m+1

(x − aj).

If ai = aj for some 2 6 i 6= j 6 m, then ai is a zero of PA(x) = xn, and consequently

ai = 0. Thus, if ai 6= 0, then ai 6= aj for all 2 6 i 6= j 6 m. Similarly, we may prove

that if ai 6= 0, then ai 6= aj for all m + 2 6 i 6= j 6 n. �

Proposition 2.4. Let A be a real matrix as in (2.1) with zero main diagonal.

Then A is nilpotent if and only if either
m
∑

i=2

bi = 0 and
n
∑

i=m+1

bi = 0, or
n
∑

i=m+2

bi = 0

and
m+1
∑

i=2

bi = 0.

P r o o f. Consider the matrix A in (2.1) with ai = 0 for 1 6 i 6 n. The

characteristic polynomial of A is PA(x) = xn + E2(B)xn−2 + E4(B)xn−4. Thus

A being nilpotent is equivalent to

(2.2) −

n
∑

i=2

bi = E2(B) = 0,

and

(2.3)
m
∑

i=2

bi

n
∑

i=m+2

bi = E4(B) = 0.

From (2.3) we have either
m
∑

i=2

bi = 0 or
n
∑

i=m+2

bi = 0. Taking (2.2) into consideration,

we see that A is nilpotent if and only if
m
∑

i=2

bi = 0 and
n
∑

i=m+1

bi = 0, or
n
∑

i=m+2

bi = 0

and
m+1
∑

i=2

bi = 0. �
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Proposition 2.5. Let A be a real matrix as in (2.1) with the only nonzero entries

a1, am+1 on the main diagonal. Then A is nilpotent if and only if a1 = −am+1,

bm+1 = −a2
1 and

m
∑

i=2

bi =
n
∑

j=m+2

bj = 0.

P r o o f. For the matrix A in (2.1), if ai = 0 for 2 6 i 6 m and m + 2 6 i 6 n,

then PA(x) = xn−E1(A)xn−1+E2(A)xn−2−E3(A)xn−3+E4(A)xn−4. The matrix A

is nilpotent if and only if

a1 + am+1 = E1(A) = 0,(2.4)

a1am+1 −

n
∑

i=2

bi = E2(A) = 0,(2.5)

−a1

n
∑

i=m+2

bi − am+1

m
∑

j=2

bj = E3(A) = 0,(2.6)

and

m
∑

i=2

bi

n
∑

j=m+2

bj = E4(A) = 0.(2.7)

From (2.7),
m
∑

i=2

bi = 0 or
n
∑

j=m+2

bj = 0. So, by (2.6), we have
m
∑

i=2

bi =
n
∑

j=m+2

bj = 0.

From (2.4) and (2.5), we have a1 = −am+1 and bm+1 = −a2
1. �

Now consider the following double star matrix

(2.8)





















0 1 . . . 1 1

b2 a2

...
. . .

bm am

bm+1 0 1

bm+2 0





















,

where m > 3. The sign pattern A determined by a real matrix A with form (2.8)

is denoted by DSSP(m, 2). In the following we shall give a characterization for all

potentially nilpotent sign patterns in DSSP(m, 2) for some small values of m.

Theorem 2.1. Let A = [aij ] ∈ DSSP(3, 2). Then A is potentially nilpotent if

and only if a22a33 = −, a21a31 = + and (a22, a21, a41, a54) is one of the forms (up to

equivalence) (+,−, +,−), (+, +,−, +), (+,−, +, +).
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P r o o f. Suppose A ∈ Q(A ) is parameterized as in (2.8). Then A is nilpotent if

and only if


































a2 + a3 = 0,

a2a3 − b2 − b3 − b4 − b5 = 0,

−a2(b3 + b4 + b5) − a3(b2 + b4 + b5) = 0,

−a2a3(b4 + b5) + b5(b2 + b3) = 0,

(a2b3 + a3b2)b5 = 0.

By simplification, we have

a2 = −a3, b4 + b5 = a2a3 − b2 − b3,

b5(b2 + b3) = a2a3(b4 + b5), a2b3 + a3b2 = 0,

that is,

a2 = −a3, b2 = b3 =
a4
2

2(b5 − a2
2)

, b4 =
b2
5

a2
2 − b5

.

We distinguish the following cases.

Case 1 : b5 > 0.

Subclass 1 : b5 > a2
2. Then b2 > 0 and b4 < 0.

Subclass 2 : b5 < a2
2. Then b2 < 0 and b4 > 0.

Case 2 : If b5 < 0, then b2 < 0 and b4 > 0.

Therefore, if A is potentially nilpotent, then a22a33 = −, a21a31 = + and

(a22, a21, a41, a54) must be one of the forms (+,−, +,−), (+, +,−, +), (+,−, +, +).

Conversely, for a sign pattern A = [aij ] ∈ DSSP(3, 2), if a22a33 = −, a21a31 = +

and (a22, a21, a41, a54) is one of the forms (+,−, +,−), (+, +,−, +), (+,−, +, +),

choosing real matrices A ∈ Q(A ) as in (2.8) satisfying a2 = −a3, b2 = b3, and

(a2, b2, b4, b5) = (1, 1

2
,−4, 2), (1,−1, 1

2
, 1

2
), (1,− 1

4
, 1

2
,−1), respectively, it is easy to

verify that A is nilpotent, respectively. �

We next introduce some more notation. Let X = {xj : j ∈ J} be a set of variables

with finite index set J . Let Σi(X) be the sum of the products of the elements of the

i-element subsets of X for each i with 1 6 i 6 |J |. For each j ∈ J , let Xj = X \{xj}.

If j /∈ J , we assume Xj = X . For example,

Σ1(Xj) =
∑

k∈J\{j}

xk, Σ2(Xj) =
∑

k,l∈J\{j}
k<l

xkxl.
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Theorem 2.2. No sign pattern A ∈ DSSP(4, 2) is potentially nilpotent.

P r o o f. Suppose the matrix A is in Q(A ). Then we can assume that A has the

form

A =



















0 1 1 1 1

b2 a2

b3 a3

b4 a4

b5 0 1

b6 0



















.

Let X = {a2, a3, a4}. Then we have



















































































E1(A) = Σ1(X),

E2(A) = Σ2(X) −
6
∑

i=2

bi,

E3(A) = Σ3(X) −
6
∑

i=2

biΣ1(Xi),

E4(A) = −
6
∑

i=2

biΣ2(Xi) + b6

4
∑

i=2

bi,

E5(A) = −
6
∑

i=5

biΣ3(X) + b6

4
∑

i=2

biΣ1(Xi),

E6(A) = b6

4
∑

i=2

biΣ2(Xi).

If A is nilpotent, then Ek(A) = 0 for all k. By E1(A) = 0, E3(A) = 0 and

E5(A) = 0, we have














Σ3(X) =
4
∑

i=2

biΣ1(Xi),

b5 + b6

b6

Σ3(X) =
4
∑

i=2

biΣ1(Xi).

So (b5/b6)a2a3a4 = 0, which is a contradiction and thus the asserted conclusion

follows. �

Theorem 2.3. Let A = [aij ] ∈ DSSP(5, 2). Then A is potentially nilpotent

if and only if, up to equivalence, a22a44 = − = a33a55, a21a41 = + = a31a51 and

(a22, a33, a21, a31, a61, a76) is one of the forms: (−,−, +,−,−, +), (−,−,−,−, +, +),

(−,−,−, +, +,−).
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P r o o f. Consider the matrix A ∈ Q(A ) as in (2.8). Let X = {a2, a3, a4, a5}.

That A is nilpotent is equivalent to

Σ1(X) = E1(A) = 0,(2.9)

Σ2(X) −

7
∑

i=2

bi = E2(A) = 0,(2.10)

Σ3(X) −

7
∑

i=2

biΣ1(Xi) = E3(A) = 0,(2.11)

Σ4(X) −

7
∑

i=2

biΣ2(Xi) + b7

5
∑

i=2

bi = E4(A) = 0,(2.12)

−

7
∑

i=2

biΣ3(Xi) + b7

5
∑

i=2

biΣ1(Xi) = E5(A) = 0,(2.13)

−(b6 + b7)Σ4(X) + b7

5
∑

i=2

biΣ2(Xi) = E6(A) = 0,(2.14)

and

b7

5
∑

i=2

biΣ3(Xi) = E7(A) = 0.(2.15)

From (2.19), we have

(2.16)

5
∑

i=2

ai = 0.

From (2.15), we have
5
∑

i=2

biΣ3(Xi) = 0, that is,

(2.17)

5
∑

i=2

bi

ai

= 0.

From (2.13) and (2.11), we obtain that b7

5
∑

i=2

biΣ1(Xi) = (b6 + b7)Σ3(X) and

Σ3(X) =
5
∑

i=2

biΣ1(Xi). Combining these two equations, we have

5
∑

i=2

biai = 0,(2.18)

5
∑

i=2

1

ai

= 0.(2.19)
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Since the off-diagonal terms in a double star matrix enter into its characteristic

polynomial only as products, −A is equivalent to the sign pattern obtained from A

by taking the negative of the main diagonal. So we may consider only two cases:

Case (1): (a2, a3, a4, a5) = (−, +, +, +). From (2.16), we have a3 + a4 + a5 =

−a2. But from (2.19), we have 1/a3 + 1/a4 + 1/a5 = 1/(a3 + a4 + a5), which is a

contradiction.

Case (2): (a2, a3, a4, a5) = (−,−, +, +). We shall prove that there are two pairs of

oppositely signed numbers among a2, a3, a4, a5. From (2.9), we have a2+a4 = −(a3+

a5). Let a2 = −x, a3 = −y, µ = a2 + a4, where y > µ > −x, y > 0, x > 0. Then

a4 = x + µ, a5 = y − µ. By (2.19), we have −1/x− 1/y + 1/(x + µ) + 1/(y − µ) = 0,

and so (x + µ)(y − µ) = xy, that is, µ = 0 or µ = y − x. Without loss of generality,

we always assume that a2 = −a4, a3 = −a5. Thus from (2.17) and (2.18), we have






1

a2

(b2 − b4) +
1

a3

(b3 − b5) = 0,

a2(b2 − b4) + a3(b3 − b5) = 0.

Consequently, either b2 = b4 and b3 = b5 or a2 = a3 and b2 + b3 = b4 + b5.

Let us distinguish two cases:

Case 1 : a2 = a3 and b2 + b3 = b4 + b5. In this case, X = {a2, a3, a4, a5} =

{a2, a2,−a2,−a2} and

Σ1(X) = 0, Σ2(X) = −2a2
2, Σ3(X) = 0, Σ4(X) = a4

2,

Σ1(X2) = −a2 = Σ1(X3), Σ1(X4) = a2 = Σ1(X5),

Σ2(X2) = Σ2(X3) = Σ2(X4) = Σ2(X5) = −a2
2,

Σ3(X2) = a3
2 = Σ3(X3), Σ3(X4) = −a3

2 = Σ2(X5).

Solving the equations (2.10), (2.12) and (2.14), we get the following equations










2a2
2 + 2(b2 + b3) + b6 + b7 = 0 (by (2.10)),

a4
2 + 2a2

2(b2 + b3) + 2a2
2(b6 + b7) + 2b7(b2 + b3) = 0 (by (2.12)),

a2
2(b6 + b7) + 2b7(b2 + b3) = 0 (by (2.14)).

By solving the above equations, we come to a contradiction that a2 = 0.

Case 2 : b2 = b4 and b3 = b5. In this case it is sufficient to solve the six entries

a2, a3, b2, b3, b6, b7 to insure the nilpotent matrix A. Now X = {a2, a3, a4, a5} =

{a2, a3,−a2,−a3} and

Σ1(X) = 0, Σ2(X) = −a2
2 − a2

3, Σ3(X) = 0, Σ4(X) = a2
2a

2
3,

Σ1(X2) = −a2, Σ1(X3) = −a3, Σ1(X4) = a2, Σ1(X5) = a3,

Σ2(X2) = −a2
3, Σ2(X3) = −a2

2, Σ2(X4) = −a2
3, Σ2(X5) = −a2

2,

Σ3(X2) = a2a
2
3, Σ3(X3) = a2

2a3, Σ3(X4) = −a2a
2
3, Σ2(X5) = −a2

2a3.
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By a straightforward calculation of the equations (2.10), (2.12) and (2.14), we get

the following linear system of equations










a2
2 + a2

3 + 2(b2 + b3) + b6 + b7 = 0 (by (2.10)),

a2
2a

2
3 + 2(b2a

2
3 + b3a

2
2) + (a2

2 + a2
3)(b6 + b7) + 2b7(b2 + b3) = 0 (by (2.12)),

a2
2a

2
3(b6 + b7) + 2b7(b2a

2
3 + b3a

2
2) = 0 (by 2.14)).

It is easy to see that the system is underdetermined. In this case, the first three

components b2, b3, b6 can be solved in terms of the last three components a2, a3, b7,

that is

b2 =
a6
2

2(b7 − a2
2)(a

2
2 − a2

3)
,

b3 =
−a6

3

2(b7 − a2
3)(a

2
2 − a2

3)
,

b6 =
−b3

7

(b7 − a2
2)(b7 − a2

3)
.

Without loss of generality, we always assume a2
2 > a2

3.

Subcase 2.1 : b7 > 0.

Subcase 2.1.1 : b7 > a2
2 ⇒ b6 < 0, b2 > 0, b3 < 0.

Subcase 2.1.2 : a2
3 < b7 < a2

2 ⇒ b6 > 0, b2 < 0, b3 < 0.

Subcase 2.1.3 : b7 < a2
3 ⇒ b6 < 0, b2 < 0, b3 > 0.

Subcase 2.2 : b7 < 0 ⇒ b6 > 0, b2 < 0, b3 > 0.

Note that the sign pattern in Subcase 2.1.1 is permutation similar to that in

Subcase 2.1.3.

Therefore, if A is potentially nilpotent, then a22a44 = − = a33a55, a21a41 = + =

a31a51 and (a22, a33, a21, a31, a61, a76) must be one of the forms: (−,−, +,−,−, +),

(−,−,−,−, +, +), (−,−,−, +, +,−).

The same result may be obtained if a2
2 < a2

3.

Conversely, for a sign pattern A = [aij ] ∈ DSSP(5, 2), if a22a44 = − =

a33a55, a21a41 = + = a31a51 and (a22, a33, a21, a31, a61, a76) is one of the forms

(−,−, +,−,−, +), (−,−,−,−, +, +), (−,−,−, +, +,−), choosing real matrices

A ∈ Q(A ) as in (2.8) satisfying a2 = −a4, a3 = −a5, b2 = b4, b3 = b5,

and (a2, a3, b2, b3, b6, b7) = (−2,−1, 32

3
,− 1

24
,− 125

4
, 5), (−2,−1,− 64

15
,− 1

3
, 27

10
, 3

2
),

(−2,−1,− 32

15
, 1

12
, 1

10
,−1), respectively, it is not difficult to verify that A is nilpotent,

respectively. �

One can see that with the increasing values of m, the work of giving the proofs

becomes more and more arduous. Up to now it is not clear how the main results of

the paper can be extended to larger size matrices, that is to say, where m > 5. A

new method might be needed for these cases.
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Remark 2.1. It is known that by the method in [2], which is sometimes called

the Nilpotent-Jacobian method, if a nilpotent realization of a sign pattern A can

be found (this is usually not an easy task), for which the Jacobian is nonzero, then

every superpattern of A is spectrally arbitrary. Up to now we conclude that some

sign patterns in DSSP(m, 2) for m = 3, 5 are potentially nilpotent. It is natural to

ask whether these sign patterns are spectrally arbitrary. Unfortunately, the answer

is negative.

In other words, we have

Theorem 2.4. No sign pattern A in DSSP(3, 2) or DSSP(5, 2) is spectrally

arbitrary.

P r o o f. Consider sign patterns in DSSP(3, 2). Without loss of generality, it

may be assumed that each realization of sign pattern A in DSSP(3, 2) has the form

of A in (2.8). The characteristic polynomial of A is

PA(x) = x5 − (a2 + a3)x
4 + (a2a3 − b2 − b3 − b4 − b5)x

3

+ (a2(b3 + b4 + b5) + a3(b2 + b4 + b5))x
2

+ (b5(b2 + b3) − a2a3(b4 + b5))x − (a2b3 + a3b2)b5.

If a2 +a3 = 0 and (a2b3 +a3b2)b5 = 0, then a2(b3 + b4 + b5)+a3(b2 + b4 + b5) = 0, so

PA(x) cannot equal x5 + αx2 for any nonzero α. Thus A is not spectrally arbitrary.

Consequently, DSSP(3, 2) does not contain sign patterns that are spectrally arbi-

trary. Similarly, it is easy to verify that DSSP(5, 2) contains no sign pattern that is

spectrally arbitrary. �

However, for the sign pattern

A =















0 + + +

− −

− +

+ 0 +

− 0















in DSSP(3, 2), it can be proved that A is potentially stable. In [1], Bone presented

some constructions of potentially stable sign patterns, one of which is the following:

Construction 1’. Given an (n − 1)× (n − 1) matrix A−, we construct an n× n

matrix A as follows:

(i) let A− appear as a principal submatrix of A;

(ii) A contains a negative n-cycle.
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Theorem 2.5. The sign pattern A (as above) is potentially stable.

P r o o f. We know that A4 is potentially stable from the result in [4]. It is easy

to see that A contains a negative 5-cycle. �

Example 2.1. For the matrix

A =















0 1 1 1 0

−3.87265 −2.31427 0 0 0

−9.917 0 0.123349 0 0

0.79188 0 0 0 1

0 0 0 −0.720757 0















∈ Q(A ),

the spectrum of A is {−0.227038 + 3.43587i,−0.227038 − 3.43587i,−1.73634,

−0.000253292 + 0.887001i,−0.000253292 − 0.887001i}. So A is a stable matrix

and A is potentially stable.
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