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Abstract. The notion of functions dependent locally on finitely many coordinates plays
an important role in the theory of smoothness and renormings on Banach spaces, especially
when higher order smoothness is involved. In this note we investigate the structural prop-
erties of Banach spaces admitting (arbitrary) bump functions depending locally on finitely
many coordinates.
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In the present paper we investigate the structural properties of Banach spaces

admitting (arbitrary) bump functions depending locally on finitely many coordi-

nates (LFC).

The first use of the LFC notion was the construction of C∞-smooth and

LFC renorming of c0, due to Kuiper, which appeared in [1]. The LFC notion

was explicitly introduced and investigated in the paper [21] of Pechanec, Whitfield

and Zizler. In their work the authors have proved that every Banach space admitting

a LFC bump is saturated with copies of c0, providing in some sense a converse to

Kuiper’s result. Not surprisingly, it turns out that the LFC notion is closely related

to the class of polyhedral spaces, introduced by Klee [18] and thoroughly investi-

gated by many authors (see [17, Chapter 15] for results and references). Indeed,

prior to [21], Fonf [4] has proved that every polyhedral Banach space is saturated

with copies of c0. Later, it was independently proved in [5] and [9] that every

separable polyhedral Banach space admits an equivalent LFC norm. Using the last

result Fonf’s result is a corollary of [21].

This work was supported by the research project MSM 0021620839 and by the grant of
the Grant Agency of the Czech Republic No. 201/05/P582 and No. 201/06/0018.
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The notion of LFC has been exploited (at least implicitly) in a number of papers,

in order to obtain very smooth bump functions, norms and partitions of unity on

non-separable Banach spaces, see e.g. [23], [22], [3], [7], [8], [6], [14], [15], [16], [9],

[10], [11], and the book [2]. In fact, it seems to be the only general approach to

these problems. The reason is simple; it is relatively easy to check the (higher)

differentiability properties of functions of several variables, while for functions defined

on a Banach space this is very hard.

For separable spaces, one of the main known results is that a separable Banach

space is polyhedral if and only if it admits a LFC renorming (resp. C∞-smooth and

LFC renorming) ([9]). This smoothing up result is however obtained by using the

boundary of a Banach space, rather than through some direct smoothing procedure.

There is a variety of open questions, well known among the workers in the area, con-

cerning the existence and possible smoothing of general non-convex LFC functions.

In our note we try to capture the essence of the structure of Banach spaces admit-

ting (continuous) LFC bumps that is responsible for some of the structural results

(e.g. [4], [21], [6]). In fact, we introduce a formally more general notion of a locally

flat space, and generalize the known structural results in this context. It is not clear

to us whether the generalization is genuine. However, locally flat spaces include for

example all spaces admitting a (not necessarily continuous) bump locally depending

on finitely many linear (i.e. not necessarily continuous) functionals. This notion offers

itself for a possible purely combinatorial characterization of locally flat spaces. Apart

from the usual effort to find the essential ingredients in the theory, we feel that the

more discrete and combinatorial notions have a better chance for finding characteriza-

tion, e.g. among the Orlicz sequence spaces. This is crucial for finding new examples.

We use the standard Banach space notation. By U(x, δ) we denote an open ball

centred at x with radius δ. By X# we denote an algebraic dual to a vector space X .

The notion of a function, defined on a Banach space with a Schauder basis, which is

locally dependent on finitely many coordinates was introduced in [21]. The following

definition is a slight generalization which was used by many authors.

Definition 1. Let X be a topological vector space, Ω ⊂ X an open subset, E be

an arbitrary set, M ⊂ X# and g : Ω → E. We say that g depends only on M on a

set U ⊂ Ω if g(x) = g(y) whenever x, y ∈ U are such that f(x) = f(y) for all f ∈M .

We say that g depends locally on finitely many coordinates from M (LFC-M for

short) if for each x ∈ Ω there are a neighbourhood U ⊂ Ω of x and a finite subset

F ⊂ M such that g depends only on F on U . We say that g depends locally on

finitely many coordinates (LFC for short) if it is LFC-X∗.

We may equivalently say that g depends only on {f1, . . . , fn} ⊂ X# on U ⊂ Ω

if there exist a mapping G : R
n → E such that g(x) = G(f1(x), . . . , fn(x)) for all
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x ∈ U . Notice that if g : Ω → E is LFC and h : E → F is any mapping, then also

h ◦ g is LFC.

The canonical example of a non-trivial LFC function is the sup norm on c0, which

is LFC-{e∗i } away from the origin. Indeed, take any x = (xi) ∈ c0, x 6= 0. Let n ∈ N

be such that |xi| < ‖x‖∞/2 for i > n. Then ‖ · ‖∞ depends only on {e∗1, . . . , e
∗
n} on

U(x, ‖x‖∞/4).

The following lemma shows that sometimes it is possible to join together some of

the neighbourhoods in the definition of LFC:

Lemma 2. Let X be a topological vector space, E be an arbitrary set, g : X → E

and M ⊂ X#. Let Uα ⊂ X , α ∈ I be open sets such that U =
⋃

α∈I

Uα is convex and

g depends only on M on each Uα, α ∈ I. Then g depends only on M on the whole

of U .

P r o o f. Pick any x, y ∈ U such that f(x) = f(y) for all f ∈ M . Since U is

convex, the line segment [x, y] ⊂ U . Since [x, y] is compact, there is a finite covering

U1, . . . , Un ∈ {Uα}α∈I of [x, y]. Since [x, y] is connected, without loss of generality

we may assume that x ∈ U1, y ∈ Un and there are xi ∈ Ui ∩ Ui+1 ∩ [x, y] for

i = 1, . . . , n − 1. As xi ∈ [x, y], we have f(x) = f(y) = f(xi) for all f ∈ M and

i = 1, . . . , n− 1. Therefore g(x) = g(x1) = . . . = g(xn−1) = g(y). �

A norm on a normed space is said to be LFC, if it is LFC away from the origin.

Recall that a bump function (or bump) on a topological vector space X is a function

b : X → R with a bounded non-empty support.

The existence of a LFC norm (or even a continuous LFC bump) on a Banach space

is known to have strong implications on the structure of the space (see e.g. [4], [21],

[6]). The role of continuity in these results seems rather interesting. It turns out

that the essence lies in the discrete (or combinatorial) structure of the space itself.

This leads us to the following general concept:

Definition 3. Let X be a vector space, A ⊂ X , U ⊂ X be arbitrary subsets

of X . We say that A is determined on U by a subspace Z ⊂ X if U ∩ (y + Z) ⊂ A

for all y ∈ U ∩A.

Clearly, if A is determined on U by Z then A is determined on U by any subspace

of Z.

Let us denote the set of all finite-codimensional subspaces of a vector space X

by FC (X). If X is moreover a topological vector space, we denote by FC c(X) the

set of all closed finite-codimensional subspaces.

Definition 4. Let X be a topological vector space, A ⊂ X be an arbitrary subset

of X and Z ⊂ FC (X). We say that A is locally finite-dimensionally determined
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by Z (or LFD-Z for short) if for any x ∈ X there is a neighbourhood U ⊂ X

of x and Z ∈ Z such that A is determined by Z on U . We say that A is locally

finite-dimensionally determined (or LFD) if A is LFD-FC (X).

Fact 5. Let X be a topological vector space, let A ⊂ X and M ⊂ X#. The

function χA is LFC-M if and only if A is LFD-Z forZ =
{ n

⋂

i=1

ker fi ; {f1, . . . , fn} ⊂

M, n ∈ N

}

.

P r o o f. A is determined on U by
n
⋂

i=1

ker fi if and only if χA on U depends only

on {f1, . . . , fn} ⊂ X#. �

Fact 6. Let X be a topological vector space and A,B ⊂ X .

(a) X and ∅ are LFD. If A and B are LFD, then so are the sets A ∩B, A ∪B and

X \A. In other words, all LFD subsets of X form an algebra.

(b) If T : X → X is an automorphism or a translation and A is LFD, then T (A) is

also LFD.

(c) If A and B are separated (i.e. A ∩ B = Ā ∩ B = ∅) and A ∪ B is LFD, then

both A and B are LFD.

P r o o f. (a): Fix x ∈ X . If U , V are neighbourhoods of x such that A is

determined by Z on U and B is determined by W on V , then both A∩B and A∪B

are determined by Z ∩W on U ∩ V . The rest is obvious.

(b): It is obvious, since an automorphism preserves the finite codimension of

subspaces.

(c): For a fixed x ∈ X there is a neighbourhood of x such that A∪B is determined

by Z ∈ FC (X) on U and U−x is balanced, hence U is connected. For any y ∈ U∩A,

we have U ∩ (y + Z) ⊂ A ∪ B and U ∩ (y + Z) is connected, which means that

U ∩ (y + Z) ⊂ A. �

Theorem 7. Let X be a topological vector space, Z ⊂ FC (X). If A ⊂ X is

LFD-Z , then Ā is LFD-Z̃ , where Z̃ = {Z,Z ∈ Z } ⊂ FC c(X).

P r o o f. Fix x ∈ X . There is an open neighbourhood of zero U and Z ∈ Z such

that A is determined on x+ U by Z. Let V be an open neighbourhood of zero such

that V +V +V ⊂ U . Choose any y ∈ (x+V )∩ Ā and z ∈ Z such that y+z ∈ x+V .

There is a net {yγ} ⊂ A such that yγ → y and a net {zγ} ⊂ Z such that zγ → z.

We can moreover assume that {yγ} ⊂ x+U , {yγ} ⊂ y+V and {zγ} ⊂ z+ V . Then

yγ +zγ −x = (y+z−x)+(yγ −y)+(zγ −z) ∈ V +V +V ⊂ U . Thus yγ +zγ ∈ x+U

which together with yγ ∈ (x + U) ∩A gives yγ + zγ ∈ A. It follows that y + z ∈ Ā,

which means that A is determined on x+ V by Z. �
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Similarly, we have

Theorem 8. Let X be a topological vector space, Ω ⊂ X an open subset, E a

Hausdorff topological space and g : Ω → E. If g is LFC-X# and continuous, then

g is LFC-X∗.

P r o o f. Fix x ∈ Ω. There is a neighbourhood U of x such that g depends only

on {f1, . . . , fn} ⊂ X# on U . Let {f̃1, . . . , f̃n} ⊂ X∗ be such that
⋂

ker f̃i =
⋂

ker fi.

Choose y ∈ U . Since g(z) = g(y) for any z ∈ U such that z ∈ y +
⋂

ker fi, the

continuity of g implies that g(z) = g(y) also for any z ∈ U such that z ∈ y +
⋂

ker fi,

i.e. whenever f̃i(y) = f̃i(z) for all 1 6 i 6 n. �

If X is a topological vector space, let us recall that a set-valued mapping ψ : X →

2X is called a cusco mapping if for each x ∈ X , ψ(x) is a non-empty compact convex

subset of X and for each open set U in X , {x ∈ X ; ψ(x) ⊂ U} is open.

Lemma 9. Let X be a locally convex space, E be an arbitrary set and g : X → E

be an LFC-M mapping for some M ⊂ X#. Further, let ψ : X → 2X be a cusco

mapping with the following property: For any finite F ⊂ M , if x, y ∈ X are such

that f(x) = f(y) for all f ∈ F , then for each w ∈ ψ(x) there is z ∈ ψ(y) such

that f(w) = f(z) for all f ∈ F . Then the mapping G : X → 2E , G(x) = g(ψ(x)),

is LFC-M .

P r o o f. Let x0 ∈ X . We can find a finite covering of the compact ψ(x0) by open

sets Ui, i = 1, . . . , n, so that g depends only on a finite set Fi ⊂M on Ui. Let W be

a convex neighbourhood of zero such that ψ(x0)+W ⊂
⋃

Ui and put U = ψ(x0)+W

and F =
⋃

Fi. As U is convex and U ⊂
⋃

Ui, by Lemma 2, g depends only on F

on U .

Suppose V ⊂ X is a neighbourhood of x0 such that ψ(V ) ⊂ U . Let x, y ∈ V

be such that f(x) = f(y) for all f ∈ F . Choose w′ ∈ G(x) and find w ∈ ψ(x)

for which g(w) = w′. Then, by the assumption on ψ, there is z ∈ ψ(y) such that

f(w) = f(z) for all f ∈ F . But we have also w ∈ ψ(x) ⊂ U and z ∈ ψ(y) ⊂ U and

hence g(w) = g(z). Therefore w′ ∈ G(y) and by the symmetry we can conclude that

G(x) = G(y). �

As we shall see, the existence of a non-empty bounded LFD set in an infinite-

dimensional space has a strong impact on the structure of the space.

Definition 10. We say that a topological vector space X is locally flat if there

exists a non-empty bounded LFD subset A ⊂ X .
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Let X be a topological vector space, Y ⊂ X and Z ⊂ X be linear subspaces.

As follows from the remark after Definition 3 and the fact that dim Y/(Y ∩ Z) 6

dimX/Z, any linear subspace of a locally flat space is also locally flat.

By Theorem 7 and Fact 5, X is locally flat if and only if it admits a LFC bump

function b (in general arbitrary, i.e. non-continuous). Indeed, then (1−χ{0}) ◦ b is a

characteristic function of a bounded set which is LFC.

Theorem 11. Let X be a locally flat topological vector space. Then X has a

basis of neighbourhoods of zero formed by bounded LFD sets.

P r o o f. It suffices to show that there is a set C ⊂ X that is a bounded LFD

neighbourhood of zero in X , since then by the boundedness {n−1C}∞n=1 is a basis of

neighbourhoods of zero.

By Fact 6 and Theorem 7 we may assume that there is a closed bounded LFD-

FC c(X) subset A of X such that 0 ∈ A. There is a neighbourhood U of zero and

Y ∈ FC c(X) such that A is determined by Y on U . Put A0 = A ∩ Y . By Fact 6,

A0 is still a closed bounded LFD-FC c(X) subset ofX for which 0 ∈ U∩Y ⊂ A0 ⊂ Z.

We assume that codimY = 1, otherwise we repeat inductively the following con-

struction.

Choose e ∈ X \Y and denote B = {se ; |s| 6 1}. Put A1 = A0 +B. The set A1 is

bounded and LFD-FC c(X): Fix any x ∈ X , x = y+te for y ∈ Y and t scalar. There

is a neighbourhood V of y such that A0 is determined on V by some Z ∈ FC c(X),

Z ⊂ Y . We denote VY = V ∩ Y and put W = VY + te+ B. Since Y is closed and

codimY = 1, the product topology on Y ⊕ span{e} coincides with the topology of X

and thus W is a neighbourhood of x. Then for any z ∈W ∩A1 we have z = z1 + se,

where z1 ∈ VY ∩A0 = V ∩A0 and |s| 6 1. As A0 is determined by Z on V , we have

V ∩ (z1 +Z) ⊂ A0 and therefore W ∩ (z +Z) = VY ∩ (z1 +Z) + se ⊂ A0 + se ⊂ A1.

A1 is a neighbourhood of zero in X , because A1 ⊃ (U ∩ Z) + B and U ∩ Z is a

neighbourhood of zero in Z and we use the same argument on product topology as

above. �

Using Kolmogorov’s theorem we immediately obtain

Corollary 12. Any Hausdorff locally convex space that is locally flat is normable.

Another consequence follows from Lemma 9.

Corollary 13. Let X be a locally flat normed linear space. Then X has a

balanced bounded LFD neighbourhood of zero.

P r o o f. By Theorem 11 there is A ⊂ X which is a bounded LFD neighbourhood

of zero. Define a mapping ψ : X → 2X by ψ(x) = {tx ; |t| 6 1}. It is easy to check
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that ψ is a cusco mapping. Furthermore, let F ⊂ X#, and suppose x, y ∈ X are

such that f(x) = f(y) for all f ∈ F . Choose any w ∈ ψ(x). Then w = tx for some

suitable t, |t| 6 1, and we have ty ∈ ψ(y) and f(w) = f(tx) = f(ty) for all f ∈ F .

The function g = χA is LFC by Fact 5. Thus Lemma 9 implies that the function

h(x) = inf
|t|61

g(tx) = inf g(ψ(x)) is LFC.

Let D = h−1({1}). This set is LFD by Fact 5. We have h(x) 6 g(x) for all x ∈ X

and hence D ⊂ A and D is bounded. Since A is a neighbourhood of zero, there is

some ball B, B ⊂ A, and we have h(x) = 1 for any x ∈ B. Thus B ⊂ D and D is

a neighbourhood of zero. Next, h(tx) = inf
|s|61

g(tsx) > inf
|s|61

g(sx) = h(x) for any t,

|t| 6 1. Therefore x ∈ D implies tx ∈ D for all t, |t| 6 1 and D is balanced. �

Theorem 14. Let X be a normed linear space, A ⊂ X be a balanced bounded

LFD neighbourhood of zero. If the Minkowski functional p of A is continuous, then

it is LFC away from the origin. In particular, if A is moreover convex, then p is an

equivalent LFC norm.

P r o o f. Without loss of generality we may assume that A is closed and LFD-

FC c(X).

Fix any x ∈ X \ {0} and put β = p(x). There is 0 < δ < ‖x‖ such that βA is

determined by a subspace Z ∈ FC c(X) on U(x, δ). Put t1 = (1 + ‖x‖/(‖x‖+ δ))/2

and t2 = (1 + ‖x‖/(‖x‖ − δ))/2. Let V be a neighbourhood of x such that |p(y) −

p(x)| < βmin{1 − t1, t2 − 1} for y ∈ V . Put

U = V ∩
⋂

t1<t<t2

U(tx, tδ) = V ∩ U(t1x, t1δ) ∩ U(t2x, t2δ),

which is a neighbourhood of x, as by the definition of t1 and t2 both U(t1x, t1δ)

and U(t2x, t2δ) are neighbourhoods of x. (The second equality follows by an easy

convexity argument.)

It is easy to see that each of the sets tβA, t1 < t < t2, is determined on U

by Z. Furthermore, t1β < p(y) < t2β for any y ∈ U . Since A is closed, we have

y ∈ p(y)A and y /∈ tA for 0 < t < p(y). Therefore y + z ∈ p(y)A and y + z /∈ tA for

t1β < t < p(y) whenever z ∈ Z is such that y + z ∈ U . As A is balanced, it follows

that y + z /∈ tA for all 0 < t < p(y) and hence p(y + z) = p(y) whenever z ∈ Z is

such that y + z ∈ U . This means that p depends on U only on f1, . . . , fn ∈ X∗ such

that Z =
⋂

ker fi. �
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Theorem 15 ([21]). An infinite-dimensional locally flat Banach space X is satu-

rated by c0.

P r o o f. As any subspace of X is also locally flat, it suffices to prove that c0 ⊂ X .

Let A ⊂ X be a non-empty bounded LFD set. Without loss of generality we may

assume that 0 ∈ A ⊂ BX . We will inductively construct a sequence {xi} ⊂ X as

follows: Set x0 = 0. If x0, x1, . . . , xn−1 have already been defined, we put

An =

{

y ∈ X \ {0} ;

n−1
∑

i=0

εixi + εny ∈ A for all choices of signs εi = ±1,

i = 0, . . . , n

}

.

Using the fact that A is LFD we have An 6= ∅. Indeed,
n−1
∑

i=0

εixi ∈ A for any εi = ±1

by the construction and in the neighbourhood of each of these points the set A is

determined by some finite-codimensional subspace. Since there are finitely many of

these points, the intersection of all the respective finite-codimensional subspaces is

non-empty and sufficiently small vectors from this intersection belong to A. We put

Mn = sup
y∈An

‖y‖, and choose xn ∈ An such that ‖xn‖ > Mn/2.

We claim that the series
∞
∑

i=1

xi does not converge unconditionally. Indeed, assume

the contrary. Then the set S =
{ n

∑

i=1

εixi ; εi = ±1, n ∈ N

}

⊂ A is relatively

compact and we can find a finite covering of the compact S by open balls U1, . . . , Un

with radii δ1, . . . , δn and Z1, . . . , Zn ⊂ FC (X) such that A is determined on 2Ui

by Zi, i = 1, . . . , n. We put Z =
n
⋂

i=1

Zi and δ = min
16i6n

δi. As dimZ = ∞, we

can choose z ∈ Z for which ‖z‖ = δ. Since z ∈ An for any n ∈ N, it follows that

‖xn‖ > Mn/2 > δ/2 for all n ∈ N, which contradicts the convergence of
∞
∑

i=1

xi.

Without loss of generality we may assume that
∞
∑

i=1

xi is not convergent (otherwise

we change appropriately the signs of xi). As xn ∈ An, we have
∥

∥

∥

n
∑

i=0

εixi

∥

∥

∥
6 1 for

any choice of εi = ±1 and all n ∈ N. Thus
∞
∑

i=0

xi is weakly unconditionally Cauchy

and by the Bessaga-Pe lczyński theorem ([20, 2.e.4]), X contains an isomorphic copy

of c0. (The canonical basis of c0 is equivalent to some sequence of blocks of {xi}.) �
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Theorem 16. Let A ⊂ X be a non-empty bounded LFD-Z subset of a Banach

space X . Denote Z ⊥ =
⋃

{Z⊥ ; Z ∈ Z }. Then Z ⊥ = X∗.

P r o o f. Without loss of generality we may assume A ⊂ BX . Pick any f ∈ X∗

and ε > 0 and notice that f is bounded on A.

Choose any y1 ∈ A and define inductively a sequence {yn} ⊂ A. If y1, . . . , yn have

already been defined, choose yn+1 ∈ A so that

(1) ε‖yn+1 − yn‖ − f(yn+1) 6 min
{

inf
x∈A

(ε‖x− yn‖ − f(x)) +
1

2n
,−f(yn)

}

.

This is always possible. We put yn+1 = yn if the infimum above is attained in yn, oth-

erwise the infimum is strictly smaller than −f(yn) and we can choose a suitable yn+1

by the definition of infimum.

The sequence {f(yn)} is non-decreasing and bounded, thus it is convergent in R.

Moreover, {yn} is convergent. Indeed, ‖ym−yn‖ 6
m−1
∑

k=n

‖yk+1−yk‖ 6
m−1
∑

k=n

(f(yk+1)−

f(yk))/ε = (f(ym) − f(yn))/ε for m > n, and since {f(yn)} is Cauchy, so is {yn},

and there is x0 ∈ X such that yn → x0.

Finally, (1) implies

(2) f(x) − f(yn+1) 6 ε‖x− yn‖ +
1

2n
− ε‖yn+1 − yn‖ for every x ∈ A and n ∈ N.

Let δ > 0 and Z ∈ Z be such that A is determined by Z on U(x0, δ). Let n0 be

such that yn ∈ U(x0, δ/2) for every n > n0. Pick any z ∈ Z. Choose t > 0

sufficiently small so that ‖tz‖ < δ/2. Then yn+1 + tz ∈ U(x0, δ) for every n > n0

and consequently yn+1 + tz ∈ A and by (2),

f(z) =
1

t
(f(yn+1 + tz) − f(yn+1))

6
1

t

(

ε‖yn+1 − yn + tz‖ +
1

2n
− ε‖yn+1 − yn‖

)

6 ε‖z‖+
1

t2n

for any n > n0. It follows that f(z) 6 ε‖z‖ for any z ∈ Z. By the Hahn-Banach

theorem we can find g ∈ X∗ such that g = f on Z and ‖g‖ 6 ε. Clearly, f − g ∈ Z ⊥

and ‖f − (f − g)‖ 6 ε. �

The next corollary removes the assumption of continuity in a theorem from [6].
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Corollary 17. Let X be a Banach space, M ⊂ X∗ and assume X admits an

arbitrary LFC-M bump function. Then spanM = X∗.

P r o o f. Let b be the LFC-M bump function. Put A = {x ∈ X ; b(x) 6= 0}

and Z =
{ n

⋂

i=1

ker fi ; {f1, . . . , fn} ⊂ M, n ∈ N

}

. Then A is a non-empty bounded

LFD-Z set (Fact 5), Z ⊥ ⊂ spanM and by Theorem 16, spanM = X∗. �

Corollary 18. Any infinite-dimensional locally flat Banach space is a c0-saturated

Asplund space.

P r o o f. Let X be an infinite-dimensional locally flat Banach space. Then X is

c0-saturated by Theorem 15. Since local flatness passes to subspaces, it is enough to

show that X∗ is separable provided that X is separable.

By the Lindelöf property of X , there exists a countable collection Z = {Zi} ⊂

FC(X) such that A is LFD-Z . If Z ∈ FC (X), then Z⊥ ⊂ X∗ is a subspace

with dimZ⊥ 6 codimZ. As Zi is finite-codimensional, we can find {fi,j}
ni

j=1 ⊂

Z⊥
i , such that Z⊥

i = span{fi,j}
ni

j=1, where ni 6 codimZi. Notice that we have

Z ⊥ =
⋃

i

Z⊥
i ⊂ span

⋃

i

Z⊥
i = span

⋃

i

{fi,1, . . . , fi,ni
} and so by Theorem 16, X∗ =

span
⋃

i

{fi,1, . . . , fi,ni
}, hence it is separable. �

However, not all c0-saturated Asplund spaces are locally flat: Theorem 19 below

is a strengthening of a theorem from [19]. (Leung’s statement is that the Orlicz

sequence space hM does not admit a LFC norm if M satisfies the condition in The-

orem 19.) Leung in [19] constructed a c0-saturated Orlicz sequence space satisfying

the condition in Theorem 19. His space is therefore a separable c0-saturated Asplund

space that is not locally flat. For further results concerning LFC bump functions on

Orlicz sequence spaces see [13].

Theorem 19. Let M be a non-degenerate Orlicz function for which there exists

a sequence {tn} decreasing to 0 such that

sup
n

M(Ktn)

M(tn)
<∞ for all 0 < K <∞.

Then the Orlicz sequence space hM is not locally flat.

Before proving Theorem 19, we make the following observation: If X has a shrink-

ing Schauder basis, we may study only the sets that are locally determined by the

subspaces generated by natural projections associated with the basis. This follows

from the following reformulation of [12, Corollary 10] using Fact 5. (Notice also,

that taking into account Corollary 17, Schauder bases that are shrinking emerge

quite naturally in this context.)
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Theorem 20. LetX be a Banach space with a shrinking Schauder basis {ei}, A ⊂

X be LFD-FC c(X) and ε > 0. Then there is a (shrinking) Schauder basis {xi} ofX ,

(1 + ε)-equivalent to {ei}, such that A is LFD-Z for Z = {span{xi}∞i=n ; n ∈ N}.

P r o o f of Theorem 19. Suppose that there is a non-empty bounded A ⊂ hM

which is LFD. Without loss of generality we may assume that 0 ∈ A ⊂ BX and A is

LFD-Z , where Z = {span{ei}∞i=n ; n ∈ N}. (Since hM is c0-saturated by Theo-

rem 15, it does not contain ℓ1. As {ei} is unconditional, it is shrinking by James’s

theorem. Now consider T (Ā), where T : X → X is an equivalence isomorphism of

the bases {xi} and {ei} from Theorem 20.)

Notice that the vectors with coordinates in the set {tn} ∪ {0} have the property

of “bounded completeness”: If
∥

∥

∥

k
∑

i=1

tmi
ei

∥

∥

∥
6 1 for all k ∈ N, where mi ∈ N∪{0} are

not necessarily distinct (we put t0 = 0), then
∞
∑

i=1

tmi
ei converges in hM . Indeed, it

follows that
k
∑

i=1

M(tmi
) 6 1 for all k ∈ N. For all 0 < K <∞ and all k ∈ N,

k
∑

i=1

M(Ktmi
) 6 sup

n

M(Ktn)

M(tn)

k
∑

i=1

M(tmi
) 6 sup

n

M(Ktn)

M(tn)
.

Consequently,
∞
∑

i=1

M(Ktmi
) <∞ for all 0 < K <∞, and the sum

∞
∑

i=1

tmi
ei converges

in hM .

We construct a sequence {xk} ⊂ A by induction. Put x0 = 0 ∈ A and define

natural numbers m0 = n0 = 1. If mk−1 ∈ N, nk−1 ∈ N and xk−1 ∈ A are already

defined, we put

Mk = {(m,n) ∈ N
2 ; m > mk−1, n > nk−1 and xk−1 + tmen ∈ A}.

As A is determined by some W ∈ Z on a neighbourhood of xk−1, where W contains

all en for n big enough, and tm → 0, we can see that Mk 6= ∅. Let (mk, nk) = minMk

in the lexicographic ordering of N2 and put xk = xk−1 + tmk
enk

.

Since {xk} ⊂ A ⊂ BX and xk =
k
∑

i=1

tmi
eni

, by the above argument xk → x ∈ hM .

We can find δ > 0 so that A is determined by some Z ∈ Z on U(x, δ). There is

N ∈ N such that {ei}i>N ⊂ Z. Because xk converges, we have mk → ∞ and so

there is j ∈ N such that xj ∈ U(x, δ/2), ‖tmj
e1‖ < δ/2, mj < mj+1 and nj > N .

Then xj + tmj
enj+1 ∈ A and therefore (mj , nj + 1) ∈ Mj+1. But (mj , nj + 1) <

(mj+1, nj+1), which is a contradiction. �
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